Add performance test for detection in ROI; refactor soft cascade performance tests

This commit is contained in:
marina.kolpakova 2012-10-03 14:26:26 +04:00
parent eb91593c08
commit dd595376ba

View File

@ -41,20 +41,197 @@
//M*/
#include <test_precomp.hpp>
#include <time.h>
#ifdef HAVE_CUDA
using cv::gpu::GpuMat;
TEST(SoftCascade, readCascade)
// show detection results on input image with cv::imshow
//#define SHOW_DETECTIONS
#if defined SHOW_DETECTIONS
# define SHOW(res) \
cv::imshow(#res, result);\
cv::waitKey(0);
#else
# define SHOW(res)
#endif
#define GPU_TEST_P(fixture, name, params) \
class fixture##_##name : public fixture { \
public: \
fixture##_##name() {} \
protected: \
virtual void body(); \
}; \
TEST_P(fixture##_##name, name /*none*/){ body();} \
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
void fixture##_##name::body()
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t;
struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t>
{
typedef cv::gpu::SoftCascade::Detection detection_t;
static cv::Rect getFromTable(int idx)
{
static const cv::Rect rois[] =
{
cv::Rect( 65, 20, 35, 80),
cv::Rect( 95, 35, 45, 40),
cv::Rect( 45, 35, 45, 40),
cv::Rect( 25, 27, 50, 45),
cv::Rect(100, 50, 45, 40),
cv::Rect( 60, 30, 45, 40),
cv::Rect( 40, 55, 50, 40),
cv::Rect( 48, 37, 72, 80),
cv::Rect( 48, 32, 85, 58),
cv::Rect( 48, 0, 32, 27)
};
return rois[idx];
}
static std::string itoa(long i)
{
static char s[65];
sprintf(s, "%ld", i);
return std::string(s);
}
static std::string getImageName(int level)
{
time_t rawtime;
struct tm * timeinfo;
char buffer [80];
time ( &rawtime );
timeinfo = localtime ( &rawtime );
strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo);
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
}
static void print(std::ostream &out, const detection_t& d)
{
out << "\x1b[32m[ detection]\x1b[0m ("
<< std::setw(4) << d.x
<< " "
<< std::setw(4) << d.y
<< ") ("
<< std::setw(4) << d.w
<< " "
<< std::setw(4) << d.h
<< ") "
<< std::setw(12) << d.confidence
<< std::endl;
}
static void printTotal(std::ostream &out, int detbytes)
{
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl;
}
static void writeResult(const cv::Mat& result, const int level)
{
std::string path = cv::tempfile(getImageName(level).c_str());
cv::imwrite(path, result);
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl;
}
};
GPU_TEST_P(SoftCascadeTest, detectInROI,
testing::Combine(
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 5)))
{
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1));
ASSERT_FALSE(coloredCpu.empty());
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(0)));
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
rois.setTo(0);
int nroi = GET_PARAM(2);
cv::RNG rng;
for (int i = 0; i < nroi; ++i)
{
cv::Rect r = getFromTable(rng(10));
GpuMat sub(rois, r);
sub.setTo(1);
}
cascade.detectMultiScale(colored, rois, objectBoxes);
///
cv::Mat dt(objectBoxes);
typedef cv::gpu::SoftCascade::Detection detection_t;
detection_t* dts = (detection_t*)dt.data;
cv::Mat result(coloredCpu);
printTotal(std::cout, dt.cols);
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
{
detection_t d = dts[i];
print(std::cout, d);
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
}
SHOW(result);
}
GPU_TEST_P(SoftCascadeTest, detectInLevel,
testing::Combine(
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 47)
))
{
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(0);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(xml));
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1));
ASSERT_FALSE(coloredCpu.empty());
typedef cv::gpu::SoftCascade::Detection detection_t;
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(detection_t), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
rois.setTo(1);
int level = GET_PARAM(2);
cascade.detectMultiScale(colored, rois, objectBoxes, 1, level);
cv::Mat dt(objectBoxes);
detection_t* dts = (detection_t*)dt.data;
cv::Mat result(coloredCpu);
printTotal(std::cout, dt.cols);
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
{
detection_t d = dts[i];
print(std::cout, d);
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
}
writeResult(result, level);
SHOW(result);
}
TEST(SoftCascadeTest, readCascade)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(xml));
}
TEST(SoftCascade, detect)
TEST(SoftCascadeTest, detect)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
cv::gpu::SoftCascade cascade;
@ -71,67 +248,4 @@ TEST(SoftCascade, detect)
cascade.detectMultiScale(colored, rois, objectBoxes);
}
class SCSpecific : public ::testing::TestWithParam<std::tr1::tuple<std::string, int> > {
};
namespace {
std::string itoa(long i)
{
static char s[65];
sprintf(s, "%ld", i);
return std::string(s);
}
}
TEST_P(SCSpecific, detect)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(xml));
std::string path = GET_PARAM(0);
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + path);
ASSERT_FALSE(coloredCpu.empty());
GpuMat colored(coloredCpu), objectBoxes(1, 1000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
rois.setTo(0);
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
sub.setTo(cv::Scalar::all(1));
int level = GET_PARAM(1);
cascade.detectMultiScale(colored, rois, objectBoxes, 1, level);
cv::Mat dt(objectBoxes);
typedef cv::gpu::SoftCascade::Detection detection_t;
detection_t* dts = (detection_t*)dt.data;
cv::Mat result(coloredCpu);
std::cout << "Total detections " << (dt.cols / sizeof(detection_t)) << std::endl;
for(int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
{
detection_t d = dts[i];
std::cout << "detection: [" << std::setw(4) << d.x << " " << std::setw(4) << d.y
<< "] [" << std::setw(4) << d.w << " " << std::setw(4) << d.h << "] "
<< std::setw(12) << d.confidence << std::endl;
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
}
std::cout << "Result stored in " << "/home/kellan/gpu_res_1_oct_" + itoa(level) << "_"
+ itoa((dt.cols / sizeof(detection_t))) + ".png" << std::endl;
cv::imwrite("/home/kellan/gpu_res_1_oct_" + itoa(level) + "_" + itoa((dt.cols / sizeof(detection_t))) + ".png",
result);
cv::imshow("res", result);
cv::waitKey(0);
}
INSTANTIATE_TEST_CASE_P(inLevel, SCSpecific,
testing::Combine(
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 47)
));
#endif