mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
Merge pull request #8081 from mshabunin:fix-kmeans-compactness
This commit is contained in:
commit
dfb348ef0b
@ -165,11 +165,13 @@ public:
|
||||
KMeansDistanceComputer( double *_distances,
|
||||
int *_labels,
|
||||
const Mat& _data,
|
||||
const Mat& _centers )
|
||||
const Mat& _centers,
|
||||
bool _onlyDistance = false )
|
||||
: distances(_distances),
|
||||
labels(_labels),
|
||||
data(_data),
|
||||
centers(_centers)
|
||||
centers(_centers),
|
||||
onlyDistance(_onlyDistance)
|
||||
{
|
||||
}
|
||||
|
||||
@ -183,6 +185,12 @@ public:
|
||||
for( int i = begin; i<end; ++i)
|
||||
{
|
||||
const float *sample = data.ptr<float>(i);
|
||||
if (onlyDistance)
|
||||
{
|
||||
const float* center = centers.ptr<float>(labels[i]);
|
||||
distances[i] = normL2Sqr(sample, center, dims);
|
||||
continue;
|
||||
}
|
||||
int k_best = 0;
|
||||
double min_dist = DBL_MAX;
|
||||
|
||||
@ -210,6 +218,7 @@ private:
|
||||
int *labels;
|
||||
const Mat& data;
|
||||
const Mat& centers;
|
||||
bool onlyDistance;
|
||||
};
|
||||
|
||||
}
|
||||
@ -259,6 +268,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
|
||||
std::vector<int> counters(K);
|
||||
std::vector<Vec2f> _box(dims);
|
||||
Mat dists(1, N, CV_64F);
|
||||
Vec2f* box = &_box[0];
|
||||
double best_compactness = DBL_MAX, compactness = 0;
|
||||
RNG& rng = theRNG();
|
||||
@ -430,19 +440,16 @@ double cv::kmeans( InputArray _data, int K,
|
||||
}
|
||||
}
|
||||
|
||||
if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon )
|
||||
break;
|
||||
bool isLastIter = (++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon);
|
||||
|
||||
// assign labels
|
||||
Mat dists(1, N, CV_64F);
|
||||
dists = 0;
|
||||
double* dist = dists.ptr<double>(0);
|
||||
parallel_for_(Range(0, N),
|
||||
KMeansDistanceComputer(dist, labels, data, centers));
|
||||
compactness = 0;
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
compactness += dist[i];
|
||||
}
|
||||
parallel_for_(Range(0, N), KMeansDistanceComputer(dist, labels, data, centers, isLastIter));
|
||||
compactness = sum(dists)[0];
|
||||
|
||||
if (isLastIter)
|
||||
break;
|
||||
}
|
||||
|
||||
if( compactness < best_compactness )
|
||||
|
@ -2748,21 +2748,23 @@ public:
|
||||
protected:
|
||||
void run(int inVariant)
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int i, iter = 0, N = 0, N0 = 0, K = 0, dims = 0;
|
||||
Mat labels;
|
||||
try
|
||||
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int MAX_DIM=5;
|
||||
int MAX_POINTS = 100, maxIter = 100;
|
||||
for( iter = 0; iter < maxIter; iter++ )
|
||||
{
|
||||
ts->update_context(this, iter, true);
|
||||
dims = rng.uniform(inVariant == MAT_1_N_CDIM ? 2 : 1, MAX_DIM+1);
|
||||
N = rng.uniform(1, MAX_POINTS+1);
|
||||
N = rng.uniform(2, MAX_POINTS+1);
|
||||
N0 = rng.uniform(1, MAX(N/10, 2));
|
||||
K = rng.uniform(1, N+1);
|
||||
|
||||
Mat centers;
|
||||
|
||||
if (inVariant == VECTOR)
|
||||
{
|
||||
dims = 2;
|
||||
@ -2775,7 +2777,7 @@ protected:
|
||||
data[i] = data0[rng.uniform(0, N0)];
|
||||
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
5, KMEANS_PP_CENTERS);
|
||||
5, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -2820,28 +2822,24 @@ protected:
|
||||
}
|
||||
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
5, KMEANS_PP_CENTERS);
|
||||
5, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
ASSERT_EQ(centers.rows, K);
|
||||
ASSERT_EQ(labels.rows, N);
|
||||
|
||||
Mat hist(K, 1, CV_32S, Scalar(0));
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
int l = labels.at<int>(i);
|
||||
CV_Assert(0 <= l && l < K);
|
||||
ASSERT_GE(l, 0);
|
||||
ASSERT_LT(l, K);
|
||||
hist.at<int>(l)++;
|
||||
}
|
||||
for( i = 0; i < K; i++ )
|
||||
CV_Assert( hist.at<int>(i) != 0 );
|
||||
ASSERT_GT(hist.at<int>(i), 0);
|
||||
}
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG,
|
||||
"context: iteration=%d, N=%d, N0=%d, K=%d\n",
|
||||
iter, N, N0, K);
|
||||
std::cout << labels << std::endl;
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@ -2859,6 +2857,35 @@ TEST_P(Core_KMeans_InputVariants, singular)
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(AllVariants, Core_KMeans_InputVariants, KMeansInputVariant::all());
|
||||
|
||||
TEST(Core_KMeans, compactness)
|
||||
{
|
||||
const int N = 1024;
|
||||
const int attempts = 4;
|
||||
const TermCriteria crit = TermCriteria(TermCriteria::COUNT, 5, 0); // low number of iterations
|
||||
cvtest::TS& ts = *cvtest::TS::ptr();
|
||||
for (int K = 1; K <= N; K *= 2)
|
||||
{
|
||||
Mat data(N, 1, CV_32FC2);
|
||||
cvtest::randUni(ts.get_rng(), data, Scalar(-200, -200), Scalar(200, 200));
|
||||
Mat labels, centers;
|
||||
double compactness = kmeans(data, K, labels, crit, attempts, KMEANS_PP_CENTERS, centers);
|
||||
centers = centers.reshape(2);
|
||||
EXPECT_EQ(labels.rows, N);
|
||||
EXPECT_EQ(centers.rows, K);
|
||||
EXPECT_GE(compactness, 0.0);
|
||||
double expected = 0.0;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int l = labels.at<int>(i);
|
||||
Point2f d = data.at<Point2f>(i) - centers.at<Point2f>(l);
|
||||
expected += d.x * d.x + d.y * d.y;
|
||||
}
|
||||
EXPECT_NEAR(expected, compactness, expected * 1e-8);
|
||||
if (K == N)
|
||||
EXPECT_DOUBLE_EQ(compactness, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(CovariationMatrixVectorOfMat, accuracy)
|
||||
{
|
||||
unsigned int col_problem_size = 8, row_problem_size = 8, vector_size = 16;
|
||||
|
@ -53,7 +53,7 @@ int main( int /*argc*/, char** /*argv*/ )
|
||||
|
||||
randShuffle(points, 1, &rng);
|
||||
|
||||
kmeans(points, clusterCount, labels,
|
||||
double compactness = kmeans(points, clusterCount, labels,
|
||||
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
|
||||
3, KMEANS_PP_CENTERS, centers);
|
||||
|
||||
@ -65,6 +65,12 @@ int main( int /*argc*/, char** /*argv*/ )
|
||||
Point ipt = points.at<Point2f>(i);
|
||||
circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA );
|
||||
}
|
||||
for (i = 0; i < centers.rows; ++i)
|
||||
{
|
||||
Point2f c = centers.at<Point2f>(i);
|
||||
circle( img, c, 40, colorTab[i], 1, LINE_AA );
|
||||
}
|
||||
cout << "Compactness: " << compactness << endl;
|
||||
|
||||
imshow("clusters", img);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user