mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 11:40:44 +08:00
Fix warnings as errors.
This commit is contained in:
parent
63c23cce65
commit
e015691b41
@ -38,7 +38,7 @@ void get_svm_detector(const SVM& svm, vector< float > & hog_detector )
|
||||
decision_func != 0 &&
|
||||
decision_func->alpha != 0 &&
|
||||
decision_func->sv_count == sv_total );
|
||||
|
||||
|
||||
float svi = 0.f;
|
||||
|
||||
hog_detector.clear(); //clear stuff in vector.
|
||||
@ -108,11 +108,15 @@ void load_images( const string & prefix, const string & filename, vector< Mat >
|
||||
exit( -1 );
|
||||
}
|
||||
|
||||
while( 1 )
|
||||
bool end_of_parsing = false;
|
||||
while( !end_of_parsing )
|
||||
{
|
||||
getline( file, line );
|
||||
if( line == "" ) // no more file to read
|
||||
{
|
||||
end_of_parsing = true;
|
||||
break;
|
||||
}
|
||||
Mat img = imread( (prefix+line).c_str() ); // load the image
|
||||
if( !img.data ) // invalid image, just skip it.
|
||||
continue;
|
||||
@ -133,7 +137,7 @@ void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, co
|
||||
const int size_x = box.width;
|
||||
const int size_y = box.height;
|
||||
|
||||
srand( time( NULL ) );
|
||||
srand( (unsigned int)time( NULL ) );
|
||||
|
||||
vector< Mat >::const_iterator img = full_neg_lst.begin();
|
||||
vector< Mat >::const_iterator end = full_neg_lst.end();
|
||||
@ -152,16 +156,16 @@ void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, co
|
||||
|
||||
// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization
|
||||
Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, const Size & size )
|
||||
{
|
||||
{
|
||||
const int DIMX = size.width;
|
||||
const int DIMY = size.height;
|
||||
float zoomFac = 3;
|
||||
Mat visu;
|
||||
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac));
|
||||
resize(color_origImg, visu, Size( (int)(color_origImg.cols*zoomFac), (int)(color_origImg.rows*zoomFac) ) );
|
||||
|
||||
int cellSize = 8;
|
||||
int gradientBinSize = 9;
|
||||
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180° into 9 bins, how large (in rad) is one bin?
|
||||
float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180° into 9 bins, how large (in rad) is one bin?
|
||||
|
||||
// prepare data structure: 9 orientation / gradient strenghts for each cell
|
||||
int cells_in_x_dir = DIMX / cellSize;
|
||||
@ -194,7 +198,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
||||
|
||||
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
|
||||
{
|
||||
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
|
||||
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
|
||||
{
|
||||
// 4 cells per block ...
|
||||
for (int cellNr=0; cellNr<4; cellNr++)
|
||||
@ -259,7 +263,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
||||
int mx = drawX + cellSize/2;
|
||||
int my = drawY + cellSize/2;
|
||||
|
||||
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1);
|
||||
rectangle(visu, Point((int)(drawX*zoomFac), (int)(drawY*zoomFac)), Point((int)((drawX+cellSize)*zoomFac), (int)((drawY+cellSize)*zoomFac)), CV_RGB(100,100,100), 1);
|
||||
|
||||
// draw in each cell all 9 gradient strengths
|
||||
for (int bin=0; bin<gradientBinSize; bin++)
|
||||
@ -274,7 +278,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
||||
|
||||
float dirVecX = cos( currRad );
|
||||
float dirVecY = sin( currRad );
|
||||
float maxVecLen = cellSize/2;
|
||||
float maxVecLen = (float)(cellSize/2.f);
|
||||
float scale = 2.5; // just a visualization scale, to see the lines better
|
||||
|
||||
// compute line coordinates
|
||||
@ -284,7 +288,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
||||
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
|
||||
|
||||
// draw gradient visualization
|
||||
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1);
|
||||
line(visu, Point((int)(x1*zoomFac),(int)(y1*zoomFac)), Point((int)(x2*zoomFac),(int)(y2*zoomFac)), CV_RGB(0,255,0), 1);
|
||||
|
||||
} // for (all bins)
|
||||
|
||||
@ -297,7 +301,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
||||
{
|
||||
for (int x=0; x<cells_in_x_dir; x++)
|
||||
{
|
||||
delete[] gradientStrengths[y][x];
|
||||
delete[] gradientStrengths[y][x];
|
||||
}
|
||||
delete[] gradientStrengths[y];
|
||||
delete[] cellUpdateCounter[y];
|
||||
@ -399,7 +403,8 @@ void test_it( const Size & size )
|
||||
exit( -1 );
|
||||
}
|
||||
|
||||
while( true )
|
||||
bool end_of_process = false;
|
||||
while( !end_of_process )
|
||||
{
|
||||
video >> img;
|
||||
if( !img.data )
|
||||
@ -416,9 +421,9 @@ void test_it( const Size & size )
|
||||
draw_locations( draw, locations, trained );
|
||||
|
||||
imshow( "Video", draw );
|
||||
key = waitKey( 10 );
|
||||
key = (char)waitKey( 10 );
|
||||
if( 27 == key )
|
||||
break;
|
||||
end_of_process = true;
|
||||
}
|
||||
}
|
||||
|
||||
@ -439,7 +444,7 @@ int main( int argc, char** argv )
|
||||
|
||||
load_images( argv[1], argv[2], pos_lst );
|
||||
labels.assign( pos_lst.size(), +1 );
|
||||
const unsigned int old = labels.size();
|
||||
const unsigned int old = (unsigned int)labels.size();
|
||||
load_images( argv[3], argv[4], full_neg_lst );
|
||||
sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) );
|
||||
labels.insert( labels.end(), neg_lst.size(), -1 );
|
||||
|
Loading…
Reference in New Issue
Block a user