mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 12:10:49 +08:00
Add performance test for detection in ROI; refactor soft cascade performance tests
This commit is contained in:
parent
eb91593c08
commit
dd595376ba
@ -41,20 +41,197 @@
|
||||
//M*/
|
||||
|
||||
#include <test_precomp.hpp>
|
||||
#include <time.h>
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using cv::gpu::GpuMat;
|
||||
|
||||
TEST(SoftCascade, readCascade)
|
||||
// show detection results on input image with cv::imshow
|
||||
//#define SHOW_DETECTIONS
|
||||
|
||||
#if defined SHOW_DETECTIONS
|
||||
# define SHOW(res) \
|
||||
cv::imshow(#res, result);\
|
||||
cv::waitKey(0);
|
||||
#else
|
||||
# define SHOW(res)
|
||||
#endif
|
||||
|
||||
#define GPU_TEST_P(fixture, name, params) \
|
||||
class fixture##_##name : public fixture { \
|
||||
public: \
|
||||
fixture##_##name() {} \
|
||||
protected: \
|
||||
virtual void body(); \
|
||||
}; \
|
||||
TEST_P(fixture##_##name, name /*none*/){ body();} \
|
||||
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
|
||||
void fixture##_##name::body()
|
||||
|
||||
|
||||
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t;
|
||||
|
||||
struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t>
|
||||
{
|
||||
typedef cv::gpu::SoftCascade::Detection detection_t;
|
||||
static cv::Rect getFromTable(int idx)
|
||||
{
|
||||
static const cv::Rect rois[] =
|
||||
{
|
||||
cv::Rect( 65, 20, 35, 80),
|
||||
cv::Rect( 95, 35, 45, 40),
|
||||
cv::Rect( 45, 35, 45, 40),
|
||||
cv::Rect( 25, 27, 50, 45),
|
||||
cv::Rect(100, 50, 45, 40),
|
||||
|
||||
cv::Rect( 60, 30, 45, 40),
|
||||
cv::Rect( 40, 55, 50, 40),
|
||||
cv::Rect( 48, 37, 72, 80),
|
||||
cv::Rect( 48, 32, 85, 58),
|
||||
cv::Rect( 48, 0, 32, 27)
|
||||
};
|
||||
|
||||
return rois[idx];
|
||||
}
|
||||
|
||||
static std::string itoa(long i)
|
||||
{
|
||||
static char s[65];
|
||||
sprintf(s, "%ld", i);
|
||||
return std::string(s);
|
||||
}
|
||||
|
||||
static std::string getImageName(int level)
|
||||
{
|
||||
time_t rawtime;
|
||||
struct tm * timeinfo;
|
||||
char buffer [80];
|
||||
|
||||
time ( &rawtime );
|
||||
timeinfo = localtime ( &rawtime );
|
||||
|
||||
strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo);
|
||||
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
|
||||
}
|
||||
|
||||
static void print(std::ostream &out, const detection_t& d)
|
||||
{
|
||||
out << "\x1b[32m[ detection]\x1b[0m ("
|
||||
<< std::setw(4) << d.x
|
||||
<< " "
|
||||
<< std::setw(4) << d.y
|
||||
<< ") ("
|
||||
<< std::setw(4) << d.w
|
||||
<< " "
|
||||
<< std::setw(4) << d.h
|
||||
<< ") "
|
||||
<< std::setw(12) << d.confidence
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
static void printTotal(std::ostream &out, int detbytes)
|
||||
{
|
||||
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl;
|
||||
}
|
||||
|
||||
static void writeResult(const cv::Mat& result, const int level)
|
||||
{
|
||||
std::string path = cv::tempfile(getImageName(level).c_str());
|
||||
cv::imwrite(path, result);
|
||||
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
GPU_TEST_P(SoftCascadeTest, detectInROI,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 5)))
|
||||
{
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1));
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(0)));
|
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
rois.setTo(0);
|
||||
|
||||
int nroi = GET_PARAM(2);
|
||||
cv::RNG rng;
|
||||
for (int i = 0; i < nroi; ++i)
|
||||
{
|
||||
cv::Rect r = getFromTable(rng(10));
|
||||
GpuMat sub(rois, r);
|
||||
sub.setTo(1);
|
||||
}
|
||||
|
||||
cascade.detectMultiScale(colored, rois, objectBoxes);
|
||||
|
||||
///
|
||||
cv::Mat dt(objectBoxes);
|
||||
typedef cv::gpu::SoftCascade::Detection detection_t;
|
||||
|
||||
detection_t* dts = (detection_t*)dt.data;
|
||||
cv::Mat result(coloredCpu);
|
||||
|
||||
printTotal(std::cout, dt.cols);
|
||||
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
|
||||
{
|
||||
detection_t d = dts[i];
|
||||
print(std::cout, d);
|
||||
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
||||
}
|
||||
|
||||
SHOW(result);
|
||||
}
|
||||
|
||||
GPU_TEST_P(SoftCascadeTest, detectInLevel,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 47)
|
||||
))
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(0);
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1));
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
|
||||
typedef cv::gpu::SoftCascade::Detection detection_t;
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(detection_t), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
rois.setTo(1);
|
||||
|
||||
int level = GET_PARAM(2);
|
||||
cascade.detectMultiScale(colored, rois, objectBoxes, 1, level);
|
||||
|
||||
cv::Mat dt(objectBoxes);
|
||||
|
||||
detection_t* dts = (detection_t*)dt.data;
|
||||
cv::Mat result(coloredCpu);
|
||||
|
||||
printTotal(std::cout, dt.cols);
|
||||
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
|
||||
{
|
||||
detection_t d = dts[i];
|
||||
print(std::cout, d);
|
||||
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
||||
}
|
||||
|
||||
writeResult(result, level);
|
||||
SHOW(result);
|
||||
}
|
||||
|
||||
TEST(SoftCascadeTest, readCascade)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
|
||||
}
|
||||
|
||||
TEST(SoftCascade, detect)
|
||||
TEST(SoftCascadeTest, detect)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::gpu::SoftCascade cascade;
|
||||
@ -71,67 +248,4 @@ TEST(SoftCascade, detect)
|
||||
|
||||
cascade.detectMultiScale(colored, rois, objectBoxes);
|
||||
}
|
||||
|
||||
class SCSpecific : public ::testing::TestWithParam<std::tr1::tuple<std::string, int> > {
|
||||
};
|
||||
|
||||
namespace {
|
||||
std::string itoa(long i)
|
||||
{
|
||||
static char s[65];
|
||||
sprintf(s, "%ld", i);
|
||||
return std::string(s);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(SCSpecific, detect)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
|
||||
std::string path = GET_PARAM(0);
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + path);
|
||||
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 1000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
rois.setTo(0);
|
||||
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
|
||||
sub.setTo(cv::Scalar::all(1));
|
||||
|
||||
int level = GET_PARAM(1);
|
||||
cascade.detectMultiScale(colored, rois, objectBoxes, 1, level);
|
||||
|
||||
cv::Mat dt(objectBoxes);
|
||||
typedef cv::gpu::SoftCascade::Detection detection_t;
|
||||
|
||||
detection_t* dts = (detection_t*)dt.data;
|
||||
cv::Mat result(coloredCpu);
|
||||
|
||||
|
||||
std::cout << "Total detections " << (dt.cols / sizeof(detection_t)) << std::endl;
|
||||
for(int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
|
||||
{
|
||||
detection_t d = dts[i];
|
||||
std::cout << "detection: [" << std::setw(4) << d.x << " " << std::setw(4) << d.y
|
||||
<< "] [" << std::setw(4) << d.w << " " << std::setw(4) << d.h << "] "
|
||||
<< std::setw(12) << d.confidence << std::endl;
|
||||
|
||||
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
||||
}
|
||||
|
||||
std::cout << "Result stored in " << "/home/kellan/gpu_res_1_oct_" + itoa(level) << "_"
|
||||
+ itoa((dt.cols / sizeof(detection_t))) + ".png" << std::endl;
|
||||
cv::imwrite("/home/kellan/gpu_res_1_oct_" + itoa(level) + "_" + itoa((dt.cols / sizeof(detection_t))) + ".png",
|
||||
result);
|
||||
cv::imshow("res", result);
|
||||
cv::waitKey(0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(inLevel, SCSpecific,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 47)
|
||||
));
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user