mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
refactored gpu::matchTemplate (converted it into Algorithm)
This commit is contained in:
parent
1fcc8074bd
commit
de56163f97
@ -424,20 +424,24 @@ CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, i
|
||||
|
||||
/////////////////////////// Match Template ////////////////////////////
|
||||
|
||||
struct CV_EXPORTS MatchTemplateBuf
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
class CV_EXPORTS TemplateMatching : public Algorithm
|
||||
{
|
||||
Size user_block_size;
|
||||
GpuMat imagef, templf;
|
||||
std::vector<GpuMat> images;
|
||||
std::vector<GpuMat> image_sums;
|
||||
std::vector<GpuMat> image_sqsums;
|
||||
public:
|
||||
virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null());
|
||||
CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
|
||||
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null());
|
||||
// obsolete
|
||||
|
||||
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void matchTemplate(InputArray image, InputArray templ, OutputArray result,
|
||||
int method, Stream& stream = Stream::Null()) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
|
||||
|
||||
inline void matchTemplate(InputArray image, InputArray templ, OutputArray result, int method, Stream& stream)
|
||||
{
|
||||
gpu::createTemplateMatching(image.type(), method)->match(image, templ, result, stream);
|
||||
}
|
||||
|
||||
////////////////////////// Bilateral Filter ///////////////////////////
|
||||
|
||||
|
@ -76,7 +76,9 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate8U,
|
||||
const cv::gpu::GpuMat d_templ(templ);
|
||||
cv::gpu::GpuMat dst;
|
||||
|
||||
TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method);
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(image.type(), method);
|
||||
|
||||
TEST_CYCLE() alg->match(d_image, d_templ, dst);
|
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-5, ERROR_RELATIVE);
|
||||
}
|
||||
@ -116,7 +118,9 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate32F,
|
||||
const cv::gpu::GpuMat d_templ(templ);
|
||||
cv::gpu::GpuMat dst;
|
||||
|
||||
TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method);
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(image.type(), method);
|
||||
|
||||
TEST_CYCLE() alg->match(d_image, d_templ, dst);
|
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
@ -47,7 +47,7 @@ using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_GPUARITHM) || defined (CUDA_DISABLER)
|
||||
|
||||
void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); }
|
||||
Ptr<gpu::TemplateMatching> cv::gpu::createTemplateMatching(int, int, Size) { throw_no_cuda(); return Ptr<gpu::TemplateMatching>(); }
|
||||
|
||||
#else
|
||||
|
||||
@ -137,11 +137,8 @@ namespace cv { namespace gpu { namespace cudev
|
||||
}
|
||||
}}}
|
||||
|
||||
using namespace ::cv::gpu::cudev::match_template;
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
// Evaluates optimal template's area threshold. If
|
||||
// template's area is less than the threshold, we use naive match
|
||||
// template version, otherwise FFT-based (if available)
|
||||
@ -149,135 +146,317 @@ namespace
|
||||
{
|
||||
switch (method)
|
||||
{
|
||||
case cv::TM_CCORR:
|
||||
case TM_CCORR:
|
||||
if (depth == CV_32F) return 250;
|
||||
if (depth == CV_8U) return 300;
|
||||
break;
|
||||
case cv::TM_SQDIFF:
|
||||
|
||||
case TM_SQDIFF:
|
||||
if (depth == CV_8U) return 300;
|
||||
break;
|
||||
}
|
||||
CV_Error(cv::Error::StsBadArg, "getTemplateThreshold: unsupported match template mode");
|
||||
|
||||
CV_Error(Error::StsBadArg, "unsupported match template mode");
|
||||
return 0;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// CCORR_32F
|
||||
|
||||
void matchTemplate_CCORR_32F(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_CCORR_32F : public TemplateMatching
|
||||
{
|
||||
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
||||
if (templ.size().area() < getTemplateThreshold(cv::TM_CCORR, CV_32F))
|
||||
public:
|
||||
explicit Match_CCORR_32F(Size user_block_size);
|
||||
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
Ptr<gpu::Convolution> conv_;
|
||||
GpuMat result_;
|
||||
};
|
||||
|
||||
Match_CCORR_32F::Match_CCORR_32F(Size user_block_size)
|
||||
{
|
||||
conv_ = gpu::createConvolution(user_block_size);
|
||||
}
|
||||
|
||||
void Match_CCORR_32F::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& _stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_32F );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
||||
|
||||
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
if (templ.size().area() < getTemplateThreshold(TM_CCORR, CV_32F))
|
||||
{
|
||||
matchTemplateNaive_CCORR_32F(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
matchTemplateNaive_CCORR_32F(image, templ, result, image.channels(), stream);
|
||||
return;
|
||||
}
|
||||
|
||||
Ptr<gpu::Convolution> conv = gpu::createConvolution(buf.user_block_size);
|
||||
|
||||
if (image.channels() == 1)
|
||||
{
|
||||
conv->convolve(image.reshape(1), templ.reshape(1), result, true, stream);
|
||||
conv_->convolve(image.reshape(1), templ.reshape(1), result, true, _stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
GpuMat result_;
|
||||
conv->convolve(image.reshape(1), templ.reshape(1), result_, true, stream);
|
||||
extractFirstChannel_32F(result_, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
conv_->convolve(image.reshape(1), templ.reshape(1), result_, true, _stream);
|
||||
extractFirstChannel_32F(result_, result, image.channels(), stream);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// CCORR_8U
|
||||
|
||||
void matchTemplate_CCORR_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_CCORR_8U : public TemplateMatching
|
||||
{
|
||||
if (templ.size().area() < getTemplateThreshold(cv::TM_CCORR, CV_8U))
|
||||
public:
|
||||
explicit Match_CCORR_8U(Size user_block_size) : match32F_(user_block_size)
|
||||
{
|
||||
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
||||
}
|
||||
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
GpuMat imagef_, templf_;
|
||||
Match_CCORR_32F match32F_;
|
||||
};
|
||||
|
||||
void Match_CCORR_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
if (templ.size().area() < getTemplateThreshold(TM_CCORR, CV_8U))
|
||||
{
|
||||
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
matchTemplateNaive_CCORR_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
return;
|
||||
}
|
||||
|
||||
image.convertTo(buf.imagef, CV_32F, stream);
|
||||
templ.convertTo(buf.templf, CV_32F, stream);
|
||||
image.convertTo(imagef_, CV_32F, stream);
|
||||
templ.convertTo(templf_, CV_32F, stream);
|
||||
|
||||
matchTemplate_CCORR_32F(buf.imagef, buf.templf, result, buf, stream);
|
||||
match32F_.match(imagef_, templf_, _result, stream);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// CCORR_NORMED_8U
|
||||
|
||||
void matchTemplate_CCORR_NORMED_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_CCORR_NORMED_8U : public TemplateMatching
|
||||
{
|
||||
matchTemplate_CCORR_8U(image, templ, result, buf, stream);
|
||||
public:
|
||||
explicit Match_CCORR_NORMED_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
||||
{
|
||||
}
|
||||
|
||||
buf.image_sqsums.resize(1);
|
||||
gpu::sqrIntegral(image.reshape(1), buf.image_sqsums[0], stream);
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
unsigned long long templ_sqsum = (unsigned long long)gpu::sqrSum(templ.reshape(1))[0];
|
||||
normalize_8U(templ.cols, templ.rows, buf.image_sqsums[0], templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
private:
|
||||
Match_CCORR_8U match_CCORR_;
|
||||
GpuMat image_sqsums_;
|
||||
GpuMat intBuffer_;
|
||||
};
|
||||
|
||||
void Match_CCORR_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
match_CCORR_.match(image, templ, _result, stream);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
gpu::sqrIntegral(image.reshape(1), image_sqsums_, intBuffer_, stream);
|
||||
|
||||
unsigned long long templ_sqsum = (unsigned long long) gpu::sqrSum(templ.reshape(1))[0];
|
||||
|
||||
normalize_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// SQDIFF_32F
|
||||
|
||||
void matchTemplate_SQDIFF_32F(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_SQDIFF_32F : public TemplateMatching
|
||||
{
|
||||
(void)buf;
|
||||
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
||||
public:
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
};
|
||||
|
||||
void Match_SQDIFF_32F::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_32F );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
matchTemplateNaive_SQDIFF_32F(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// SQDIFF_8U
|
||||
|
||||
void matchTemplate_SQDIFF_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_SQDIFF_8U : public TemplateMatching
|
||||
{
|
||||
if (templ.size().area() < getTemplateThreshold(cv::TM_SQDIFF, CV_8U))
|
||||
public:
|
||||
explicit Match_SQDIFF_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
||||
{
|
||||
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
||||
}
|
||||
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
GpuMat image_sqsums_;
|
||||
GpuMat intBuffer_;
|
||||
Match_CCORR_8U match_CCORR_;
|
||||
};
|
||||
|
||||
void Match_SQDIFF_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
if (templ.size().area() < getTemplateThreshold(TM_SQDIFF, CV_8U))
|
||||
{
|
||||
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
matchTemplateNaive_SQDIFF_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
return;
|
||||
}
|
||||
|
||||
buf.image_sqsums.resize(1);
|
||||
gpu::sqrIntegral(image.reshape(1), buf.image_sqsums[0], stream);
|
||||
gpu::sqrIntegral(image.reshape(1), image_sqsums_, intBuffer_, stream);
|
||||
|
||||
unsigned long long templ_sqsum = (unsigned long long)gpu::sqrSum(templ.reshape(1))[0];
|
||||
unsigned long long templ_sqsum = (unsigned long long) gpu::sqrSum(templ.reshape(1))[0];
|
||||
|
||||
matchTemplate_CCORR_8U(image, templ, result, buf, stream);
|
||||
matchTemplatePrepared_SQDIFF_8U(templ.cols, templ.rows, buf.image_sqsums[0], templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
match_CCORR_.match(image, templ, _result, stream);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
matchTemplatePrepared_SQDIFF_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// SQDIFF_NORMED_8U
|
||||
|
||||
void matchTemplate_SQDIFF_NORMED_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_SQDIFF_NORMED_8U : public TemplateMatching
|
||||
{
|
||||
buf.image_sqsums.resize(1);
|
||||
gpu::sqrIntegral(image.reshape(1), buf.image_sqsums[0], stream);
|
||||
public:
|
||||
explicit Match_SQDIFF_NORMED_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
||||
{
|
||||
}
|
||||
|
||||
unsigned long long templ_sqsum = (unsigned long long)gpu::sqrSum(templ.reshape(1))[0];
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
matchTemplate_CCORR_8U(image, templ, result, buf, stream);
|
||||
matchTemplatePrepared_SQDIFF_NORMED_8U(templ.cols, templ.rows, buf.image_sqsums[0], templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
private:
|
||||
GpuMat image_sqsums_;
|
||||
GpuMat intBuffer_;
|
||||
Match_CCORR_8U match_CCORR_;
|
||||
};
|
||||
|
||||
void Match_SQDIFF_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
gpu::sqrIntegral(image.reshape(1), image_sqsums_, intBuffer_, stream);
|
||||
|
||||
unsigned long long templ_sqsum = (unsigned long long) gpu::sqrSum(templ.reshape(1))[0];
|
||||
|
||||
match_CCORR_.match(image, templ, _result, stream);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
matchTemplatePrepared_SQDIFF_NORMED_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// CCOFF_8U
|
||||
|
||||
void matchTemplate_CCOFF_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_CCOEFF_8U : public TemplateMatching
|
||||
{
|
||||
matchTemplate_CCORR_8U(image, templ, result, buf, stream);
|
||||
public:
|
||||
explicit Match_CCOEFF_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
||||
{
|
||||
}
|
||||
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
GpuMat intBuffer_;
|
||||
std::vector<GpuMat> images_;
|
||||
std::vector<GpuMat> image_sums_;
|
||||
Match_CCORR_8U match_CCORR_;
|
||||
};
|
||||
|
||||
void Match_CCOEFF_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
match_CCORR_.match(image, templ, _result, stream);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
if (image.channels() == 1)
|
||||
{
|
||||
buf.image_sums.resize(1);
|
||||
gpu::integral(image, buf.image_sums[0], stream);
|
||||
image_sums_.resize(1);
|
||||
gpu::integral(image, image_sums_[0], intBuffer_, stream);
|
||||
|
||||
unsigned int templ_sum = (unsigned int)gpu::sum(templ)[0];
|
||||
matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows, buf.image_sums[0], templ_sum, result, StreamAccessor::getStream(stream));
|
||||
unsigned int templ_sum = (unsigned int) gpu::sum(templ)[0];
|
||||
|
||||
matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows, image_sums_[0], templ_sum, result, StreamAccessor::getStream(stream));
|
||||
}
|
||||
else
|
||||
{
|
||||
gpu::split(image, buf.images);
|
||||
buf.image_sums.resize(buf.images.size());
|
||||
gpu::split(image, images_);
|
||||
|
||||
image_sums_.resize(images_.size());
|
||||
for (int i = 0; i < image.channels(); ++i)
|
||||
gpu::integral(buf.images[i], buf.image_sums[i], stream);
|
||||
gpu::integral(images_[i], image_sums_[i], intBuffer_, stream);
|
||||
|
||||
Scalar templ_sum = gpu::sum(templ);
|
||||
|
||||
@ -285,60 +464,91 @@ namespace
|
||||
{
|
||||
case 2:
|
||||
matchTemplatePrepared_CCOFF_8UC2(
|
||||
templ.cols, templ.rows, buf.image_sums[0], buf.image_sums[1],
|
||||
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1],
|
||||
templ.cols, templ.rows, image_sums_[0], image_sums_[1],
|
||||
(unsigned int) templ_sum[0], (unsigned int) templ_sum[1],
|
||||
result, StreamAccessor::getStream(stream));
|
||||
break;
|
||||
case 3:
|
||||
matchTemplatePrepared_CCOFF_8UC3(
|
||||
templ.cols, templ.rows, buf.image_sums[0], buf.image_sums[1], buf.image_sums[2],
|
||||
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2],
|
||||
templ.cols, templ.rows, image_sums_[0], image_sums_[1], image_sums_[2],
|
||||
(unsigned int) templ_sum[0], (unsigned int) templ_sum[1], (unsigned int) templ_sum[2],
|
||||
result, StreamAccessor::getStream(stream));
|
||||
break;
|
||||
case 4:
|
||||
matchTemplatePrepared_CCOFF_8UC4(
|
||||
templ.cols, templ.rows, buf.image_sums[0], buf.image_sums[1], buf.image_sums[2], buf.image_sums[3],
|
||||
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2],
|
||||
(unsigned int)templ_sum[3], result, StreamAccessor::getStream(stream));
|
||||
templ.cols, templ.rows, image_sums_[0], image_sums_[1], image_sums_[2], image_sums_[3],
|
||||
(unsigned int) templ_sum[0], (unsigned int) templ_sum[1], (unsigned int) templ_sum[2], (unsigned int) templ_sum[3],
|
||||
result, StreamAccessor::getStream(stream));
|
||||
break;
|
||||
default:
|
||||
CV_Error(cv::Error::StsBadArg, "matchTemplate: unsupported number of channels");
|
||||
CV_Error(Error::StsBadArg, "unsupported number of channels");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// CCOFF_NORMED_8U
|
||||
|
||||
void matchTemplate_CCOFF_NORMED_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
class Match_CCOEFF_NORMED_8U : public TemplateMatching
|
||||
{
|
||||
image.convertTo(buf.imagef, CV_32F, stream);
|
||||
templ.convertTo(buf.templf, CV_32F, stream);
|
||||
public:
|
||||
explicit Match_CCOEFF_NORMED_8U(Size user_block_size) : match_CCORR_32F_(user_block_size)
|
||||
{
|
||||
}
|
||||
|
||||
matchTemplate_CCORR_32F(buf.imagef, buf.templf, result, buf, stream);
|
||||
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
private:
|
||||
GpuMat imagef_, templf_;
|
||||
Match_CCORR_32F match_CCORR_32F_;
|
||||
GpuMat intBuffer_;
|
||||
std::vector<GpuMat> images_;
|
||||
std::vector<GpuMat> image_sums_;
|
||||
std::vector<GpuMat> image_sqsums_;
|
||||
};
|
||||
|
||||
void Match_CCOEFF_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::cudev::match_template;
|
||||
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
CV_Assert( image.type() == templ.type() );
|
||||
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
||||
|
||||
image.convertTo(imagef_, CV_32F, stream);
|
||||
templ.convertTo(templf_, CV_32F, stream);
|
||||
|
||||
match_CCORR_32F_.match(imagef_, templf_, _result, stream);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
if (image.channels() == 1)
|
||||
{
|
||||
buf.image_sums.resize(1);
|
||||
gpu::integral(image, buf.image_sums[0], stream);
|
||||
buf.image_sqsums.resize(1);
|
||||
gpu::sqrIntegral(image, buf.image_sqsums[0], stream);
|
||||
image_sums_.resize(1);
|
||||
gpu::integral(image, image_sums_[0], intBuffer_, stream);
|
||||
|
||||
unsigned int templ_sum = (unsigned int)gpu::sum(templ)[0];
|
||||
unsigned long long templ_sqsum = (unsigned long long)gpu::sqrSum(templ)[0];
|
||||
image_sqsums_.resize(1);
|
||||
gpu::sqrIntegral(image, image_sqsums_[0], intBuffer_, stream);
|
||||
|
||||
unsigned int templ_sum = (unsigned int) gpu::sum(templ)[0];
|
||||
unsigned long long templ_sqsum = (unsigned long long) gpu::sqrSum(templ)[0];
|
||||
|
||||
matchTemplatePrepared_CCOFF_NORMED_8U(
|
||||
templ.cols, templ.rows, buf.image_sums[0], buf.image_sqsums[0],
|
||||
templ.cols, templ.rows, image_sums_[0], image_sqsums_[0],
|
||||
templ_sum, templ_sqsum, result, StreamAccessor::getStream(stream));
|
||||
}
|
||||
else
|
||||
{
|
||||
gpu::split(image, buf.images);
|
||||
buf.image_sums.resize(buf.images.size());
|
||||
buf.image_sqsums.resize(buf.images.size());
|
||||
gpu::split(image, images_);
|
||||
|
||||
image_sums_.resize(images_.size());
|
||||
image_sqsums_.resize(images_.size());
|
||||
for (int i = 0; i < image.channels(); ++i)
|
||||
{
|
||||
gpu::integral(buf.images[i], buf.image_sums[i], stream);
|
||||
gpu::sqrIntegral(buf.images[i], buf.image_sqsums[i], stream);
|
||||
gpu::integral(images_[i], image_sums_[i], intBuffer_, stream);
|
||||
gpu::sqrIntegral(images_[i], image_sqsums_[i], intBuffer_, stream);
|
||||
}
|
||||
|
||||
Scalar templ_sum = gpu::sum(templ);
|
||||
@ -349,8 +559,8 @@ namespace
|
||||
case 2:
|
||||
matchTemplatePrepared_CCOFF_NORMED_8UC2(
|
||||
templ.cols, templ.rows,
|
||||
buf.image_sums[0], buf.image_sqsums[0],
|
||||
buf.image_sums[1], buf.image_sqsums[1],
|
||||
image_sums_[0], image_sqsums_[0],
|
||||
image_sums_[1], image_sqsums_[1],
|
||||
(unsigned int)templ_sum[0], (unsigned long long)templ_sqsum[0],
|
||||
(unsigned int)templ_sum[1], (unsigned long long)templ_sqsum[1],
|
||||
result, StreamAccessor::getStream(stream));
|
||||
@ -358,9 +568,9 @@ namespace
|
||||
case 3:
|
||||
matchTemplatePrepared_CCOFF_NORMED_8UC3(
|
||||
templ.cols, templ.rows,
|
||||
buf.image_sums[0], buf.image_sqsums[0],
|
||||
buf.image_sums[1], buf.image_sqsums[1],
|
||||
buf.image_sums[2], buf.image_sqsums[2],
|
||||
image_sums_[0], image_sqsums_[0],
|
||||
image_sums_[1], image_sqsums_[1],
|
||||
image_sums_[2], image_sqsums_[2],
|
||||
(unsigned int)templ_sum[0], (unsigned long long)templ_sqsum[0],
|
||||
(unsigned int)templ_sum[1], (unsigned long long)templ_sqsum[1],
|
||||
(unsigned int)templ_sum[2], (unsigned long long)templ_sqsum[2],
|
||||
@ -369,10 +579,10 @@ namespace
|
||||
case 4:
|
||||
matchTemplatePrepared_CCOFF_NORMED_8UC4(
|
||||
templ.cols, templ.rows,
|
||||
buf.image_sums[0], buf.image_sqsums[0],
|
||||
buf.image_sums[1], buf.image_sqsums[1],
|
||||
buf.image_sums[2], buf.image_sqsums[2],
|
||||
buf.image_sums[3], buf.image_sqsums[3],
|
||||
image_sums_[0], image_sqsums_[0],
|
||||
image_sums_[1], image_sqsums_[1],
|
||||
image_sums_[2], image_sqsums_[2],
|
||||
image_sums_[3], image_sqsums_[3],
|
||||
(unsigned int)templ_sum[0], (unsigned long long)templ_sqsum[0],
|
||||
(unsigned int)templ_sum[1], (unsigned long long)templ_sqsum[1],
|
||||
(unsigned int)templ_sum[2], (unsigned long long)templ_sqsum[2],
|
||||
@ -380,46 +590,60 @@ namespace
|
||||
result, StreamAccessor::getStream(stream));
|
||||
break;
|
||||
default:
|
||||
CV_Error(cv::Error::StsBadArg, "matchTemplate: unsupported number of channels");
|
||||
CV_Error(Error::StsBadArg, "unsupported number of channels");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream& stream)
|
||||
Ptr<gpu::TemplateMatching> cv::gpu::createTemplateMatching(int srcType, int method, Size user_block_size)
|
||||
{
|
||||
MatchTemplateBuf buf;
|
||||
matchTemplate(image, templ, result, method, buf, stream);
|
||||
}
|
||||
const int sdepth = CV_MAT_DEPTH(srcType);
|
||||
|
||||
CV_Assert( sdepth == CV_8U || sdepth == CV_32F );
|
||||
|
||||
void cv::gpu::matchTemplate(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, int method,
|
||||
MatchTemplateBuf &buf, Stream& stream)
|
||||
{
|
||||
CV_Assert(image.type() == templ.type());
|
||||
CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows);
|
||||
|
||||
typedef void (*Caller)(const GpuMat&, const GpuMat&, GpuMat&, MatchTemplateBuf&, Stream& stream);
|
||||
|
||||
static const Caller callers8U[] = { ::matchTemplate_SQDIFF_8U, ::matchTemplate_SQDIFF_NORMED_8U,
|
||||
::matchTemplate_CCORR_8U, ::matchTemplate_CCORR_NORMED_8U,
|
||||
::matchTemplate_CCOFF_8U, ::matchTemplate_CCOFF_NORMED_8U };
|
||||
static const Caller callers32F[] = { ::matchTemplate_SQDIFF_32F, 0,
|
||||
::matchTemplate_CCORR_32F, 0, 0, 0 };
|
||||
|
||||
const Caller* callers = 0;
|
||||
switch (image.depth())
|
||||
if (sdepth == CV_32F)
|
||||
{
|
||||
case CV_8U: callers = callers8U; break;
|
||||
case CV_32F: callers = callers32F; break;
|
||||
default: CV_Error(cv::Error::StsBadArg, "matchTemplate: unsupported data type");
|
||||
}
|
||||
switch (method)
|
||||
{
|
||||
case TM_SQDIFF:
|
||||
return new Match_SQDIFF_32F;
|
||||
|
||||
Caller caller = callers[method];
|
||||
CV_Assert(caller);
|
||||
caller(image, templ, result, buf, stream);
|
||||
case TM_CCORR:
|
||||
return new Match_CCORR_32F(user_block_size);
|
||||
|
||||
default:
|
||||
CV_Error( Error::StsBadFlag, "Unsopported method" );
|
||||
return Ptr<gpu::TemplateMatching>();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (method)
|
||||
{
|
||||
case TM_SQDIFF:
|
||||
return new Match_SQDIFF_8U(user_block_size);
|
||||
|
||||
case TM_SQDIFF_NORMED:
|
||||
return new Match_SQDIFF_NORMED_8U(user_block_size);
|
||||
|
||||
case TM_CCORR:
|
||||
return new Match_CCORR_8U(user_block_size);
|
||||
|
||||
case TM_CCORR_NORMED:
|
||||
return new Match_CCORR_NORMED_8U(user_block_size);
|
||||
|
||||
case TM_CCOEFF:
|
||||
return new Match_CCOEFF_8U(user_block_size);
|
||||
|
||||
case TM_CCOEFF_NORMED:
|
||||
return new Match_CCOEFF_NORMED_8U(user_block_size);
|
||||
|
||||
default:
|
||||
CV_Error( Error::StsBadFlag, "Unsopported method" );
|
||||
return Ptr<gpu::TemplateMatching>();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -82,8 +82,10 @@ GPU_TEST_P(MatchTemplate8U, Accuracy)
|
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
|
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
|
||||
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(image.type(), method);
|
||||
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method);
|
||||
alg->match(loadMat(image), loadMat(templ), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::matchTemplate(image, templ, dst_gold, method);
|
||||
@ -128,8 +130,10 @@ GPU_TEST_P(MatchTemplate32F, Regression)
|
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
|
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
|
||||
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(image.type(), method);
|
||||
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method);
|
||||
alg->match(loadMat(image), loadMat(templ), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::matchTemplate(image, templ, dst_gold, method);
|
||||
@ -169,8 +173,10 @@ GPU_TEST_P(MatchTemplateBlackSource, Accuracy)
|
||||
cv::Mat pattern = readImage("matchtemplate/cat.png");
|
||||
ASSERT_FALSE(pattern.empty());
|
||||
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(image.type(), method);
|
||||
|
||||
cv::gpu::GpuMat d_dst;
|
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, method);
|
||||
alg->match(loadMat(image), loadMat(pattern), d_dst);
|
||||
|
||||
cv::Mat dst(d_dst);
|
||||
|
||||
@ -214,8 +220,10 @@ GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
|
||||
cv::Mat pattern = readImage(patternName);
|
||||
ASSERT_FALSE(pattern.empty());
|
||||
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(image.type(), cv::TM_CCOEFF_NORMED);
|
||||
|
||||
cv::gpu::GpuMat d_dst;
|
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, cv::TM_CCOEFF_NORMED);
|
||||
alg->match(loadMat(image), loadMat(pattern), d_dst);
|
||||
|
||||
cv::Mat dst(d_dst);
|
||||
|
||||
@ -263,8 +271,10 @@ GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
|
||||
cv::Mat templ = readImage("matchtemplate/template.png");
|
||||
ASSERT_FALSE(templ.empty());
|
||||
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(scene.type(), cv::TM_SQDIFF_NORMED);
|
||||
|
||||
cv::gpu::GpuMat d_result;
|
||||
cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF_NORMED);
|
||||
alg->match(loadMat(scene), loadMat(templ), d_result);
|
||||
|
||||
cv::Mat result(d_result);
|
||||
|
||||
@ -286,8 +296,10 @@ GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
|
||||
cv::Mat templ = readImage("matchtemplate/template.png");
|
||||
ASSERT_FALSE(templ.empty());
|
||||
|
||||
cv::Ptr<cv::gpu::TemplateMatching> alg = cv::gpu::createTemplateMatching(scene.type(), cv::TM_SQDIFF);
|
||||
|
||||
cv::gpu::GpuMat d_result;
|
||||
cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF);
|
||||
alg->match(loadMat(scene), loadMat(templ), d_result);
|
||||
|
||||
cv::Mat result(d_result);
|
||||
|
||||
|
@ -17,24 +17,16 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static void InitMatchTemplate()
|
||||
{
|
||||
Mat src; gen(src, 500, 500, CV_32F, 0, 1);
|
||||
Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
|
||||
gpu::GpuMat d_src(src), d_templ(templ), d_dst;
|
||||
gpu::matchTemplate(d_src, d_templ, d_dst, TM_CCORR);
|
||||
}
|
||||
|
||||
|
||||
TEST(matchTemplate)
|
||||
{
|
||||
InitMatchTemplate();
|
||||
|
||||
Mat src, templ, dst;
|
||||
gen(src, 3000, 3000, CV_32F, 0, 1);
|
||||
|
||||
gpu::GpuMat d_src(src), d_templ, d_dst;
|
||||
|
||||
Ptr<gpu::TemplateMatching> alg = gpu::createTemplateMatching(src.type(), TM_CCORR);
|
||||
|
||||
for (int templ_size = 5; templ_size < 200; templ_size *= 5)
|
||||
{
|
||||
SUBTEST << src.cols << 'x' << src.rows << ", 32FC1" << ", templ " << templ_size << 'x' << templ_size << ", CCORR";
|
||||
@ -47,10 +39,10 @@ TEST(matchTemplate)
|
||||
CPU_OFF;
|
||||
|
||||
d_templ.upload(templ);
|
||||
gpu::matchTemplate(d_src, d_templ, d_dst, TM_CCORR);
|
||||
alg->match(d_src, d_templ, d_dst);
|
||||
|
||||
GPU_ON;
|
||||
gpu::matchTemplate(d_src, d_templ, d_dst, TM_CCORR);
|
||||
alg->match(d_src, d_templ, d_dst);
|
||||
GPU_OFF;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user