Added code

This commit is contained in:
edgarriba 2014-08-06 08:12:55 +02:00
parent 57d2cb8962
commit ddf5c86f3a
20 changed files with 2767 additions and 0 deletions

View File

@ -0,0 +1,80 @@
#include "CsvReader.h"
#include "Utils.h"
/** The default constructor of the CSV reader Class */
CsvReader::CsvReader(const std::string &path, const char &separator){
_file.open(path.c_str(), ifstream::in);
_separator = separator;
}
/* Read a plane text file with .ply format */
void CsvReader::readPLY(std::vector<cv::Point3f> &list_vertex, std::vector<std::vector<int> > &list_triangles)
{
std::string line, tmp_str, n;
int num_vertex, num_triangles;
int count = 0;
bool end_header = false;
bool end_vertex = false;
// Read the whole *.ply file
while (getline(_file, line)) {
stringstream liness(line);
// read header
if(!end_header)
{
getline(liness, tmp_str, _separator);
if( tmp_str == "element" )
{
getline(liness, tmp_str, _separator);
getline(liness, n);
if(tmp_str == "vertex") num_vertex = StringToInt(n);
if(tmp_str == "face") num_triangles = StringToInt(n);
}
if(tmp_str == "end_header") end_header = true;
}
// read file content
else if(end_header)
{
// read vertex and add into 'list_vertex'
if(!end_vertex && count < num_vertex)
{
string x, y, z;
getline(liness, x, _separator);
getline(liness, y, _separator);
getline(liness, z);
cv::Point3f tmp_p;
tmp_p.x = StringToInt(x);
tmp_p.y = StringToInt(y);
tmp_p.z = StringToInt(z);
list_vertex.push_back(tmp_p);
count++;
if(count == num_vertex)
{
count = 0;
end_vertex = !end_vertex;
}
}
// read faces and add into 'list_triangles'
else if(end_vertex && count < num_triangles)
{
std::string num_pts_per_face, id0, id1, id2;
getline(liness, num_pts_per_face, _separator);
getline(liness, id0, _separator);
getline(liness, id1, _separator);
getline(liness, id2);
std::vector<int> tmp_triangle(3);
tmp_triangle[0] = StringToInt(id0);
tmp_triangle[1] = StringToInt(id1);
tmp_triangle[2] = StringToInt(id2);
list_triangles.push_back(tmp_triangle);
count++;
}
}
}
}

View File

@ -0,0 +1,40 @@
#ifndef CSVREADER_H
#define CSVREADER_H
#include <iostream>
#include <fstream>
#include <opencv2/core/core.hpp>
using namespace std;
using namespace cv;
class CsvReader {
public:
/**
* The default constructor of the CSV reader Class.
* The default separator is ' ' (empty space)
*
* @param path - The path of the file to read
* @param separator - The separator character between words per line
* @return
*/
CsvReader(const std::string &path, const char &separator = ' ');
/**
* Read a plane text file with .ply format
*
* @param list_vertex - The container of the vertices list of the mesh
* @param list_triangle - The container of the triangles list of the mesh
* @return
*/
void readPLY(std::vector<cv::Point3f> &list_vertex, std::vector<std::vector<int> > &list_triangles);
private:
/** The current stream file for the reader */
ifstream _file;
/** The separator character between words for each line */
char _separator;
};
#endif

View File

@ -0,0 +1,50 @@
#include "CsvWriter.h"
#include "Utils.h"
CsvWriter::CsvWriter(const std::string &path, const std::string &separator){
_file.open(path.c_str(), std::ofstream::out);
_isFirstTerm = true;
_separator = separator;
}
CsvWriter::~CsvWriter() {
_file.flush();
_file.close();
}
void CsvWriter::writeXYZ(const std::vector<cv::Point3f> &list_points3d)
{
std::string x, y, z;
for(unsigned int i = 0; i < list_points3d.size(); ++i)
{
x = FloatToString(list_points3d[i].x);
y = FloatToString(list_points3d[i].y);
z = FloatToString(list_points3d[i].z);
_file << x << _separator << y << _separator << z << std::endl;
}
}
void CsvWriter::writeUVXYZ(const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d, const cv::Mat &descriptors)
{
std::string u, v, x, y, z, descriptor_str;
for(int i = 0; i < list_points3d.size(); ++i)
{
u = FloatToString(list_points2d[i].x);
v = FloatToString(list_points2d[i].y);
x = FloatToString(list_points3d[i].x);
y = FloatToString(list_points3d[i].y);
z = FloatToString(list_points3d[i].z);
_file << u << _separator << v << _separator << x << _separator << y << _separator << z;
for(int j = 0; j < 32; ++j)
{
std::cout << descriptors.at<float>(i,j) << std::endl;
descriptor_str = FloatToString(descriptors.at<float>(i,j));
_file << _separator << descriptor_str;
}
_file << std::endl;
}
}

View File

@ -0,0 +1,22 @@
#ifndef CSVWRITER_H
#define CSVWRITER_H
#include <fstream>
#include <iostream>
#include <opencv2/core/core.hpp>
class CsvWriter {
public:
CsvWriter(const std::string &path, const std::string &separator = " ");
~CsvWriter();
void writeXYZ(const std::vector<cv::Point3f> &list_points3d);
void writeUVXYZ(const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d, const cv::Mat &descriptors);
private:
std::ofstream _file;
std::string _separator;
bool _isFirstTerm;
};
#endif

View File

@ -0,0 +1,82 @@
/*
* Mesh.cpp
*
* Created on: Apr 9, 2014
* Author: edgar
*/
#include "Mesh.h"
#include "CsvReader.h"
// --------------------------------------------------- //
// TRIANGLE CLASS //
// --------------------------------------------------- //
/** The custom constructor of the Triangle Class */
Triangle::Triangle(int id, cv::Point3f V0, cv::Point3f V1, cv::Point3f V2)
{
id_ = id; v0_ = V0; v1_ = V1; v2_ = V2;
}
/** The default destructor of the Class */
Triangle::~Triangle()
{
// TODO Auto-generated destructor stub
}
// --------------------------------------------------- //
// RAY CLASS //
// --------------------------------------------------- //
/** The custom constructor of the Ray Class */
Ray::Ray(cv::Point3f P0, cv::Point3f P1) {
p0_ = P0; p1_ = P1;
}
/** The default destructor of the Class */
Ray::~Ray()
{
// TODO Auto-generated destructor stub
}
// --------------------------------------------------- //
// OBJECT MESH CLASS //
// --------------------------------------------------- //
/** The default constructor of the ObjectMesh Class */
Mesh::Mesh() : list_vertex_(0) , list_triangles_(0)
{
id_ = 0;
num_vertexs_ = 0;
num_triangles_ = 0;
}
/** The default destructor of the ObjectMesh Class */
Mesh::~Mesh()
{
// TODO Auto-generated destructor stub
}
/** Load a CSV with *.ply format **/
void Mesh::load(const std::string path)
{
// Create the reader
CsvReader csvReader(path);
// Clear previous data
list_vertex_.clear();
list_triangles_.clear();
// Read from .ply file
csvReader.readPLY(list_vertex_, list_triangles_);
// Update mesh attributes
num_vertexs_ = list_vertex_.size();
num_triangles_ = list_triangles_.size();
}

View File

@ -0,0 +1,86 @@
/*
* Mesh.h
*
* Created on: Apr 9, 2014
* Author: edgar
*/
#ifndef MESH_H_
#define MESH_H_
#include <iostream>
#include <opencv2/core/core.hpp>
// --------------------------------------------------- //
// TRIANGLE CLASS //
// --------------------------------------------------- //
class Triangle {
public:
explicit Triangle(int id, cv::Point3f V0, cv::Point3f V1, cv::Point3f V2);
virtual ~Triangle();
cv::Point3f getV0() const { return v0_; }
cv::Point3f getV1() const { return v1_; }
cv::Point3f getV2() const { return v2_; }
private:
/** The identifier number of the triangle */
int id_;
/** The three vertices that defines the triangle */
cv::Point3f v0_, v1_, v2_;
};
// --------------------------------------------------- //
// RAY CLASS //
// --------------------------------------------------- //
class Ray {
public:
explicit Ray(cv::Point3f P0, cv::Point3f P1);
virtual ~Ray();
cv::Point3f getP0() { return p0_; }
cv::Point3f getP1() { return p1_; }
private:
/** The two points that defines the ray */
cv::Point3f p0_, p1_;
};
// --------------------------------------------------- //
// OBJECT MESH CLASS //
// --------------------------------------------------- //
class Mesh
{
public:
Mesh();
virtual ~Mesh();
std::vector<std::vector<int> > getTrianglesList() const { return list_triangles_; }
cv::Point3f getVertex(int pos) const { return list_vertex_[pos]; }
int getNumVertices() const { return num_vertexs_; }
void load(const std::string path_file);
private:
/** The identification number of the mesh */
int id_;
/** The current number of vertices in the mesh */
int num_vertexs_;
/** The current number of triangles in the mesh */
int num_triangles_;
/* The list of triangles of the mesh */
std::vector<cv::Point3f> list_vertex_;
/* The list of triangles of the mesh */
std::vector<std::vector<int> > list_triangles_;
};
#endif /* OBJECTMESH_H_ */

View File

@ -0,0 +1,73 @@
/*
* Model.cpp
*
* Created on: Apr 9, 2014
* Author: edgar
*/
#include "Model.h"
#include "CsvWriter.h"
Model::Model() : list_points2d_in_(0), list_points2d_out_(0), list_points3d_in_(0)
{
n_correspondences_ = 0;
}
Model::~Model()
{
// TODO Auto-generated destructor stub
}
void Model::add_correspondence(const cv::Point2f &point2d, const cv::Point3f &point3d)
{
list_points2d_in_.push_back(point2d);
list_points3d_in_.push_back(point3d);
n_correspondences_++;
}
void Model::add_outlier(const cv::Point2f &point2d)
{
list_points2d_out_.push_back(point2d);
}
void Model::add_descriptor(const cv::Mat &descriptor)
{
descriptors_.push_back(descriptor);
}
void Model::add_keypoint(const cv::KeyPoint &kp)
{
list_keypoints_.push_back(kp);
}
/** Save a CSV file and fill the object mesh */
void Model::save(const std::string path)
{
cv::Mat points3dmatrix = cv::Mat(list_points3d_in_);
cv::Mat points2dmatrix = cv::Mat(list_points2d_in_);
//cv::Mat keyPointmatrix = cv::Mat(list_keypoints_);
cv::FileStorage storage(path, cv::FileStorage::WRITE);
storage << "points_3d" << points3dmatrix;
storage << "points_2d" << points2dmatrix;
storage << "keypoints" << list_keypoints_;
storage << "descriptors" << descriptors_;
storage.release();
}
/** Load a YAML file using OpenCv functions **/
void Model::load(const std::string path)
{
cv::Mat points3d_mat;
cv::FileStorage storage(path, cv::FileStorage::READ);
storage["points_3d"] >> points3d_mat;
storage["descriptors"] >> descriptors_;
points3d_mat.copyTo(list_points3d_in_);
storage.release();
}

View File

@ -0,0 +1,54 @@
/*
* Model.h
*
* Created on: Apr 9, 2014
* Author: edgar
*/
#ifndef MODEL_H_
#define MODEL_H_
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
class Model
{
public:
Model();
virtual ~Model();
std::vector<cv::Point2f> get_points2d_in() const { return list_points2d_in_; }
std::vector<cv::Point2f> get_points2d_out() const { return list_points2d_out_; }
std::vector<cv::Point3f> get_points3d() const { return list_points3d_in_; }
std::vector<cv::KeyPoint> get_keypoints() const { return list_keypoints_; }
cv::Mat get_descriptors() const { return descriptors_; }
int get_numDescriptors() const { return descriptors_.rows; }
void add_correspondence(const cv::Point2f &point2d, const cv::Point3f &point3d);
void add_outlier(const cv::Point2f &point2d);
void add_descriptor(const cv::Mat &descriptor);
void add_keypoint(const cv::KeyPoint &kp);
void save(const std::string path);
void load(const std::string path);
private:
/** The current number of correspondecnes */
int n_correspondences_;
/** The list of 2D points on the model surface */
std::vector<cv::KeyPoint> list_keypoints_;
/** The list of 2D points on the model surface */
std::vector<cv::Point2f> list_points2d_in_;
/** The list of 2D points outside the model surface */
std::vector<cv::Point2f> list_points2d_out_;
/** The list of 3D points on the model surface */
std::vector<cv::Point3f> list_points3d_in_;
/** The list of 2D points descriptors */
cv::Mat descriptors_;
};
#endif /* OBJECTMODEL_H_ */

View File

@ -0,0 +1,35 @@
/*
* ModelRegistration.cpp
*
* Created on: Apr 18, 2014
* Author: edgar
*/
#include "ModelRegistration.h"
ModelRegistration::ModelRegistration()
{
n_registrations_ = 0;
max_registrations_ = 0;
}
ModelRegistration::~ModelRegistration()
{
// TODO Auto-generated destructor stub
}
void ModelRegistration::registerPoint(const cv::Point2f &point2d, const cv::Point3f &point3d)
{
// add correspondence at the end of the vector
list_points2d_.push_back(point2d);
list_points3d_.push_back(point3d);
n_registrations_++;
}
void ModelRegistration::reset()
{
n_registrations_ = 0;
max_registrations_ = 0;
list_points2d_.clear();
list_points3d_.clear();
}

View File

@ -0,0 +1,43 @@
/*
* ModelRegistration.h
*
* Created on: Apr 18, 2014
* Author: edgar
*/
#ifndef MODELREGISTRATION_H_
#define MODELREGISTRATION_H_
#include <iostream>
#include <opencv2/core/core.hpp>
class ModelRegistration
{
public:
ModelRegistration();
virtual ~ModelRegistration();
void setNumMax(int n) { max_registrations_ = n; }
std::vector<cv::Point2f> get_points2d() const { return list_points2d_; }
std::vector<cv::Point3f> get_points3d() const { return list_points3d_; }
int getNumMax() const { return max_registrations_; }
int getNumRegist() const { return n_registrations_; }
bool is_registrable() const { return (n_registrations_ < max_registrations_); }
void registerPoint(const cv::Point2f &point2d, const cv::Point3f &point3d);
void reset();
private:
/** The current number of registered points */
int n_registrations_;
/** The total number of points to register */
int max_registrations_;
/** The list of 2D points to register the model */
std::vector<cv::Point2f> list_points2d_;
/** The list of 3D points to register the model */
std::vector<cv::Point3f> list_points3d_;
};
#endif /* MODELREGISTRATION_H_ */

View File

@ -0,0 +1,312 @@
/*
* PnPProblem.cpp
*
* Created on: Mar 28, 2014
* Author: Edgar Riba
*/
#include <iostream>
#include <sstream>
#include "PnPProblem.h"
#include "Mesh.h"
#include <opencv2/calib3d/calib3d.hpp>
/* Functions for MöllerTrumbore intersection algorithm
* */
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
{
cv::Point3f tmp_p;
tmp_p.x = v1.y*v2.z - v1.z*v2.y;
tmp_p.y = v1.z*v2.x - v1.x*v2.z;
tmp_p.z = v1.x*v2.y - v1.y*v2.x;
return tmp_p;
}
double DOT(cv::Point3f v1, cv::Point3f v2)
{
return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
}
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2)
{
cv::Point3f tmp_p;
tmp_p.x = v1.x - v2.x;
tmp_p.y = v1.y - v2.y;
tmp_p.z = v1.z - v2.z;
return tmp_p;
}
/* End functions for MöllerTrumbore intersection algorithm
* */
// Function to get the nearest 3D point to the Ray origin
cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Point3f origin)
{
cv::Point3f p1 = points_list[0];
cv::Point3f p2 = points_list[1];
double d1 = std::sqrt( std::pow(p1.x-origin.x, 2) + std::pow(p1.y-origin.y, 2) + std::pow(p1.z-origin.z, 2) );
double d2 = std::sqrt( std::pow(p2.x-origin.x, 2) + std::pow(p2.y-origin.y, 2) + std::pow(p2.z-origin.z, 2) );
if(d1 < d2)
{
return p1;
}
else
{
return p2;
}
}
// Custom constructor given the intrinsic camera parameters
PnPProblem::PnPProblem(const double params[])
{
_A_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // intrinsic camera parameters
_A_matrix.at<double>(0, 0) = params[0]; // [ fx 0 cx ]
_A_matrix.at<double>(1, 1) = params[1]; // [ 0 fy cy ]
_A_matrix.at<double>(0, 2) = params[2]; // [ 0 0 1 ]
_A_matrix.at<double>(1, 2) = params[3];
_A_matrix.at<double>(2, 2) = 1;
_R_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // rotation matrix
_t_matrix = cv::Mat::zeros(3, 1, CV_64FC1); // translation matrix
_P_matrix = cv::Mat::zeros(3, 4, CV_64FC1); // rotation-translation matrix
}
PnPProblem::~PnPProblem()
{
// TODO Auto-generated destructor stub
}
void PnPProblem::set_P_matrix( const cv::Mat &R_matrix, const cv::Mat &t_matrix)
{
// Rotation-Translation Matrix Definition
_P_matrix.at<double>(0,0) = R_matrix.at<double>(0,0);
_P_matrix.at<double>(0,1) = R_matrix.at<double>(0,1);
_P_matrix.at<double>(0,2) = R_matrix.at<double>(0,2);
_P_matrix.at<double>(1,0) = R_matrix.at<double>(1,0);
_P_matrix.at<double>(1,1) = R_matrix.at<double>(1,1);
_P_matrix.at<double>(1,2) = R_matrix.at<double>(1,2);
_P_matrix.at<double>(2,0) = R_matrix.at<double>(2,0);
_P_matrix.at<double>(2,1) = R_matrix.at<double>(2,1);
_P_matrix.at<double>(0,3) = t_matrix.at<double>(0);
_P_matrix.at<double>(1,3) = t_matrix.at<double>(1);
_P_matrix.at<double>(2,3) = t_matrix.at<double>(2);
}
// Estimate the pose given a list of 2D/3D correspondences and the method to use
bool PnPProblem::estimatePose( const std::vector<cv::Point3f> &list_points3d,
const std::vector<cv::Point2f> &list_points2d,
int flags)
{
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1);
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1);
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1);
bool useExtrinsicGuess = false;
// Pose estimation
bool correspondence = cv::solvePnP( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
useExtrinsicGuess, flags);
// Transforms Rotation Vector to Matrix
Rodrigues(rvec,_R_matrix);
_t_matrix = tvec;
// Set projection matrix
this->set_P_matrix(_R_matrix, _t_matrix);
return correspondence;
}
// Estimate the pose given a list of 2D/3D correspondences with RANSAC and the method to use
void PnPProblem::estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, // list with model 3D coordinates
const std::vector<cv::Point2f> &list_points2d, // list with scene 2D coordinates
int flags, cv::Mat &inliers, int iterationsCount, // PnP method; inliers container
float reprojectionError, float confidence ) // Ransac parameters
{
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1); // vector of distortion coefficients
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1); // output rotation vector
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1); // output translation vector
bool useExtrinsicGuess = false; // if true the function uses the provided rvec and tvec values as
// initial approximations of the rotation and translation vectors
cv::solvePnPRansac( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
useExtrinsicGuess, iterationsCount, reprojectionError, confidence,
inliers, flags );
Rodrigues(rvec,_R_matrix); // converts Rotation Vector to Matrix
_t_matrix = tvec; // set translation matrix
this->set_P_matrix(_R_matrix, _t_matrix); // set rotation-translation matrix
}
// Given the mesh, backproject the 3D points to 2D to verify the pose estimation
std::vector<cv::Point2f> PnPProblem::verify_points(Mesh *mesh)
{
std::vector<cv::Point2f> verified_points_2d;
for( int i = 0; i < mesh->getNumVertices(); i++)
{
cv::Point3f point3d = mesh->getVertex(i);
cv::Point2f point2d = this->backproject3DPoint(point3d);
verified_points_2d.push_back(point2d);
}
return verified_points_2d;
}
// Backproject a 3D point to 2D using the estimated pose parameters
cv::Point2f PnPProblem::backproject3DPoint(const cv::Point3f &point3d)
{
// 3D point vector [x y z 1]'
cv::Mat point3d_vec = cv::Mat(4, 1, CV_64FC1);
point3d_vec.at<double>(0) = point3d.x;
point3d_vec.at<double>(1) = point3d.y;
point3d_vec.at<double>(2) = point3d.z;
point3d_vec.at<double>(3) = 1;
// 2D point vector [u v 1]'
cv::Mat point2d_vec = cv::Mat(4, 1, CV_64FC1);
point2d_vec = _A_matrix * _P_matrix * point3d_vec;
// Normalization of [u v]'
cv::Point2f point2d;
point2d.x = point2d_vec.at<double>(0) / point2d_vec.at<double>(2);
point2d.y = point2d_vec.at<double>(1) / point2d_vec.at<double>(2);
return point2d;
}
// Back project a 2D point to 3D and returns if it's on the object surface
bool PnPProblem::backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d, cv::Point3f &point3d)
{
// Triangles list of the object mesh
std::vector<std::vector<int> > triangles_list = mesh->getTrianglesList();
double lambda = 8;
double u = point2d.x;
double v = point2d.y;
// Point in vector form
cv::Mat point2d_vec = cv::Mat::ones(3, 1, CV_64F); // 3x1
point2d_vec.at<double>(0) = u * lambda;
point2d_vec.at<double>(1) = v * lambda;
point2d_vec.at<double>(2) = lambda;
// Point in camera coordinates
cv::Mat X_c = _A_matrix.inv() * point2d_vec ; // 3x1
// Point in world coordinates
cv::Mat X_w = _R_matrix.inv() * ( X_c - _t_matrix ); // 3x1
// Center of projection
cv::Mat C_op = cv::Mat(_R_matrix.inv()).mul(-1) * _t_matrix; // 3x1
// Ray direction vector
cv::Mat ray = X_w - C_op; // 3x1
ray = ray / cv::norm(ray); // 3x1
// Set up Ray
Ray R((cv::Point3f)C_op, (cv::Point3f)ray);
// A vector to store the intersections found
std::vector<cv::Point3f> intersections_list;
// Loop for all the triangles and check the intersection
for (unsigned int i = 0; i < triangles_list.size(); i++)
{
cv::Point3f V0 = mesh->getVertex(triangles_list[i][0]);
cv::Point3f V1 = mesh->getVertex(triangles_list[i][1]);
cv::Point3f V2 = mesh->getVertex(triangles_list[i][2]);
Triangle T(i, V0, V1, V2);
double out;
if(this->intersect_MollerTrumbore(R, T, &out))
{
cv::Point3f tmp_pt = R.getP0() + out*R.getP1(); // P = O + t*D
intersections_list.push_back(tmp_pt);
}
}
// If there are intersection, find the nearest one
if (!intersections_list.empty())
{
point3d = get_nearest_3D_point(intersections_list, R.getP0());
return true;
}
else
{
return false;
}
}
// MöllerTrumbore intersection algorithm
bool PnPProblem::intersect_MollerTrumbore(Ray &Ray, Triangle &Triangle, double *out)
{
const double EPSILON = 0.000001;
cv::Point3f e1, e2;
cv::Point3f P, Q, T;
double det, inv_det, u, v;
double t;
cv::Point3f V1 = Triangle.getV0(); // Triangle vertices
cv::Point3f V2 = Triangle.getV1();
cv::Point3f V3 = Triangle.getV2();
cv::Point3f O = Ray.getP0(); // Ray origin
cv::Point3f D = Ray.getP1(); // Ray direction
//Find vectors for two edges sharing V1
e1 = SUB(V2, V1);
e2 = SUB(V3, V1);
// Begin calculation determinant - also used to calculate U parameter
P = CROSS(D, e2);
// If determinant is near zero, ray lie in plane of triangle
det = DOT(e1, P);
//NOT CULLING
if(det > -EPSILON && det < EPSILON) return false;
inv_det = 1.f / det;
//calculate distance from V1 to ray origin
T = SUB(O, V1);
//Calculate u parameter and test bound
u = DOT(T, P) * inv_det;
//The intersection lies outside of the triangle
if(u < 0.f || u > 1.f) return false;
//Prepare to test v parameter
Q = CROSS(T, e1);
//Calculate V parameter and test bound
v = DOT(D, Q) * inv_det;
//The intersection lies outside of the triangle
if(v < 0.f || u + v > 1.f) return false;
t = DOT(e2, Q) * inv_det;
if(t > EPSILON) { //ray intersection
*out = t;
return true;
}
// No hit, no win
return false;
}

View File

@ -0,0 +1,53 @@
/*
* PnPProblem.h
*
* Created on: Mar 28, 2014
* Author: Edgar Riba
*/
#ifndef PNPPROBLEM_H_
#define PNPPROBLEM_H_
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "Mesh.h"
#include "ModelRegistration.h"
class PnPProblem
{
public:
explicit PnPProblem(const double param[]); // custom constructor
virtual ~PnPProblem();
bool backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d, cv::Point3f &point3d);
bool intersect_MollerTrumbore(Ray &R, Triangle &T, double *out);
std::vector<cv::Point2f> verify_points(Mesh *mesh);
cv::Point2f backproject3DPoint(const cv::Point3f &point3d);
bool estimatePose(const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d, int flags);
void estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d,
int flags, cv::Mat &inliers,
int iterationsCount, float reprojectionError, float confidence );
cv::Mat get_A_matrix() const { return _A_matrix; }
cv::Mat get_R_matrix() const { return _R_matrix; }
cv::Mat get_t_matrix() const { return _t_matrix; }
cv::Mat get_P_matrix() const { return _P_matrix; }
void set_P_matrix( const cv::Mat &R_matrix, const cv::Mat &t_matrix);
private:
/** The calibration matrix */
cv::Mat _A_matrix;
/** The computed rotation matrix */
cv::Mat _R_matrix;
/** The computed translation matrix */
cv::Mat _t_matrix;
/** The computed projection matrix */
cv::Mat _P_matrix;
};
#endif /* PNPPROBLEM_H_ */

View File

@ -0,0 +1,152 @@
/*
* RobustMatcher.cpp
*
* Created on: Jun 4, 2014
* Author: eriba
*/
#include "RobustMatcher.h"
#include <time.h>
#include <opencv2/features2d/features2d.hpp>
RobustMatcher::~RobustMatcher()
{
// TODO Auto-generated destructor stub
}
void RobustMatcher::computeKeyPoints( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints)
{
detector_->detect(image, keypoints);
}
void RobustMatcher::computeDescriptors( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)
{
extractor_->compute(image, keypoints, descriptors);
}
int RobustMatcher::ratioTest(std::vector<std::vector<cv::DMatch> > &matches)
{
int removed = 0;
// for all matches
for ( std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin(); matchIterator!= matches.end(); ++matchIterator)
{
// if 2 NN has been identified
if (matchIterator->size() > 1)
{
// check distance ratio
if ((*matchIterator)[0].distance / (*matchIterator)[1].distance > ratio_)
{
matchIterator->clear(); // remove match
removed++;
}
}
else
{ // does not have 2 neighbours
matchIterator->clear(); // remove match
removed++;
}
}
return removed;
}
void RobustMatcher::symmetryTest( const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches )
{
// for all matches image 1 -> image 2
for (std::vector<std::vector<cv::DMatch> >::const_iterator
matchIterator1 = matches1.begin(); matchIterator1 != matches1.end(); ++matchIterator1)
{
// ignore deleted matches
if (matchIterator1->empty() || matchIterator1->size() < 2)
continue;
// for all matches image 2 -> image 1
for (std::vector<std::vector<cv::DMatch> >::const_iterator
matchIterator2 = matches2.begin(); matchIterator2 != matches2.end(); ++matchIterator2)
{
// ignore deleted matches
if (matchIterator2->empty() || matchIterator2->size() < 2)
continue;
// Match symmetry test
if ((*matchIterator1)[0].queryIdx ==
(*matchIterator2)[0].trainIdx &&
(*matchIterator2)[0].queryIdx ==
(*matchIterator1)[0].trainIdx)
{
// add symmetrical match
symMatches.push_back(
cv::DMatch((*matchIterator1)[0].queryIdx,
(*matchIterator1)[0].trainIdx,
(*matchIterator1)[0].distance));
break; // next match in image 1 -> image 2
}
}
}
}
void RobustMatcher::robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame, const cv::Mat& descriptors_model )
{
// 1a. Detection of the ORB features
this->computeKeyPoints(frame, keypoints_frame);
// 1b. Extraction of the ORB descriptors
cv::Mat descriptors_frame;
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
// 2. Match the two image descriptors
std::vector<std::vector<cv::DMatch> > matches12, matches21;
// 2a. From image 1 to image 2
matcher_->knnMatch(descriptors_frame, descriptors_model, matches12, 2); // return 2 nearest neighbours
// 2b. From image 2 to image 1
matcher_->knnMatch(descriptors_model, descriptors_frame, matches21, 2); // return 2 nearest neighbours
// 3. Remove matches for which NN ratio is > than threshold
// clean image 1 -> image 2 matches
int removed1 = ratioTest(matches12);
// clean image 2 -> image 1 matches
int removed2 = ratioTest(matches21);
// 4. Remove non-symmetrical matches
symmetryTest(matches12, matches21, good_matches);
}
void RobustMatcher::fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model )
{
good_matches.clear();
// 1a. Detection of the ORB features
this->computeKeyPoints(frame, keypoints_frame);
// 1b. Extraction of the ORB descriptors
cv::Mat descriptors_frame;
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
// 2. Match the two image descriptors
std::vector<std::vector<cv::DMatch> > matches;
matcher_->knnMatch(descriptors_frame, descriptors_model, matches, 2);
// 3. Remove matches for which NN ratio is > than threshold
int removed = ratioTest(matches);
// 4. Fill good matches container
for ( std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin(); matchIterator!= matches.end(); ++matchIterator)
{
if (!matchIterator->empty()) good_matches.push_back((*matchIterator)[0]);
}
}

View File

@ -0,0 +1,83 @@
/*
* RobustMatcher.h
*
* Created on: Jun 4, 2014
* Author: eriba
*/
#ifndef ROBUSTMATCHER_H_
#define ROBUSTMATCHER_H_
#include <iostream>
#include <boost/shared_ptr.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/nonfree.hpp>
class RobustMatcher {
public:
RobustMatcher() : ratio_(0.8f)
{
// ORB is the default feature
detector_ = new cv::OrbFeatureDetector();
extractor_ = new cv::OrbDescriptorExtractor();
// BruteFroce matcher with Norm Hamming is the default matcher
matcher_ = new cv::BFMatcher(cv::NORM_HAMMING, false);
}
virtual ~RobustMatcher();
// Set the feature detector
void setFeatureDetector(cv::FeatureDetector * detect) { detector_ = detect; }
// Set the descriptor extractor
void setDescriptorExtractor(cv::DescriptorExtractor * desc) { extractor_ = desc; }
// Set the matcher
void setDescriptorMatcher(cv::DescriptorMatcher * match) { matcher_ = match; }
// Compute the keypoints of an image
void computeKeyPoints( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints);
// Compute the descriptors of an image given its keypoints
void computeDescriptors( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors);
// Set ratio parameter for the ratio test
void setRatio( float rat) { ratio_ = rat; }
// Clear matches for which NN ratio is > than threshold
// return the number of removed points
// (corresponding entries being cleared,
// i.e. size will be 0)
int ratioTest(std::vector<std::vector<cv::DMatch> > &matches);
// Insert symmetrical matches in symMatches vector
void symmetryTest( const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches );
// Match feature points using ratio and symmetry test
void robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model );
// Match feature points using ratio test
void fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model );
private:
// pointer to the feature point detector object
cv::FeatureDetector * detector_;
// pointer to the feature descriptor extractor object
cv::DescriptorExtractor * extractor_;
// pointer to the matcher object
cv::DescriptorMatcher * matcher_;
// max ratio between 1st and 2nd NN
float ratio_;
};
#endif /* ROBUSTMATCHER_H_ */

View File

@ -0,0 +1,295 @@
/*
* Utils.cpp
*
* Created on: Mar 28, 2014
* Author: Edgar Riba
*/
#include <iostream>
#include "PnPProblem.h"
#include "ModelRegistration.h"
#include "Utils.h"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/nonfree/features2d.hpp>
// For text
int fontFace = cv::FONT_ITALIC;
double fontScale = 0.75;
double thickness_font = 2;
// For circles
int lineType = 8;
int radius = 4;
double thickness_circ = -1;
// Draw a text with the question point
void drawQuestion(cv::Mat image, cv::Point3f point, cv::Scalar color)
{
std::string x = IntToString((int)point.x);
std::string y = IntToString((int)point.y);
std::string z = IntToString((int)point.z);
std::string text = " Where is point (" + x + "," + y + "," + z + ") ?";
cv::putText(image, text, cv::Point(25,50), fontFace, fontScale, color, thickness_font, 8);
}
// Draw a text with the number of entered points
void drawText(cv::Mat image, std::string text, cv::Scalar color)
{
cv::putText(image, text, cv::Point(25,50), fontFace, fontScale, color, thickness_font, 8);
}
// Draw a text with the number of entered points
void drawText2(cv::Mat image, std::string text, cv::Scalar color)
{
cv::putText(image, text, cv::Point(25,75), fontFace, fontScale, color, thickness_font, 8);
}
// Draw a text with the frame ratio
void drawFPS(cv::Mat image, double fps, cv::Scalar color)
{
std::string fps_str = IntToString((int)fps);
std::string text = fps_str + " FPS";
cv::putText(image, text, cv::Point(500,50), fontFace, fontScale, color, thickness_font, 8);
}
// Draw a text with the frame ratio
void drawConfidence(cv::Mat image, double confidence, cv::Scalar color)
{
std::string conf_str = IntToString((int)confidence);
std::string text = conf_str + " %";
cv::putText(image, text, cv::Point(500,75), fontFace, fontScale, color, thickness_font, 8);
}
// Draw a text with the number of entered points
void drawCounter(cv::Mat image, int n, int n_max, cv::Scalar color)
{
std::string n_str = IntToString(n);
std::string n_max_str = IntToString(n_max);
std::string text = n_str + " of " + n_max_str + " points";
cv::putText(image, text, cv::Point(500,50), fontFace, fontScale, color, thickness_font, 8);
}
// Draw the points and the coordinates
void drawPoints(cv::Mat image, std::vector<cv::Point2f> &list_points_2d, std::vector<cv::Point3f> &list_points_3d, cv::Scalar color)
{
for (unsigned int i = 0; i < list_points_2d.size(); ++i)
{
cv::Point2f point_2d = list_points_2d[i];
cv::Point3f point_3d = list_points_3d[i];
// Draw Selected points
cv::circle(image, point_2d, radius, color, -1, lineType );
std::string idx = IntToString(i+1);
std::string x = IntToString((int)point_3d.x);
std::string y = IntToString((int)point_3d.y);
std::string z = IntToString((int)point_3d.z);
std::string text = "P" + idx + " (" + x + "," + y + "," + z +")";
point_2d.x = point_2d.x + 10;
point_2d.y = point_2d.y - 10;
cv::putText(image, text, point_2d, fontFace, fontScale*0.5, color, thickness_font, 8);
}
}
// Draw only the points
void draw2DPoints(cv::Mat image, std::vector<cv::Point2f> &list_points, cv::Scalar color)
{
for( size_t i = 0; i < list_points.size(); i++)
{
cv::Point2f point_2d = list_points[i];
// Draw Selected points
cv::circle(image, point_2d, radius, color, -1, lineType );
}
}
void drawArrow(cv::Mat image, cv::Point2i p, cv::Point2i q, cv::Scalar color, int arrowMagnitude, int thickness, int line_type, int shift)
{
//Draw the principle line
cv::line(image, p, q, color, thickness, line_type, shift);
const double PI = 3.141592653;
//compute the angle alpha
double angle = atan2((double)p.y-q.y, (double)p.x-q.x);
//compute the coordinates of the first segment
p.x = (int) ( q.x + arrowMagnitude * cos(angle + PI/4));
p.y = (int) ( q.y + arrowMagnitude * sin(angle + PI/4));
//Draw the first segment
cv::line(image, p, q, color, thickness, line_type, shift);
//compute the coordinates of the second segment
p.x = (int) ( q.x + arrowMagnitude * cos(angle - PI/4));
p.y = (int) ( q.y + arrowMagnitude * sin(angle - PI/4));
//Draw the second segment
cv::line(image, p, q, color, thickness, line_type, shift);
}
void draw3DCoordinateAxes(cv::Mat image, const std::vector<cv::Point2f> &list_points2d)
{
cv::Scalar red(0, 0, 255);
cv::Scalar green(0,255,0);
cv::Scalar blue(255,0,0);
cv::Scalar black(0,0,0);
const double PI = 3.141592653;
int length = 50;
cv::Point2i origin = list_points2d[0];
cv::Point2i pointX = list_points2d[1];
cv::Point2i pointY = list_points2d[2];
cv::Point2i pointZ = list_points2d[3];
drawArrow(image, origin, pointX, red, 9, 2);
drawArrow(image, origin, pointY, blue, 9, 2);
drawArrow(image, origin, pointZ, green, 9, 2);
cv::circle(image, origin, radius/2, black, -1, lineType );
}
// Draw the object mesh
void drawObjectMesh(cv::Mat image, const Mesh *mesh, PnPProblem *pnpProblem, cv::Scalar color)
{
std::vector<std::vector<int> > list_triangles = mesh->getTrianglesList();
for( size_t i = 0; i < list_triangles.size(); i++)
{
std::vector<int> tmp_triangle = list_triangles.at(i);
cv::Point3f point_3d_0 = mesh->getVertex(tmp_triangle[0]);
cv::Point3f point_3d_1 = mesh->getVertex(tmp_triangle[1]);
cv::Point3f point_3d_2 = mesh->getVertex(tmp_triangle[2]);
cv::Point2f point_2d_0 = pnpProblem->backproject3DPoint(point_3d_0);
cv::Point2f point_2d_1 = pnpProblem->backproject3DPoint(point_3d_1);
cv::Point2f point_2d_2 = pnpProblem->backproject3DPoint(point_3d_2);
cv::line(image, point_2d_0, point_2d_1, color, 1);
cv::line(image, point_2d_1, point_2d_2, color, 1);
cv::line(image, point_2d_2, point_2d_0, color, 1);
}
}
bool equal_point(const cv::Point2f &p1, const cv::Point2f &p2)
{
return ( (p1.x == p2.x) && (p1.y == p2.y) );
}
double get_translation_error(const cv::Mat &t_true, const cv::Mat &t)
{
return cv::norm( t_true - t );
}
double get_rotation_error(const cv::Mat &R_true, const cv::Mat &R)
{
cv::Mat error_vec, error_mat;
error_mat = R_true * cv::Mat(R.inv()).mul(-1);
cv::Rodrigues(error_mat, error_vec);
return cv::norm(error_vec);
}
cv::Mat rot2euler(const cv::Mat & rotationMatrix)
{
cv::Mat euler(3,1,CV_64F);
double m00 = rotationMatrix.at<double>(0,0);
double m01 = rotationMatrix.at<double>(0,1);
double m02 = rotationMatrix.at<double>(0,2);
double m10 = rotationMatrix.at<double>(1,0);
double m11 = rotationMatrix.at<double>(1,1);
double m12 = rotationMatrix.at<double>(1,2);
double m20 = rotationMatrix.at<double>(2,0);
double m21 = rotationMatrix.at<double>(2,1);
double m22 = rotationMatrix.at<double>(2,2);
double x, y, z;
// Assuming the angles are in radians.
if (m10 > 0.998) { // singularity at north pole
x = 0;
y = CV_PI/2;
z = atan2(m02,m22);
}
else if (m10 < -0.998) { // singularity at south pole
x = 0;
y = -CV_PI/2;
z = atan2(m02,m22);
}
else
{
x = atan2(-m12,m11);
y = asin(m10);
z = atan2(-m20,m00);
}
euler.at<double>(0) = x;
euler.at<double>(1) = y;
euler.at<double>(2) = z;
return euler;
}
cv::Mat euler2rot(const cv::Mat & euler)
{
cv::Mat rotationMatrix(3,3,CV_64F);
double x = euler.at<double>(0);
double y = euler.at<double>(1);
double z = euler.at<double>(2);
// Assuming the angles are in radians.
double ch = cos(z);
double sh = sin(z);
double ca = cos(y);
double sa = sin(y);
double cb = cos(x);
double sb = sin(x);
double m00, m01, m02, m10, m11, m12, m20, m21, m22;
m00 = ch * ca;
m01 = sh*sb - ch*sa*cb;
m02 = ch*sa*sb + sh*cb;
m10 = sa;
m11 = ca*cb;
m12 = -ca*sb;
m20 = -sh*ca;
m21 = sh*sa*cb + ch*sb;
m22 = -sh*sa*sb + ch*cb;
rotationMatrix.at<double>(0,0) = m00;
rotationMatrix.at<double>(0,1) = m01;
rotationMatrix.at<double>(0,2) = m02;
rotationMatrix.at<double>(1,0) = m10;
rotationMatrix.at<double>(1,1) = m11;
rotationMatrix.at<double>(1,2) = m12;
rotationMatrix.at<double>(2,0) = m20;
rotationMatrix.at<double>(2,1) = m21;
rotationMatrix.at<double>(2,2) = m22;
return rotationMatrix;
}
int StringToInt ( const std::string &Text )
{
std::istringstream ss(Text);
int result;
return ss >> result ? result : 0;
}
std::string FloatToString ( float Number )
{
std::ostringstream ss;
ss << Number;
return ss.str();
}
std::string IntToString ( int Number )
{
std::ostringstream ss;
ss << Number;
return ss.str();
}

View File

@ -0,0 +1,75 @@
/*
* Utils.h
*
* Created on: Mar 28, 2014
* Author: Edgar Riba
*/
#ifndef UTILS_H_
#define UTILS_H_
#include <iostream>
#include <cv.h>
#include "PnPProblem.h"
// Draw a text with the question point
void drawQuestion(cv::Mat image, cv::Point3f point, cv::Scalar color);
// Draw a text in the left of the image
void drawText(cv::Mat image, std::string text, cv::Scalar color);
void drawText2(cv::Mat image, std::string text, cv::Scalar color);
void drawFPS(cv::Mat image, double fps, cv::Scalar color);
void drawConfidence(cv::Mat image, double confidence, cv::Scalar color);
// Draw a text with the number of registered points
void drawCounter(cv::Mat image, int n, int n_max, cv::Scalar color);
// Draw the points and the coordinates
void drawPoints(cv::Mat image, std::vector<cv::Point2f> &list_points_2d, std::vector<cv::Point3f> &list_points_3d, cv::Scalar color);
// Draw only the points
void draw2DPoints(cv::Mat image, std::vector<cv::Point2f> &list_points, cv::Scalar color);
// Draw the object mesh
void drawObjectMesh(cv::Mat image, const Mesh *mesh, PnPProblem *pnpProblem, cv::Scalar color);
// Draw an arrow into the image
void drawArrow(cv::Mat image, cv::Point2i p, cv::Point2i q, cv::Scalar color, int arrowMagnitude = 9, int thickness=1, int line_type=8, int shift=0);
// Draw the 3D coordinate axes
void draw3DCoordinateAxes(cv::Mat image, const std::vector<cv::Point2f> &list_points2d);
// Compute the 2D points with the esticv::Mated pose
std::vector<cv::Point2f> verification_points(PnPProblem *p);
bool equal_point(const cv::Point2f &p1, const cv::Point2f &p2);
double get_translation_error(const cv::Mat &t_true, const cv::Mat &t);
double get_rotation_error(const cv::Mat &R_true, const cv::Mat &R);
double get_variance(const std::vector<cv::Point3f> list_points3d);
cv::Mat rot2quat(cv::Mat &rotationMatrix);
cv::Mat quat2rot(cv::Mat &q);
cv::Mat euler2rot(const cv::Mat & euler);
cv::Mat rot2euler(const cv::Mat & rotationMatrix);
cv::Mat quat2euler(const cv::Mat & q);
int StringToInt ( const std::string &Text );
std::string FloatToString ( float Number );
std::string IntToString ( int Number );
class Timer
{
public:
Timer();
void start() { tstart = (double)clock()/CLOCKS_PER_SEC; }
void stop() { tstop = (double)clock()/CLOCKS_PER_SEC; }
void reset() { tstart = 0; tstop = 0;}
double getTimeMilli() const { return (tstop-tstart)*1000; }
double getTimeSec() const { return tstop-tstart; }
private:
double tstart, tstop, ttime;
};
#endif /* UTILS_H_ */

View File

@ -0,0 +1,472 @@
#include <iostream>
#include <time.h>
#include "cv.h"
#include "highgui.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/video/tracking.hpp>
#include "Mesh.h"
#include "Model.h"
#include "PnPProblem.h"
#include "RobustMatcher.h"
#include "ModelRegistration.h"
#include "Utils.h"
// COOKIES BOX - ORB
std::string yml_read_path = "../Data/cookies_ORB.yml"; // 3dpts + descriptors
// COOKIES BOX MESH
std::string ply_read_path = "../Data/box.ply"; // mesh
void help()
{
std::cout
<< "--------------------------------------------------------------------------" << std::endl
<< "This program shows how to detect an object given its 3D textured model. You can choose to "
<< "use a recorded video or the webcam." << std::endl
<< "Usage:" << std::endl
<< "./pnp_detection ~/path_to_video/box.mp4" << std::endl
<< "./pnp_detection " << std::endl
<< "--------------------------------------------------------------------------" << std::endl
<< std::endl;
}
/*
* Set up the intrinsic camera parameters: UVC WEBCAM
*/
double f = 55; // focal length in mm
double sx = 22.3, sy = 14.9; // sensor size
double width = 640, height = 480; // image size
double params_WEBCAM[] = { width*f/sx, // fx
height*f/sy, // fy
width/2, // cx
height/2}; // cy
/*
* Set up some basic colors
*/
cv::Scalar red(0, 0, 255);
cv::Scalar green(0,255,0);
cv::Scalar blue(255,0,0);
cv::Scalar yellow(0,255,255);
// Robust Matcher parameters
int numKeyPoints = 2000; // number of detected keypoints
float ratio = 0.70f; // ratio test
bool fast_match = true; // fastRobustMatch() or robustMatch()
// RANSAC parameters
int iterationsCount = 500; // number of Ransac iterations.
float reprojectionError = 2.0; // maximum allowed distance to consider it an inlier.
float confidence = 0.95; // ransac successful confidence.
// Kalman Filter parameters
int minInliersKalman = 30; // Kalman threshold updating
/**********************************************************************************************************/
void initKalmanFilter( cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt);
/**********************************************************************************************************/
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurements,
cv::Mat &translation_estimated, cv::Mat &rotation_estimated );
/**********************************************************************************************************/
void fillMeasurements( cv::Mat &measurements,
const cv::Mat &translation_measured, const cv::Mat &rotation_measured);
/**********************************************************************************************************/
int main(int argc, char *argv[])
{
help();
PnPProblem pnp_detection(params_WEBCAM);
PnPProblem pnp_detection_est(params_WEBCAM);
Model model; // instantiate Model object
model.load(yml_read_path); // load a 3D textured object model
Mesh mesh; // instantiate Mesh object
mesh.load(ply_read_path); // load an object mesh
RobustMatcher rmatcher; // instantiate RobustMatcher
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints); // instatiate ORB feature detector
cv::DescriptorExtractor * extractor = new cv::OrbDescriptorExtractor(); // instatiate ORB descriptor extractor
rmatcher.setFeatureDetector(detector); // set feature detector
rmatcher.setDescriptorExtractor(extractor); // set descriptor extractor
cv::Ptr<cv::flann::IndexParams> indexParams = cv::makePtr<cv::flann::LshIndexParams>(6, 12, 1); // instantiate LSH index parameters
cv::Ptr<cv::flann::SearchParams> searchParams = cv::makePtr<cv::flann::SearchParams>(50); // instantiate flann search parameters
cv::DescriptorMatcher * matcher = new cv::FlannBasedMatcher(indexParams, searchParams); // instantiate FlannBased matcher
rmatcher.setDescriptorMatcher(matcher); // set matcher
rmatcher.setRatio(ratio); // set ratio test parameter
cv::KalmanFilter KF; // instantiate Kalman Filter
int nStates = 18; // the number of states
int nMeasurements = 6; // the number of measured states
int nInputs = 0; // the number of action control
double dt = 0.125; // time between measurements (1/FPS)
initKalmanFilter(KF, nStates, nMeasurements, nInputs, dt); // init function
cv::Mat measurements(nMeasurements, 1, CV_64F); measurements.setTo(cv::Scalar(0));
bool good_measurement = false;
// Get the MODEL INFO
std::vector<cv::Point3f> list_points3d_model = model.get_points3d(); // list with model 3D coordinates
cv::Mat descriptors_model = model.get_descriptors(); // list with descriptors of each 3D coordinate
// Create & Open Window
cv::namedWindow("REAL TIME DEMO", CV_WINDOW_KEEPRATIO);
cv::VideoCapture cap; // instantiate VideoCapture
(argc < 2) ? cap.open(1) : cap.open(argv[1]); // open the default camera device
// or a recorder video
if(!cap.isOpened()) // check if we succeeded
{
std::cout << "Could not open the camera device" << std::endl;
return -1;
}
// start and end times
time_t start, end;
// fps calculated using number of frames / seconds
double fps;
// frame counter
int counter = 0;
// floating point seconds elapsed since start
double sec;
// start the clock
time(&start);
double tstart2, tstop2, ttime2; // algorithm metrics
double tstart, tstop, ttime; // algorithm metrics
cv::Mat frame, frame_vis;
while(cap.read(frame) && cv::waitKey(30) != 27) // capture frame until ESC is pressed
{
frame_vis = frame.clone(); // refresh visualisation frame
// -- Step 1: Robust matching between model descriptors and scene descriptors
std::vector<cv::DMatch> good_matches; // to obtain the 3D points of the model
std::vector<cv::KeyPoint> keypoints_scene; // to obtain the 2D points of the scene
if(fast_match)
{
rmatcher.fastRobustMatch(frame, good_matches, keypoints_scene, descriptors_model);
}
else
{
rmatcher.robustMatch(frame, good_matches, keypoints_scene, descriptors_model);
}
// -- Step 2: Find out the 2D/3D correspondences
std::vector<cv::Point3f> list_points3d_model_match; // container for the model 3D coordinates found in the scene
std::vector<cv::Point2f> list_points2d_scene_match; // container for the model 2D coordinates found in the scene
for(unsigned int match_index = 0; match_index < good_matches.size(); ++match_index)
{
cv::Point3f point3d_model = list_points3d_model[ good_matches[match_index].trainIdx ]; // 3D point from model
cv::Point2f point2d_scene = keypoints_scene[ good_matches[match_index].queryIdx ].pt; // 2D point from the scene
list_points3d_model_match.push_back(point3d_model); // add 3D point
list_points2d_scene_match.push_back(point2d_scene); // add 2D point
}
// Draw outliers
draw2DPoints(frame_vis, list_points2d_scene_match, red);
cv::Mat inliers_idx;
std::vector<cv::Point2f> list_points2d_inliers;
if(good_matches.size() > 0) // None matches, then RANSAC crashes
{
// -- Step 3: Estimate the pose using RANSAC approach
pnp_detection.estimatePoseRANSAC( list_points3d_model_match, list_points2d_scene_match,
cv::ITERATIVE, inliers_idx,
iterationsCount, reprojectionError, confidence );
// -- Step 4: Catch the inliers keypoints to draw
for(int inliers_index = 0; inliers_index < inliers_idx.rows; ++inliers_index)
{
int n = inliers_idx.at<int>(inliers_index); // i-inlier
cv::Point2f point2d = list_points2d_scene_match[n]; // i-inlier point 2D
list_points2d_inliers.push_back(point2d); // add i-inlier to list
}
// Draw inliers points 2D
draw2DPoints(frame_vis, list_points2d_inliers, blue);
// -- Step 5: Kalman Filter
good_measurement = false;
// GOOD MEASUREMENT
if( inliers_idx.rows >= minInliersKalman )
{
// Get the measured translation
cv::Mat translation_measured(3, 1, CV_64F);
translation_measured = pnp_detection.get_t_matrix();
// Get the measured rotation
cv::Mat rotation_measured(3, 3, CV_64F);
rotation_measured = pnp_detection.get_R_matrix();
// fill the measurements vector
fillMeasurements(measurements, translation_measured, rotation_measured);
good_measurement = true;
}
// Instantiate estimated translation and rotation
cv::Mat translation_estimated(3, 1, CV_64F);
cv::Mat rotation_estimated(3, 3, CV_64F);
// update the Kalman filter with good measurements
updateKalmanFilter( KF, measurements,
translation_estimated, rotation_estimated);
// -- Step 6: Set estimated projection matrix
pnp_detection_est.set_P_matrix(rotation_estimated, translation_estimated);
}
// -- Step X: Draw pose
if(good_measurement)
{
drawObjectMesh(frame_vis, &mesh, &pnp_detection, green); // draw current pose
}
else
{
drawObjectMesh(frame_vis, &mesh, &pnp_detection_est, yellow); // draw estimated pose
}
double l = 5;
std::vector<cv::Point2f> pose_points2d;
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,0,0))); // axis center
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(l,0,0))); // axis x
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,l,0))); // axis y
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,0,l))); // axis z
draw3DCoordinateAxes(frame_vis, pose_points2d); // draw axes
// FRAME RATE
// see how much time has elapsed
time(&end);
// calculate current FPS
++counter;
sec = difftime (end, start);
fps = counter / sec;
drawFPS(frame_vis, fps, yellow); // frame ratio
double ratio = ((double)inliers_idx.rows/(double)good_matches.size())*100;
drawConfidence(frame_vis, ratio, yellow);
// -- Step X: Draw some debugging text
// Draw some debug text
int inliers_int = inliers_idx.rows;
int outliers_int = good_matches.size() - inliers_int;
std::string inliers_str = IntToString(inliers_int);
std::string outliers_str = IntToString(outliers_int);
std::string n = IntToString(good_matches.size());
std::string text = "Found " + inliers_str + " of " + n + " matches";
std::string text2 = "Inliers: " + inliers_str + " - Outliers: " + outliers_str;
drawText(frame_vis, text, green);
drawText2(frame_vis, text2, red);
cv::imshow("REAL TIME DEMO", frame_vis);
//cv::waitKey(0);
}
// Close and Destroy Window
cv::destroyWindow("REAL TIME DEMO");
std::cout << "GOODBYE ..." << std::endl;
}
/**********************************************************************************************************/
void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt)
{
KF.init(nStates, nMeasurements, nInputs, CV_64F); // init Kalman Filter
cv::setIdentity(KF.processNoiseCov, cv::Scalar::all(1e-5)); // set process noise
cv::setIdentity(KF.measurementNoiseCov, cv::Scalar::all(1e-2)); // set measurement noise
cv::setIdentity(KF.errorCovPost, cv::Scalar::all(1)); // error covariance
/** DYNAMIC MODEL **/
// [1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0 0]
// [0 1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0]
// [0 0 1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0]
// [0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2 0 0]
// [0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2 0]
// [0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2]
// [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
// position
KF.transitionMatrix.at<double>(0,3) = dt;
KF.transitionMatrix.at<double>(1,4) = dt;
KF.transitionMatrix.at<double>(2,5) = dt;
KF.transitionMatrix.at<double>(3,6) = dt;
KF.transitionMatrix.at<double>(4,7) = dt;
KF.transitionMatrix.at<double>(5,8) = dt;
KF.transitionMatrix.at<double>(0,6) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(1,7) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(2,8) = 0.5*pow(dt,2);
// orientation
KF.transitionMatrix.at<double>(9,12) = dt;
KF.transitionMatrix.at<double>(10,13) = dt;
KF.transitionMatrix.at<double>(11,14) = dt;
KF.transitionMatrix.at<double>(12,15) = dt;
KF.transitionMatrix.at<double>(13,16) = dt;
KF.transitionMatrix.at<double>(14,17) = dt;
KF.transitionMatrix.at<double>(9,15) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(10,16) = 0.5*pow(dt,2);
KF.transitionMatrix.at<double>(11,17) = 0.5*pow(dt,2);
/** MEASUREMENT MODEL **/
// [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
// [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
// [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
KF.measurementMatrix.at<double>(0,0) = 1; // x
KF.measurementMatrix.at<double>(1,1) = 1; // y
KF.measurementMatrix.at<double>(2,2) = 1; // z
KF.measurementMatrix.at<double>(3,9) = 1; // roll
KF.measurementMatrix.at<double>(4,10) = 1; // pitch
KF.measurementMatrix.at<double>(5,11) = 1; // yaw
//std::cout << "A " << std::endl << KF.transitionMatrix << std::endl;
//std::cout << "C " << std::endl << KF.measurementMatrix << std::endl;
}
/**********************************************************************************************************/
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurement,
cv::Mat &translation_estimated, cv::Mat &rotation_estimated )
{
// First predict, to update the internal statePre variable
cv::Mat prediction = KF.predict();
// The "correct" phase that is going to use the predicted value and our measurement
cv::Mat estimated = KF.correct(measurement);
// Estimated translation
translation_estimated.at<double>(0) = estimated.at<double>(0);
translation_estimated.at<double>(1) = estimated.at<double>(1);
translation_estimated.at<double>(2) = estimated.at<double>(2);
// Estimated euler angles
cv::Mat eulers_estimated(3, 1, CV_64F);
eulers_estimated.at<double>(0) = estimated.at<double>(9);
eulers_estimated.at<double>(1) = estimated.at<double>(10);
eulers_estimated.at<double>(2) = estimated.at<double>(11);
// Convert estimated quaternion to rotation matrix
rotation_estimated = euler2rot(eulers_estimated);
}
/**********************************************************************************************************/
void fillMeasurements( cv::Mat &measurements,
const cv::Mat &translation_measured, const cv::Mat &rotation_measured)
{
// Convert rotation matrix to euler angles
cv::Mat measured_eulers(3, 1, CV_64F);
measured_eulers = rot2euler(rotation_measured);
// Set measurement to predict
measurements.at<double>(0) = translation_measured.at<double>(0); // x
measurements.at<double>(1) = translation_measured.at<double>(1); // y
measurements.at<double>(2) = translation_measured.at<double>(2); // z
measurements.at<double>(3) = measured_eulers.at<double>(0); // roll
measurements.at<double>(4) = measured_eulers.at<double>(1); // pitch
measurements.at<double>(5) = measured_eulers.at<double>(2); // yaw
}

View File

@ -0,0 +1,290 @@
#include <iostream>
#include "Mesh.h"
#include "Model.h"
#include "PnPProblem.h"
#include "RobustMatcher.h"
#include "ModelRegistration.h"
#include "Utils.h"
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/features2d.hpp>
/*
* Set up the images paths
*/
// COOKIES BOX [718x480]
std::string img_path = "../Data/resized_IMG_3875.JPG"; // f 55
// COOKIES BOX MESH
std::string ply_read_path = "../Data/box.ply";
// YAML writting path
std::string write_path = "../Data/cookies_ORB.yml";
void help()
{
std::cout
<< "--------------------------------------------------------------------------" << std::endl
<< "This program shows how to create your 3D textured model. " << std::endl
<< "Usage:" << std::endl
<< "./pnp_registration " << std::endl
<< "--------------------------------------------------------------------------" << std::endl
<< std::endl;
}
// Boolean the know if the registration it's done
bool end_registration = false;
/*
* Set up the intrinsic camera parameters: CANON
*/
double f = 45; // focal length in mm
double sx = 22.3, sy = 14.9;
double width = 2592, height = 1944;
double params_CANON[] = { width*f/sx, // fx
height*f/sy, // fy
width/2, // cx
height/2}; // cy
// Setup the points to register in the image
// In the order of the *.ply file and starting at 1
int n = 8;
int pts[] = {1, 2, 3, 4, 5, 6, 7, 8}; // 3 -> 4
/*
* Set up some basic colors
*/
cv::Scalar red(0, 0, 255);
cv::Scalar green(0,255,0);
cv::Scalar blue(255,0,0);
cv::Scalar yellow(0,255,255);
/*
* CREATE MODEL REGISTRATION OBJECT
* CREATE OBJECT MESH
* CREATE OBJECT MODEL
* CREATE PNP OBJECT
*/
ModelRegistration registration;
Model model;
Mesh mesh;
PnPProblem pnp_registration(params_CANON);
// Mouse events for model registration
static void onMouseModelRegistration( int event, int x, int y, int, void* )
{
if ( event == cv::EVENT_LBUTTONUP )
{
int n_regist = registration.getNumRegist();
int n_vertex = pts[n_regist];
cv::Point2f point_2d = cv::Point2f(x,y);
cv::Point3f point_3d = mesh.getVertex(n_vertex-1);
bool is_registrable = registration.is_registrable();
if (is_registrable)
{
registration.registerPoint(point_2d, point_3d);
if( registration.getNumRegist() == registration.getNumMax() ) end_registration = true;
}
}
}
/*
* MAIN PROGRAM
*
*/
int main(int argc, char *argv[])
{
help();
// load a mesh given the *.ply file path
mesh.load(ply_read_path);
// set parameters
int numKeyPoints = 10000;
//Instantiate robust matcher: detector, extractor, matcher
RobustMatcher rmatcher;
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints);
rmatcher.setFeatureDetector(detector);
/*
* GROUND TRUTH OF THE FIRST IMAGE
*
* by the moment it is the reference image
*/
// Create & Open Window
cv::namedWindow("MODEL REGISTRATION", cv::WINDOW_KEEPRATIO);
// Set up the mouse events
cv::setMouseCallback("MODEL REGISTRATION", onMouseModelRegistration, 0 );
// Open the image to register
cv::Mat img_in = cv::imread(img_path, cv::IMREAD_COLOR);
cv::Mat img_vis = img_in.clone();
if (!img_in.data) {
std::cout << "Could not open or find the image" << std::endl;
return -1;
}
// Set the number of points to register
int num_registrations = n;
registration.setNumMax(num_registrations);
std::cout << "Click the box corners ..." << std::endl;
std::cout << "Waiting ..." << std::endl;
// Loop until all the points are registered
while ( cv::waitKey(30) < 0 )
{
// Refresh debug image
img_vis = img_in.clone();
// Current registered points
std::vector<cv::Point2f> list_points2d = registration.get_points2d();
std::vector<cv::Point3f> list_points3d = registration.get_points3d();
// Draw current registered points
drawPoints(img_vis, list_points2d, list_points3d, red);
// If the registration is not finished, draw which 3D point we have to register.
// If the registration is finished, breaks the loop.
if (!end_registration)
{
// Draw debug text
int n_regist = registration.getNumRegist();
int n_vertex = pts[n_regist];
cv::Point3f current_poin3d = mesh.getVertex(n_vertex-1);
drawQuestion(img_vis, current_poin3d, green);
drawCounter(img_vis, registration.getNumRegist(), registration.getNumMax(), red);
}
else
{
// Draw debug text
drawText(img_vis, "END REGISTRATION", green);
drawCounter(img_vis, registration.getNumRegist(), registration.getNumMax(), green);
break;
}
// Show the image
cv::imshow("MODEL REGISTRATION", img_vis);
}
/*
*
* COMPUTE CAMERA POSE
*
*/
std::cout << "COMPUTING POSE ..." << std::endl;
// The list of registered points
std::vector<cv::Point2f> list_points2d = registration.get_points2d();
std::vector<cv::Point3f> list_points3d = registration.get_points3d();
// Estimate pose given the registered points
bool is_correspondence = pnp_registration.estimatePose(list_points3d, list_points2d, cv::ITERATIVE);
if ( is_correspondence )
{
std::cout << "Correspondence found" << std::endl;
// Compute all the 2D points of the mesh to verify the algorithm and draw it
std::vector<cv::Point2f> list_points2d_mesh = pnp_registration.verify_points(&mesh);
draw2DPoints(img_vis, list_points2d_mesh, green);
} else {
std::cout << "Correspondence not found" << std::endl << std::endl;
}
// Show the image
cv::imshow("MODEL REGISTRATION", img_vis);
// Show image until ESC pressed
cv::waitKey(0);
/*
*
* COMPUTE 3D of the image Keypoints
*
*/
// Containers for keypoints and descriptors of the model
std::vector<cv::KeyPoint> keypoints_model;
cv::Mat descriptors;
// Compute keypoints and descriptors
rmatcher.computeKeyPoints(img_in, keypoints_model);
rmatcher.computeDescriptors(img_in, keypoints_model, descriptors);
// Check if keypoints are on the surface of the registration image and add to the model
for (unsigned int i = 0; i < keypoints_model.size(); ++i) {
cv::Point2f point2d(keypoints_model[i].pt);
cv::Point3f point3d;
bool on_surface = pnp_registration.backproject2DPoint(&mesh, point2d, point3d);
if (on_surface)
{
model.add_correspondence(point2d, point3d);
model.add_descriptor(descriptors.row(i));
model.add_keypoint(keypoints_model[i]);
}
else
{
model.add_outlier(point2d);
}
}
// save the model into a *.yaml file
model.save(write_path);
// Out image
img_vis = img_in.clone();
// The list of the points2d of the model
std::vector<cv::Point2f> list_points_in = model.get_points2d_in();
std::vector<cv::Point2f> list_points_out = model.get_points2d_out();
// Draw some debug text
std::string num = IntToString(list_points_in.size());
std::string text = "There are " + num + " inliers";
drawText(img_vis, text, green);
// Draw some debug text
num = IntToString(list_points_out.size());
text = "There are " + num + " outliers";
drawText2(img_vis, text, red);
// Draw the object mesh
drawObjectMesh(img_vis, &mesh, &pnp_registration, blue);
// Draw found keypoints depending on if are or not on the surface
draw2DPoints(img_vis, list_points_in, green);
draw2DPoints(img_vis, list_points_out, red);
// Show the image
cv::imshow("MODEL REGISTRATION", img_vis);
// Wait until ESC pressed
cv::waitKey(0);
// Close and Destroy Window
cv::destroyWindow("MODEL REGISTRATION");
std::cout << "GOODBYE" << std::endl;
}

View File

@ -0,0 +1,327 @@
#include <iostream>
#include "cv.h"
#include "highgui.h"
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "Mesh.h"
#include "Model.h"
#include "PnPProblem.h"
#include "RobustMatcher.h"
#include "ModelRegistration.h"
#include "Utils.h"
#include "CsvWriter.h"
/*
* Set up the images paths
*/
std::string img_verification_path = "../Data/resized_IMG_3872.JPG";
std::string ply_read_path = "../Data/box.ply";
std::string yml_read_path = "../Data/cookies_ORB.yml";
// Boolean the know if the registration it's done
bool end_registration = false;
// Setup the points to register in the image
// In the order of the *.ply file and starting at 1
int n = 7;
int pts[] = {1, 2, 3, 5, 6, 7, 8};
/*
* Set up the intrinsic camera parameters: CANON
*/
double f = 43;
double sx = 22.3, sy = 14.9;
double width = 718, height = 480;
double params_CANON[] = { width*f/sx, // fx
height*f/sy, // fy
width/2, // cx
height/2}; // cy
/*
* Set up some basic colors
*/
cv::Scalar red(0, 0, 255);
cv::Scalar green(0,255,0);
cv::Scalar blue(255,0,0);
cv::Scalar yellow(0,255,255);
/*
* CREATE MODEL REGISTRATION OBJECT
* CREATE OBJECT MESH
* CREATE OBJECT MODEL
* CREATE PNP OBJECT
*/
Mesh mesh;
ModelRegistration registration;
PnPProblem pnp_verification_epnp(params_CANON);
PnPProblem pnp_verification_iter(params_CANON);
PnPProblem pnp_verification_p3p(params_CANON);
PnPProblem pnp_verification_dls(params_CANON);
PnPProblem pnp_verification_gt(params_CANON); // groud truth
// Mouse events for model registration
static void onMouseModelVerification( int event, int x, int y, int, void* )
{
if ( event == cv::EVENT_LBUTTONUP )
{
int n_regist = registration.getNumRegist();
int n_vertex = pts[n_regist];
cv::Point2f point_2d = cv::Point2f(x,y);
cv::Point3f point_3d = mesh.getVertex(n_vertex-1);
bool is_registrable = registration.is_registrable();
if (is_registrable)
{
registration.registerPoint(point_2d, point_3d);
if( registration.getNumRegist() == registration.getNumMax() ) end_registration = true;
}
}
}
/*
* MAIN PROGRAM
*
*/
int main(int, char**)
{
std::cout << "!!!Hello Verification!!!" << std::endl; // prints !!!Hello World!!!
// load a mesh given the *.ply file path
mesh.load(ply_read_path);
// load the 3D textured object model
Model model;
model.load(yml_read_path);
// set parameters
int numKeyPoints = 10000;
//Instantiate robust matcher: detector, extractor, matcher
RobustMatcher rmatcher;
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints);
rmatcher.setFeatureDetector(detector);
rmatcher.setRatio(0.80);
// RANSAC parameters
int iterationsCount = 500;
float reprojectionError = 2.0;
float confidence = 0.99;
/*
* GROUND TRUTH SECOND IMAGE
*
*/
cv::Mat img_in, img_vis;
// Setup for new registration
registration.setNumMax(n);
// Create & Open Window
cv::namedWindow("MODEL GROUND TRUTH", CV_WINDOW_KEEPRATIO);
// Set up the mouse events
cv::setMouseCallback("MODEL GROUND TRUTH", onMouseModelVerification, 0 );
// Open the image to register
img_in = cv::imread(img_verification_path, cv::IMREAD_COLOR);
if (!img_in.data)
{
std::cout << "Could not open or find the image" << std::endl;
return -1;
}
std::cout << "Click the box corners ..." << std::endl;
std::cout << "Waiting ..." << std::endl;
// Loop until all the points are registered
while ( cv::waitKey(30) < 0 )
{
// Refresh debug image
img_vis = img_in.clone();
// Current registered points
std::vector<cv::Point2f> list_points2d = registration.get_points2d();
std::vector<cv::Point3f> list_points3d = registration.get_points3d();
// Draw current registered points
drawPoints(img_vis, list_points2d, list_points3d, red);
// If the registration is not finished, draw which 3D point we have to register.
// If the registration is finished, breaks the loop.
if (!end_registration)
{
// Draw debug text
int n_regist = registration.getNumRegist();
int n_vertex = pts[n_regist];
cv::Point3f current_poin3d = mesh.getVertex(n_vertex-1);
drawQuestion(img_vis, current_poin3d, green);
drawCounter(img_vis, registration.getNumRegist(), registration.getNumMax(), red);
}
else
{
// Draw debug text
drawText(img_vis, "GROUND TRUTH", green);
drawCounter(img_vis, registration.getNumRegist(), registration.getNumMax(), green);
break;
}
// Show the image
cv::imshow("MODEL GROUND TRUTH", img_vis);
}
// The list of registered points
std::vector<cv::Point2f> list_points2d = registration.get_points2d();
std::vector<cv::Point3f> list_points3d = registration.get_points3d();
// Estimate pose given the registered points
bool is_correspondence = pnp_verification_gt.estimatePose(list_points3d, list_points2d, cv::ITERATIVE);
// Compute and draw all mesh object 2D points
std::vector<cv::Point2f> pts_2d_ground_truth = pnp_verification_gt.verify_points(&mesh);
draw2DPoints(img_vis, pts_2d_ground_truth, green);
// Draw the ground truth mesh
drawObjectMesh(img_vis, &mesh, &pnp_verification_gt, blue);
// Show the image
cv::imshow("MODEL GROUND TRUTH", img_vis);
// Show image until ESC pressed
cv::waitKey(0);
/*
* EXTRACT CORRRESPONDENCES
*
*/
// refresh visualisation image
img_vis = img_in.clone();
// Get the MODEL INFO
std::vector<cv::Point2f> list_points2d_model = model.get_points2d_in();
std::vector<cv::Point3f> list_points3d_model = model.get_points3d();
std::vector<cv::KeyPoint> keypoints_model = model.get_keypoints();
cv::Mat descriptors_model = model.get_descriptors();
// -- Step 1: Robust matching between model descriptors and scene descriptors
std::vector<cv::DMatch> good_matches; // to obtain the 3D points of the model
std::vector<cv::KeyPoint> keypoints_scene; // to obtain the 2D points of the scene
//rmatcher.fastRobustMatch(frame, good_matches, keypoints_scene, descriptors_model);
rmatcher.robustMatch(img_vis, good_matches, keypoints_scene, descriptors_model);
cv::Mat inliers_idx;
std::vector<cv::DMatch> matches_inliers;
std::vector<cv::Point2f> list_points2d_inliers;
std::vector<cv::Point3f> list_points3d_inliers;
// -- Step 2: Find out the 2D/3D correspondences
std::vector<cv::Point3f> list_points3d_model_match; // container for the model 3D coordinates found in the scene
std::vector<cv::Point2f> list_points2d_scene_match; // container for the model 2D coordinates found in the scene
for(unsigned int match_index = 0; match_index < good_matches.size(); ++match_index)
{
cv::Point3f point3d_model = list_points3d_model[ good_matches[match_index].trainIdx ]; // 3D point from model
cv::Point2f point2d_scene = keypoints_scene[ good_matches[match_index].queryIdx ].pt; // 2D point from the scene
list_points3d_model_match.push_back(point3d_model); // add 3D point
list_points2d_scene_match.push_back(point2d_scene); // add 2D point
}
// Draw outliers
//draw2DPoints(img_vis, list_points2d_scene_match, red);
/*
* COMPUTE PNP ERRORS:
* Calculation of the rotation and translation error
*
*/
pnp_verification_epnp.estimatePose( list_points3d_model_match, list_points2d_scene_match, cv::EPNP);
pnp_verification_iter.estimatePose( list_points3d_model_match, list_points2d_scene_match, cv::ITERATIVE);
//pnp_verification_p3p.estimatePose( list_points3d_model_match, list_points2d_scene_match, cv::P3P);
pnp_verification_dls.estimatePose( list_points3d_model_match, list_points2d_scene_match, cv::DLS);
// Draw mesh
drawObjectMesh(img_vis, &mesh, &pnp_verification_dls, green);
drawObjectMesh(img_vis, &mesh, &pnp_verification_gt, yellow);
cv::imshow("MODEL GROUND TRUTH", img_vis);
cv::Mat t_true = pnp_verification_gt.get_t_matrix();
cv::Mat t_epnp = pnp_verification_epnp.get_t_matrix();
cv::Mat t_iter = pnp_verification_iter.get_t_matrix();
cv::Mat t_p3p = pnp_verification_p3p.get_t_matrix();
cv::Mat t_dls = pnp_verification_dls.get_t_matrix();
cv::Mat R_true = pnp_verification_gt.get_R_matrix();
cv::Mat R_epnp = pnp_verification_epnp.get_R_matrix();
cv::Mat R_iter = pnp_verification_iter.get_R_matrix();
cv::Mat R_p3p = pnp_verification_p3p.get_R_matrix();
cv::Mat R_dls = pnp_verification_dls.get_R_matrix();
double error_trans_epnp = get_translation_error(t_true, t_epnp);
double error_rot_epnp = get_rotation_error(R_true, R_epnp)*180/CV_PI;
double error_trans_iter = get_translation_error(t_true, t_iter);
double error_rot_iter = get_rotation_error(R_true, R_iter)*180/CV_PI;
double error_trans_p3p = get_translation_error(t_true, t_p3p);
double error_rot_p3p = get_rotation_error(R_true, R_p3p)*180/CV_PI;
double error_trans_dls = get_translation_error(t_true, t_dls);
double error_rot_dls = get_rotation_error(R_true, R_dls)*180/CV_PI;
std::cout << std::endl << "**** EPNP ERRORS **** " << std::endl;
std::cout << "Translation error: " << error_trans_epnp << " m." << std::endl;
std::cout << "Rotation error: " << error_rot_epnp << " deg." << std::endl;
std::cout << std::endl << "**** ITERATIVE ERRORS **** " << std::endl;
std::cout << "Translation error: " << error_trans_iter << " m." << std::endl;
std::cout << "Rotation error: " << error_rot_iter << " deg." << std::endl;
std::cout << std::endl << "**** P3P ERRORS **** " << std::endl;
std::cout << "Translation error: " << error_trans_p3p << " m." << std::endl;
std::cout << "Rotation error: " << error_rot_p3p << " deg." << std::endl;
std::cout << std::endl << "**** DLS ERRORS **** " << std::endl;
std::cout << "Translation error: " << error_trans_dls << " m." << std::endl;
std::cout << "Rotation error: " << error_rot_dls << " deg." << std::endl;
// Show image until ESC pressed
cv::waitKey(0);
// Close and Destroy Window
cv::destroyWindow("MODEL GROUND TRUTH");
std::cout << "GOODBYE" << std::endl;
}

View File

@ -0,0 +1,143 @@
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <iostream>
#include <fstream>
using namespace std;
using namespace cv;
void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
-1, 5), Point3f pmax = Point3f(1, 1, 10))
{
const Point3f delta = pmax - pmin;
for (size_t i = 0; i < points.size(); i++)
{
Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX,
float(rand()) / RAND_MAX);
p.x *= delta.x;
p.y *= delta.y;
p.z *= delta.z;
p = p + pmin;
points[i] = p;
}
}
void generateCameraMatrix(Mat& cameraMatrix, RNG& rng)
{
const double fcMinVal = 1e-3;
const double fcMaxVal = 100;
cameraMatrix.create(3, 3, CV_64FC1);
cameraMatrix.setTo(Scalar(0));
cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(2,2) = 1;
}
void generateDistCoeffs(Mat& distCoeffs, RNG& rng)
{
distCoeffs = Mat::zeros(4, 1, CV_64FC1);
for (int i = 0; i < 3; i++)
distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-6);
}
void generatePose(Mat& rvec, Mat& tvec, RNG& rng)
{
const double minVal = 1.0e-3;
const double maxVal = 1.0;
rvec.create(3, 1, CV_64FC1);
tvec.create(3, 1, CV_64FC1);
for (int i = 0; i < 3; i++)
{
rvec.at<double>(i,0) = rng.uniform(minVal, maxVal);
tvec.at<double>(i,0) = rng.uniform(minVal, maxVal/10);
}
}
void data2file(const string& path, const vector<vector<double> >& data)
{
std::fstream fs;
fs.open(path.c_str(), std::fstream::in | std::fstream::out | std::fstream::app);
for (int method = 0; method < data.size(); ++method)
{
for (int i = 0; i < data[method].size(); ++i)
{
fs << data[method][i] << " ";
}
fs << endl;
}
fs.close();
}
int main(int argc, char *argv[])
{
RNG rng;
// TickMeter tm;
vector<vector<double> > error_trans(4), error_rot(4), comp_time(4);
int maxpoints = 2000;
for (int npoints = 10; npoints < maxpoints+10; ++npoints)
{
// generate 3D point cloud
vector<Point3f> points;
points.resize(npoints);
generate3DPointCloud(points);
// generate cameramatrix
Mat rvec, tvec;
Mat trueRvec, trueTvec;
Mat intrinsics, distCoeffs;
generateCameraMatrix(intrinsics, rng);
// generate distorsion coefficients
generateDistCoeffs(distCoeffs, rng);
// generate groud truth pose
generatePose(trueRvec, trueTvec, rng);
for (int method = 0; method < 4; ++method)
{
std::vector<Point3f> opoints;
if (method == 2)
{
opoints = std::vector<Point3f>(points.begin(), points.begin()+4);
}
else
opoints = points;
vector<Point2f> projectedPoints;
projectedPoints.resize(opoints.size());
projectPoints(Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
//tm.reset(); tm.start();
solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, method);
// tm.stop();
// double compTime = tm.getTimeMilli();
double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec);
error_rot[method].push_back(rvecDiff);
error_trans[method].push_back(tvecDiff);
//comp_time[method].push_back(compTime);
}
//system("clear");
cout << "Completed " << npoints+1 << "/" << maxpoints << endl;
}
data2file("translation_error.txt", error_trans);
data2file("rotation_error.txt", error_rot);
data2file("computation_time.txt", comp_time);
}