mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
Merge pull request #25063 from asmorkalov:as/multiview_calib_sample_py
Ground truth check and Charuco support in multiview_calibration.py
This commit is contained in:
commit
e02d256ff3
@ -17,13 +17,88 @@ import joblib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import yaml
|
||||
import math
|
||||
|
||||
def insideImageMask(pts, w, h):
|
||||
return np.logical_and(np.logical_and(pts[0] < w, pts[1] < h), np.logical_and(pts[0] > 0, pts[1] > 0))
|
||||
|
||||
def read_gt_rig(file, num_cameras, num_frames):
|
||||
Ks_gt = []
|
||||
distortions_gt = []
|
||||
rvecs_gt = []
|
||||
tvecs_gt = []
|
||||
rvecs0_gt = []
|
||||
tvecs0_gt = []
|
||||
with open(file, "r") as f:
|
||||
# Read in camera information
|
||||
for _ in range(num_cameras):
|
||||
f.readline() # camera label
|
||||
# 3 lines of K
|
||||
f.readline()
|
||||
K = np.zeros([3, 3])
|
||||
for i in range(3):
|
||||
K[i] = np.array([float(x) for x in f.readline().strip().split(" ")])
|
||||
Ks_gt.append(K)
|
||||
|
||||
# 1 line of distortion
|
||||
f.readline()
|
||||
distortions_gt.append(np.array([float(x) for x in f.readline().strip().split(" ")]))
|
||||
|
||||
# 3 line of rotation
|
||||
f.readline()
|
||||
R = np.zeros([3, 3])
|
||||
for i in range(3):
|
||||
R[i] = np.array([float(x) for x in f.readline().strip().split(" ")])
|
||||
rvecs_gt.append(R)
|
||||
|
||||
# 1 line of translation
|
||||
f.readline()
|
||||
t = np.zeros([3, 1])
|
||||
for i in range(3):
|
||||
t[i] = np.array(float(f.readline().strip().split(" ")[0]))
|
||||
tvecs_gt.append(t)
|
||||
|
||||
# Read in frame gt
|
||||
status = True
|
||||
for _ in range(num_frames):
|
||||
# 3 line of rotation
|
||||
f.readline()
|
||||
R = np.zeros([3, 3])
|
||||
for i in range(3):
|
||||
line = f.readline()
|
||||
if not line:
|
||||
status = False
|
||||
break
|
||||
R[i] = np.array([float(x) for x in line.strip().split(" ")])
|
||||
|
||||
if not status:
|
||||
break
|
||||
|
||||
rvecs0_gt.append(R)
|
||||
|
||||
# 3 line of translation
|
||||
f.readline()
|
||||
t = np.zeros([3, 1])
|
||||
for i in range(3):
|
||||
t[i] = np.array(float(f.readline().strip().split(" ")[0]))
|
||||
tvecs0_gt.append(t)
|
||||
|
||||
return Ks_gt, distortions_gt, rvecs_gt, tvecs_gt, rvecs0_gt, tvecs0_gt
|
||||
|
||||
def calc_angle(R1, R2):
|
||||
cos_r = ((R1.T @ R2).trace() - 1) / 2
|
||||
cos_r = min(max(cos_r, -1.), 1.)
|
||||
|
||||
return np.degrees(math.acos(cos_r))
|
||||
|
||||
def calc_trans(R1, t1, R2, t2):
|
||||
return np.linalg.norm((R1.T @ t1 - R2.T @ t2))
|
||||
|
||||
def getDimBox(pts):
|
||||
return np.array([[pts[...,k].min(), pts[...,k].max()] for k in range(pts.shape[-1])])
|
||||
|
||||
|
||||
def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids):
|
||||
def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids, detection_mask):
|
||||
cam_box = np.array([
|
||||
[ 1, 1, 3],
|
||||
[ 1, -1, 3],
|
||||
@ -37,7 +112,7 @@ def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids):
|
||||
|
||||
ax_lines = [None] * len(R)
|
||||
ax.set_title(f'Cameras position and pattern of frame {frame_idx}',
|
||||
loc='center', wrap=True, fontsize=20)
|
||||
loc='center', wrap=True, fontsize=15)
|
||||
all_pts = [pattern]
|
||||
colors = np.random.RandomState(0).rand(len(R), 3)
|
||||
|
||||
@ -84,14 +159,32 @@ def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids):
|
||||
'-', color=colors[i])
|
||||
|
||||
# Plot lines between cameras
|
||||
base_width = 3 / detection_mask.shape[1]
|
||||
maps_pairs = set()
|
||||
for (i, j) in pairs:
|
||||
overlaps = np.sum((detection_mask[i] > 0) * (detection_mask[j] > 0))
|
||||
maps_pairs.add((np.minimum(i, j), np.maximum(i, j)))
|
||||
xs = [t[i][0,0], t[j][0,0]]
|
||||
ys = [t[i][1,0], t[j][1,0]]
|
||||
zs = [t[i][2,0], t[j][2,0]]
|
||||
edge_line = ax.plot(xs, ys, zs, '-', color='black')[0]
|
||||
edge_line = ax.plot(xs, ys, zs, '-', color='black', linewidth=overlaps * base_width)[0]
|
||||
|
||||
# Plot all connected points
|
||||
for i in range(len(R)):
|
||||
for j in range(i + 1, len(R)):
|
||||
overlaps = np.sum((detection_mask[i] > 0) * (detection_mask[j] > 0))
|
||||
if overlaps == 0:
|
||||
continue
|
||||
xs = [t[i][0,0], t[j][0,0]]
|
||||
ys = [t[i][1,0], t[j][1,0]]
|
||||
zs = [t[i][2,0], t[j][2,0]]
|
||||
if (i, j) in maps_pairs:
|
||||
continue
|
||||
else:
|
||||
edge_line_extra = ax.plot(xs, ys, zs, '--', color='gray', linewidth=overlaps * base_width)[0]
|
||||
|
||||
ax.scatter(pattern[:, 0], pattern[:, 1], pattern[:, 2], color='red', marker='o')
|
||||
ax.legend(ax_lines + [edge_line], cam_ids + ['stereo pair'], fontsize=6)
|
||||
ax.legend(ax_lines + [edge_line] + [edge_line_extra], cam_ids + ['stereo pair'] + ['full pairs'], fontsize=6)
|
||||
|
||||
dim_box = getDimBox(np.concatenate((all_pts)))
|
||||
|
||||
@ -113,13 +206,43 @@ def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids):
|
||||
ax.view_init(azim=90, elev=-40)
|
||||
|
||||
|
||||
# [plot_detection]
|
||||
def plotDetection(image_sizes, image_points):
|
||||
num_cameras = len(image_sizes)
|
||||
num_frames = len(image_points[0])
|
||||
|
||||
for c in range(num_cameras):
|
||||
w, h = image_sizes[c]
|
||||
w = int(w / 10) + 1
|
||||
h = int(h / 10) + 1
|
||||
|
||||
counts = np.zeros([h, w], dtype=np.int32)
|
||||
for f in range(num_frames):
|
||||
if len(image_points[c][f]):
|
||||
pos = np.floor(image_points[c][f] / 10).astype(np.int32)
|
||||
counts[pos[:,1], pos[:,0]] += 1
|
||||
|
||||
vmax = np.max(counts)
|
||||
plt.figure()
|
||||
plt.imshow(counts, cmap='hot', interpolation='nearest',vmax=vmax)
|
||||
|
||||
# Adding colorbar for reference
|
||||
plt.colorbar()
|
||||
plt.axis("off")
|
||||
savefile = "counts" + str(c) + ".png"
|
||||
print("Saving: " + savefile)
|
||||
plt.savefig(savefile, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
# [plot_detection]
|
||||
|
||||
def showUndistorted(image_points, Ks, distortions, image_names):
|
||||
detection_mask = getDetectionMask(image_points)
|
||||
for cam in range(len(image_points)):
|
||||
detected_imgs = np.where(detection_mask[cam])[0]
|
||||
random_frame = np.random.RandomState(0).choice(detected_imgs, 1, replace=False)[0]
|
||||
undistorted_pts = cv.undistortPoints(
|
||||
image_points[cam][random_frame],
|
||||
image_points[cam][random_frame][image_points[cam][random_frame][:,0] > 0],
|
||||
Ks[cam],
|
||||
distortions[cam],
|
||||
P=Ks[cam]
|
||||
@ -218,9 +341,11 @@ def plotProjection(points_2d, pattern_points, rvec0, tvec0, rvec1, tvec1,
|
||||
else:
|
||||
legend_str.append(f'between {thrs[i-1]:.1f} and {thrs[i]:.1f}')
|
||||
|
||||
ax.legend(legend, legend_str, fontsize=15)
|
||||
ax.set_title(title, loc='center', wrap=True, fontsize=16)
|
||||
ax.legend(legend, legend_str, fontsize=10)
|
||||
ax.set_title(title, loc='center', wrap=True, fontsize=12)
|
||||
|
||||
plt.savefig("projection_error.png")
|
||||
plt.close()
|
||||
|
||||
def getDetectionMask(image_points):
|
||||
detection_mask = np.zeros((len(image_points), len(image_points[0])), dtype=np.uint8)
|
||||
@ -255,13 +380,8 @@ def calibrateFromPoints(
|
||||
with np.printoptions(threshold=np.inf): # type: ignore
|
||||
print("detection mask Matrix:\n", str(detection_mask).replace('0\n ', '0').replace('1\n ', '1'))
|
||||
|
||||
#HACK: OpenCV API does not well support mix of fisheye and pinhole models.
|
||||
# Pinhole models with rational distortion model is used instead
|
||||
fisheyes = np.count_nonzero(is_fisheye)
|
||||
intrinsics_flag = 0
|
||||
if (fisheyes > 0) and (fisheyes != num_cameras):
|
||||
intrinsics_flag = cv.CALIB_RATIONAL_MODEL + cv.CALIB_ZERO_TANGENT_DIST + cv.CALIB_FIX_K5 + cv.CALIB_FIX_K6
|
||||
|
||||
pinhole_flag = cv.CALIB_ZERO_TANGENT_DIST
|
||||
fisheye_flag = cv.CALIB_RECOMPUTE_EXTRINSIC+cv.CALIB_FIX_SKEW
|
||||
if Ks is not None and distortions is not None:
|
||||
USE_INTRINSICS_GUESS = True
|
||||
else:
|
||||
@ -278,7 +398,10 @@ def calibrateFromPoints(
|
||||
image_points_c,
|
||||
image_sizes[c],
|
||||
None,
|
||||
None
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
fisheye_flag
|
||||
)
|
||||
else:
|
||||
image_points_c = [
|
||||
@ -290,7 +413,7 @@ def calibrateFromPoints(
|
||||
image_sizes[c],
|
||||
None,
|
||||
None,
|
||||
flags=intrinsics_flag
|
||||
flags=pinhole_flag
|
||||
)
|
||||
print(f'Intrinsics calibration for camera {c}, reproj error {repr_err_c:.2f} (px)')
|
||||
Ks.append(K)
|
||||
@ -299,17 +422,19 @@ def calibrateFromPoints(
|
||||
start_time = time.time()
|
||||
# try:
|
||||
# [multiview_calib]
|
||||
rmse, rvecs, Ts, Ks, distortions, rvecs0, tvecs0, errors_per_frame, output_pairs = \
|
||||
rmse, Rs, Ts, Ks, distortions, rvecs0, tvecs0, errors_per_frame, output_pairs = \
|
||||
cv.calibrateMultiview(
|
||||
objPoints=pattern_points_all,
|
||||
imagePoints=image_points,
|
||||
imageSize=image_sizes,
|
||||
detectionMask=detection_mask,
|
||||
Rs=None,
|
||||
Ts=None,
|
||||
Ks=Ks,
|
||||
distortions=distortions,
|
||||
isFisheye=np.array(is_fisheye, dtype=np.uint8),
|
||||
useIntrinsicsGuess=USE_INTRINSICS_GUESS,
|
||||
flagsForIntrinsics=np.full((num_cameras), intrinsics_flag, dtype=int)
|
||||
flagsForIntrinsics=np.array([pinhole_flag if not is_fisheye[x] else fisheye_flag for x in range(num_cameras)], dtype=int),
|
||||
)
|
||||
# [multiview_calib]
|
||||
# except Exception as e:
|
||||
@ -317,8 +442,8 @@ def calibrateFromPoints(
|
||||
# sys.exit(0)
|
||||
|
||||
print('calibration time', time.time() - start_time, 'seconds')
|
||||
print('rvecs', rvecs)
|
||||
print('tvecs', Ts)
|
||||
print('Rs', [Rs[x] for x in range(len(Rs))])
|
||||
print('Ts', [Ts[x].transpose() for x in range(len(Ts))])
|
||||
print('K', Ks)
|
||||
print('distortion', distortions)
|
||||
print('mean RMS error over all visible frames %.3E' % rmse)
|
||||
@ -327,7 +452,7 @@ def calibrateFromPoints(
|
||||
print('mean RMS errors per camera', np.array([np.mean(errs[errs > 0]) for errs in errors_per_frame]))
|
||||
|
||||
return {
|
||||
'rvecs': rvecs,
|
||||
'Rs': Rs,
|
||||
'distortions': distortions,
|
||||
'Ks': Ks,
|
||||
'Ts': Ts,
|
||||
@ -344,31 +469,40 @@ def calibrateFromPoints(
|
||||
}
|
||||
|
||||
|
||||
def visualizeResults(detection_mask, rvecs, Ts, Ks, distortions, is_fisheye,
|
||||
def visualizeResults(detection_mask, Rs, Ts, Ks, distortions, is_fisheye,
|
||||
image_points, errors_per_frame, rvecs0, tvecs0,
|
||||
pattern_points, image_sizes, output_pairs, image_names, cam_ids):
|
||||
Rs = [cv.Rodrigues(rvec)[0] for rvec in rvecs]
|
||||
rvecs = [cv.Rodrigues(R)[0] for R in Rs]
|
||||
errors = errors_per_frame[errors_per_frame > 0]
|
||||
detection_mask_idxs = np.stack(np.where(detection_mask)) # 2 x M, first row is camera idx, second is frame idx
|
||||
|
||||
# Get very first frame from first camera
|
||||
frame_idx = detection_mask_idxs[1, 0]
|
||||
pos = 0
|
||||
while rvecs0[frame_idx] is None:
|
||||
pos += 1
|
||||
frame_idx = detection_mask_idxs[1, pos]
|
||||
|
||||
R_frame = cv.Rodrigues(rvecs0[frame_idx])[0]
|
||||
pattern_frame = (R_frame @ pattern_points.T + tvecs0[frame_idx]).T
|
||||
plotCamerasPosition(Rs, Ts, image_sizes, output_pairs, pattern_frame, frame_idx, cam_ids)
|
||||
plotCamerasPosition(Rs, Ts, image_sizes, output_pairs, pattern_frame, frame_idx, cam_ids, detection_mask)
|
||||
|
||||
save_file = 'cam_poses.png'
|
||||
print('Saving:', save_file)
|
||||
plt.savefig(save_file, dpi=300, bbox_inches='tight')
|
||||
|
||||
plt.close()
|
||||
|
||||
# Generate and save undistorted images
|
||||
def plot(cam_idx, frame_idx):
|
||||
image = None
|
||||
if image_names is not None:
|
||||
image = cv.cvtColor(cv.imread(image_names[cam_idx][frame_idx]), cv.COLOR_BGR2RGB)
|
||||
mask = insideImageMask(image_points[cam_idx][frame_idx].T,
|
||||
image_sizes[cam_idx][0], image_sizes[cam_idx][1])
|
||||
plotProjection(
|
||||
image_points[cam_idx][frame_idx],
|
||||
pattern_points,
|
||||
image_points[cam_idx][frame_idx][mask],
|
||||
pattern_points[mask],
|
||||
rvecs0[frame_idx],
|
||||
tvecs0[frame_idx],
|
||||
rvecs[cam_idx],
|
||||
@ -382,16 +516,17 @@ def visualizeResults(detection_mask, rvecs, Ts, Ks, distortions, is_fisheye,
|
||||
image,
|
||||
)
|
||||
|
||||
plot(detection_mask_idxs[0, 0], detection_mask_idxs[1, 0])
|
||||
plot(detection_mask_idxs[0, pos], detection_mask_idxs[1, pos])
|
||||
showUndistorted(image_points, Ks, distortions, image_names)
|
||||
# plt.show()
|
||||
plotDetection(image_sizes, image_points)
|
||||
|
||||
|
||||
def visualizeFromFile(file):
|
||||
file_read = cv.FileStorage(file, cv.FileStorage_READ)
|
||||
assert file_read.isOpened(), file
|
||||
read_keys = [
|
||||
'rvecs', 'distortions', 'Ks', 'Ts', 'rvecs0', 'tvecs0',
|
||||
'Rs', 'distortions', 'Ks', 'Ts', 'rvecs0', 'tvecs0',
|
||||
'errors_per_frame', 'output_pairs', 'image_points', 'is_fisheye',
|
||||
'image_sizes', 'pattern_points', 'detection_mask', 'cam_ids',
|
||||
]
|
||||
@ -427,6 +562,9 @@ def saveToFile(path_to_save, **kwargs):
|
||||
save_file.write('image_names', list(np.array(kwargs['image_names']).reshape(-1)))
|
||||
elif key == 'cam_ids':
|
||||
save_file.write('cam_ids', ','.join(cam_ids))
|
||||
elif key == 'distortions':
|
||||
value = kwargs[key]
|
||||
save_file.write('distortions', np.concatenate([x.reshape([-1,]) for x in value],axis=0))
|
||||
else:
|
||||
value = kwargs[key]
|
||||
if key in ('rvecs0', 'tvecs0'):
|
||||
@ -436,6 +574,97 @@ def saveToFile(path_to_save, **kwargs):
|
||||
|
||||
save_file.release()
|
||||
|
||||
def compareGT(gt_file, detection_mask, Rs, Ts, Ks, distortions, is_fisheye,
|
||||
image_points, errors_per_frame, rvecs0, tvecs0,
|
||||
pattern_points, image_sizes, output_pairs, image_names, cam_ids):
|
||||
|
||||
# Load the gt file
|
||||
Ks_gt, distortions_gt, rvecs_gt, tvecs_gt, rvecs0_gt, tvecs0_gt = read_gt_rig(gt_file, len(cam_ids), detection_mask[0].shape[0])
|
||||
|
||||
# Compare the results and the gt
|
||||
err_r = np.zeros([len(cam_ids),])
|
||||
err_c = np.zeros([len(cam_ids),])
|
||||
for cam in range(len(cam_ids)):
|
||||
R = Rs[cam]
|
||||
|
||||
# Convert angle from radians to degrees
|
||||
err_r[cam] = calc_angle(R, rvecs_gt[cam])
|
||||
err_c[cam] = calc_trans(R, Ts[cam], rvecs_gt[cam], tvecs_gt[cam])
|
||||
|
||||
# Compute the distortion estimation error
|
||||
distortions = distortions
|
||||
Ks = Ks
|
||||
err_dist_mean = np.zeros([len(cam_ids),])
|
||||
err_dist_max = np.zeros([len(cam_ids),])
|
||||
err_dist_median = np.zeros([len(cam_ids),])
|
||||
for cam in range(len(cam_ids)):
|
||||
# Define the x and y coordinate vectors
|
||||
width = int(Ks_gt[cam][0, 2] * 2)
|
||||
height = int(Ks_gt[cam][1, 2] * 2)
|
||||
# [vis_intrinsics_error]
|
||||
x = np.linspace(0, width - 1, width)
|
||||
y = np.linspace(0, height - 1, height)
|
||||
|
||||
# Generate the grid using np.meshgrid
|
||||
X, Y = np.meshgrid(x, y)
|
||||
|
||||
points = np.concatenate([X[:,:,None], Y[:,:,None]], axis=2).reshape([-1, 1, 2])
|
||||
# Undistort the image points with the estimated distortions
|
||||
if is_fisheye[cam]:
|
||||
points_undist = cv.fisheye.undistortPoints(points, Ks[cam],distortions[cam])
|
||||
else:
|
||||
points_undist = cv.undistortPoints(points, Ks[cam], distortions[cam])
|
||||
|
||||
pt_norm = np.concatenate([points_undist, np.ones([points_undist.shape[0], 1, 1])], axis=2)
|
||||
|
||||
# Distort the image points with the ground truth distortions
|
||||
if is_fisheye[cam]:
|
||||
projected = cv.fisheye.projectPoints(pt_norm, np.zeros([3, 1]), np.zeros([3, 1]), Ks_gt[cam], distortions_gt[cam])[0]
|
||||
else:
|
||||
projected = cv.projectPoints(pt_norm, np.zeros([3, 1]), np.zeros([3, 1]), Ks_gt[cam], distortions_gt[cam])[0]
|
||||
|
||||
errs_pt = np.linalg.norm(projected - points, axis=2)
|
||||
errs_pt = errs_pt.reshape([height, width])
|
||||
vmax = np.percentile(errs_pt, 95)
|
||||
|
||||
plt.figure()
|
||||
plt.imshow(errs_pt, cmap='hot', interpolation='nearest',vmax=vmax)
|
||||
|
||||
# Adding colorbar for reference
|
||||
plt.colorbar()
|
||||
savefile = "errors" + str(cam) + ".png"
|
||||
print("Saving: " + savefile)
|
||||
plt.savefig(savefile,dpi=300, bbox_inches='tight')
|
||||
# [vis_intrinsics_error]
|
||||
|
||||
err_dist_mean[cam] = np.mean(errs_pt)
|
||||
err_dist_max[cam] = np.max(errs_pt)
|
||||
err_dist_median[cam] = np.median(errs_pt)
|
||||
|
||||
print("Distrotion error (mean, median):\n", " ".join([f'(%.4f, %.4f)' % (err_dist_mean[i], err_dist_median[i]) for i in range(len(cam_ids))]))
|
||||
print("Extrinsics error (R, C):\n", " ".join([f'(%.4f, %.4f)' % (err_r[i], err_c[i]) for i in range(len(cam_ids))]))
|
||||
print("Rotation error (mean, median):", f'(%.4f, %.4f)' % (np.mean(err_r), np.median(err_r)))
|
||||
print("Position error (mean, median):", f'(%.4f, %.4f)' % (np.mean(err_c), np.median(err_c)))
|
||||
|
||||
if len(rvecs0_gt) > 0:
|
||||
# conver all things with respect to the first frame
|
||||
R0 = []
|
||||
for frame in range(0, len(rvecs0_gt)):
|
||||
if rvecs0[frame] is not None:
|
||||
R0.append(cv.Rodrigues(rvecs0[frame])[0])
|
||||
else:
|
||||
R0.append(None)
|
||||
|
||||
# Compare the results and the gt
|
||||
err_r = np.zeros([detection_mask[0].shape[0],])
|
||||
err_c = np.zeros([detection_mask[0].shape[0],])
|
||||
for frame in range(detection_mask[0].shape[0]):
|
||||
# Convert angle from radians to degrees
|
||||
err_r[frame] = calc_angle(R0[frame], rvecs0_gt[frame])
|
||||
err_c[frame] = calc_trans(R0[frame], tvecs0[frame], rvecs0_gt[frame], tvecs0_gt[frame])
|
||||
|
||||
print("Frame rotation error (mean, median):", f'(%.4f, %.4f)' % (np.mean(err_r), np.median(err_r)))
|
||||
print("Frame position error (mean, median):", f'(%.4f, %.4f)' % (np.mean(err_c), np.median(err_c)))
|
||||
|
||||
def chessboard_points(grid_size, dist_m):
|
||||
pattern = np.zeros((grid_size[0] * grid_size[1], 3), np.float32)
|
||||
@ -463,8 +692,7 @@ def asym_circles_grid_points(grid_size, dist_m):
|
||||
|
||||
|
||||
def detect(cam_idx, frame_idx, img_name, pattern_type,
|
||||
grid_size, criteria, winsize, RESIZE_IMAGE):
|
||||
# print(img_name)
|
||||
grid_size, criteria, winsize, RESIZE_IMAGE, board_dict=None):
|
||||
assert os.path.exists(img_name), img_name
|
||||
img = cv.imread(img_name)
|
||||
img_size = img.shape[:2][::-1]
|
||||
@ -503,6 +731,33 @@ def detect(cam_idx, frame_idx, img_name, pattern_type,
|
||||
)
|
||||
if ret:
|
||||
corners2 = corners / scale
|
||||
elif pattern_type.lower() == 'charuco':
|
||||
dictionary = cv.aruco.getPredefinedDictionary(board_dict["dictionary"])
|
||||
board = cv.aruco.CharucoBoard(
|
||||
size=(grid_size[0] + 1, grid_size[1] + 1),
|
||||
squareLength=board_dict["square_size"],
|
||||
markerLength=board_dict["marker_size"],
|
||||
dictionary=dictionary
|
||||
)
|
||||
|
||||
# The found best practice is to refine detected Aruco marker with contour,
|
||||
# then refine subpix with the board functions
|
||||
detector_params = cv.aruco.DetectorParameters()
|
||||
charuco_params = cv.aruco.CharucoParameters()
|
||||
charuco_params.tryRefineMarkers = True
|
||||
detector_params.cornerRefinementMethod = cv.aruco.CORNER_REFINE_CONTOUR
|
||||
refine_params = cv.aruco.RefineParameters()
|
||||
detector = cv.aruco.CharucoDetector(board, charuco_params, detector_params, refine_params)
|
||||
charucoCorners, charucoIds, _, _ = detector.detectBoard(img_detection)
|
||||
|
||||
corners = np.ones([grid_size[0] * grid_size[1], 1, 2]) * -1
|
||||
ret = (not charucoIds is None) and charucoIds.flatten().size > 3
|
||||
|
||||
if ret:
|
||||
corners[charucoIds.flatten()] = cv.cornerSubPix(cv.cvtColor(img, cv.COLOR_BGR2GRAY),
|
||||
charucoCorners / scale, winsize, (-1,-1), criteria)
|
||||
corners2 = corners
|
||||
|
||||
else:
|
||||
raise ValueError("Calibration pattern is not supported!")
|
||||
# [detect_pattern]
|
||||
@ -520,7 +775,7 @@ def detect(cam_idx, frame_idx, img_name, pattern_type,
|
||||
def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
dist_m, winsize, points_json_file, debug_corners,
|
||||
RESIZE_IMAGE, find_intrinsics_in_python,
|
||||
is_parallel_detection=True, cam_ids=None, intrinsics_dir=''):
|
||||
is_parallel_detection=True, cam_ids=None, intrinsics_dir='', board_dict_path=None):
|
||||
"""
|
||||
files_with_images: NUM_CAMERAS - path to file containing image names (NUM_FRAMES)
|
||||
grid_size: [width, height] -- size of grid pattern
|
||||
@ -528,7 +783,7 @@ def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
is_fisheye: NUM_CAMERAS (bool)
|
||||
"""
|
||||
# [calib_init]
|
||||
if pattern_type.lower() == 'checkerboard':
|
||||
if pattern_type.lower() == 'checkerboard' or pattern_type.lower() == 'charuco':
|
||||
pattern = chessboard_points(grid_size, dist_m)
|
||||
elif pattern_type.lower() == 'circles':
|
||||
pattern = circles_grid_points(grid_size, dist_m)
|
||||
@ -536,6 +791,11 @@ def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
pattern = asym_circles_grid_points(grid_size, dist_m)
|
||||
else:
|
||||
raise NotImplementedError("Pattern type is not implemented!")
|
||||
|
||||
if pattern_type.lower() == 'charuco':
|
||||
assert (board_dict_path is not None) and os.path.exists(board_dict_path)
|
||||
board_dict = json.load(open(board_dict_path, 'r'))
|
||||
|
||||
# [calib_init]
|
||||
|
||||
assert len(files_with_images) == len(is_fisheye) and len(grid_size) == 2
|
||||
@ -550,24 +810,26 @@ def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
|
||||
images_names = open(filename, 'r').readlines()
|
||||
for i in range(len(images_names)):
|
||||
images_names[i] = images_names[i].replace('\n', '')
|
||||
images_names[i] = images_names[i].strip()
|
||||
if images_names[i] != "":
|
||||
images_names[i] = "/".join(filename.split("/")[:-1] + [images_names[i]])
|
||||
all_images_names.append(images_names)
|
||||
if cam_idx > 0:
|
||||
# same number of images per file
|
||||
assert len(images_names) == len(all_images_names[-1])
|
||||
assert len(images_names) == len(all_images_names[0])
|
||||
for frame_idx, img_name in enumerate(images_names):
|
||||
input_data.append([cam_idx, frame_idx, img_name])
|
||||
|
||||
image_sizes = [None] * len(files_with_images)
|
||||
image_points_cameras = [[None] * len(images_names) for _ in files_with_images]
|
||||
image_points_cameras = [[np.array([], dtype=np.float32)] * len(images_names) for _ in files_with_images]
|
||||
|
||||
if is_parallel_detection:
|
||||
parallel_job = joblib.Parallel(n_jobs=multiprocessing.cpu_count())
|
||||
output = parallel_job(
|
||||
joblib.delayed(detect)(
|
||||
cam_idx, frame_idx, img_name, pattern_type,
|
||||
grid_size, criteria, winsize, RESIZE_IMAGE
|
||||
) for cam_idx, frame_idx, img_name in input_data
|
||||
grid_size, criteria, winsize, RESIZE_IMAGE, board_dict
|
||||
) for cam_idx, frame_idx, img_name in input_data if img_name != ""
|
||||
)
|
||||
assert output is not None
|
||||
for cam_idx, frame_idx, img_size, corners in output:
|
||||
@ -576,9 +838,11 @@ def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
image_sizes[cam_idx] = img_size
|
||||
else:
|
||||
for cam_idx, frame_idx, img_name in input_data:
|
||||
if img_name == "":
|
||||
continue
|
||||
_, _, img_size, corners = detect(
|
||||
cam_idx, frame_idx, img_name, pattern_type,
|
||||
grid_size, criteria, winsize, RESIZE_IMAGE
|
||||
grid_size, criteria, winsize, RESIZE_IMAGE, board_dict
|
||||
)
|
||||
image_points_cameras[cam_idx][frame_idx] = corners
|
||||
if image_sizes[cam_idx] is None:
|
||||
@ -590,7 +854,7 @@ def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
visible_frames = []
|
||||
for c, pts_cam in enumerate(image_points_cameras):
|
||||
for f, pts_frame in enumerate(pts_cam):
|
||||
if pts_frame is not None:
|
||||
if pts_frame is not None and len(pts_frame) > 0:
|
||||
visible_frames.append((c,f))
|
||||
random_images = np.random.RandomState(0).choice(
|
||||
range(len(visible_frames)), min(num_random_plots, len(visible_frames))
|
||||
@ -598,7 +862,11 @@ def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||||
for idx in random_images:
|
||||
c, f = visible_frames[idx]
|
||||
img = cv.cvtColor(cv.imread(all_images_names[c][f]), cv.COLOR_BGR2RGB)
|
||||
cv.drawChessboardCorners(img, grid_size, image_points_cameras[c][f], True)
|
||||
if pattern_type.lower() != 'charuco':
|
||||
cv.drawChessboardCorners(img, grid_size, image_points_cameras[c][f], True)
|
||||
else:
|
||||
idx = image_points_cameras[c][f][:, 0] > 0
|
||||
cv.aruco.drawDetectedCornersCharuco(img, image_points_cameras[c][f][idx,None], np.arange(image_points_cameras[c][f].shape[0])[idx])
|
||||
plt.figure()
|
||||
plt.imshow(img)
|
||||
plt.show()
|
||||
@ -678,8 +946,8 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--json_file', type=str, default=None, help="json file with all data. Must have keys: 'object_points', 'image_points', 'image_sizes', 'is_fisheye'")
|
||||
parser.add_argument('--filenames', type=str, default=None, help='Txt files containg image lists, e.g., cam_1.txt,cam_2.txt,...,cam_N.txt for N cameras')
|
||||
parser.add_argument('--pattern_size', type=str, default=None, help='pattern size: width,height')
|
||||
parser.add_argument('--pattern_type', type=str, default=None, help='supported: checkeboard, circles, acircles')
|
||||
parser.add_argument('--fisheye', type=str, default=None, help='fisheye mask, e.g., 0,1,...')
|
||||
parser.add_argument('--pattern_type', type=str, default=None, help='supported: checkerboard, circles, acircles, charuco')
|
||||
parser.add_argument('--is_fisheye', type=str, default=None, help='is_ mask, e.g., 0,1,...')
|
||||
parser.add_argument('--pattern_distance', type=float, default=None, help='distance between object / pattern points')
|
||||
parser.add_argument('--find_intrinsics_in_python', required=False, action='store_true', help='calibrate intrinsics in Python sample instead of C++')
|
||||
parser.add_argument('--winsize', type=str, default='5,5', help='window size for corners detection: w,h')
|
||||
@ -690,8 +958,11 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--visualize', required=False, action='store_true', help='visualization flag. If set, only runs visualization but path_to_visualize must be provided')
|
||||
parser.add_argument('--resize_image_detection', required=False, action='store_true', help='If set, an image will be resized to speed-up corners detection')
|
||||
parser.add_argument('--intrinsics_dir', type=str, default='', help='Path to measured intrinsics')
|
||||
parser.add_argument('--gt_file', type=str, default=None, help="ground truth")
|
||||
parser.add_argument('--board_dict_path', type=str, default=None, help="path to parameters of board dictionary")
|
||||
|
||||
params, _ = parser.parse_known_args()
|
||||
print("params.board_dict_path:", params.board_dict_path)
|
||||
|
||||
if params.visualize:
|
||||
assert os.path.exists(params.path_to_visualize), f'Path to result file does not exist: {params.path_to_visualize}'
|
||||
@ -702,23 +973,26 @@ if __name__ == '__main__':
|
||||
cam_files = sorted(glob.glob('cam_*.txt'))
|
||||
params.filenames = ','.join(cam_files)
|
||||
print('Found camera filenames:', params.filenames)
|
||||
params.fisheye = ','.join('0' * len(cam_files))
|
||||
print('Fisheye parameters:', params.fisheye) # TODO: Calculate it automatically
|
||||
params.is_fisheye = ','.join('0' * len(cam_files))
|
||||
print('Fisheye parameters:', params.is_fisheye) # TODO: Calculate it automatically
|
||||
|
||||
if params.json_file is not None:
|
||||
output = calibrateFromJSON(params.json_file, params.find_intrinsics_in_python)
|
||||
cam_ids = [str(x) for x in range(len(output['Rs']))]
|
||||
output['cam_ids'] = cam_ids
|
||||
else:
|
||||
if (params.pattern_type is None and params.pattern_size is None and params.pattern_distance is None):
|
||||
print(params.pattern_size)
|
||||
if (params.pattern_type is None or params.pattern_size is None or params.pattern_distance is None):
|
||||
assert False and 'Either json file or all other parameters must be set'
|
||||
|
||||
# cam_N.txt --> cam_N --> N
|
||||
cam_ids = [os.path.splitext(f)[0].split('_')[-1] for f in params.filenames.split(',')]
|
||||
|
||||
output = calibrateFromImages(
|
||||
files_with_images=params.filenames.split(','),
|
||||
files_with_images=[x.strip() for x in params.filenames.split(',')],
|
||||
grid_size=[int(v) for v in params.pattern_size.split(',')],
|
||||
pattern_type=params.pattern_type,
|
||||
is_fisheye=[bool(int(v)) for v in params.fisheye.split(',')],
|
||||
is_fisheye=[bool(int(v)) for v in params.is_fisheye.split(',')],
|
||||
dist_m=params.pattern_distance,
|
||||
winsize=tuple([int(v) for v in params.winsize.split(',')]),
|
||||
points_json_file=params.points_json_file,
|
||||
@ -727,9 +1001,14 @@ if __name__ == '__main__':
|
||||
find_intrinsics_in_python=params.find_intrinsics_in_python,
|
||||
cam_ids=cam_ids,
|
||||
intrinsics_dir=params.intrinsics_dir,
|
||||
board_dict_path=params.board_dict_path,
|
||||
)
|
||||
output['cam_ids'] = cam_ids
|
||||
|
||||
# Evaluate the error
|
||||
if params.gt_file is not None:
|
||||
assert os.path.exists(params.gt_file), f'Path to gt file does not exist: {params.gt_file}'
|
||||
compareGT(params.gt_file, **output)
|
||||
visualizeResults(**output)
|
||||
|
||||
print('Saving:', params.path_to_save)
|
||||
|
Loading…
Reference in New Issue
Block a user