mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
Merge pull request #7220 from paroj:imgproc_doxy
This commit is contained in:
commit
e2de96289b
@ -2296,13 +2296,13 @@ The function converts a pair of maps for remap from one representation to anothe
|
||||
options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
|
||||
supported:
|
||||
|
||||
- \f$\texttt{(CV\_32FC1, CV\_32FC1)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}\f$. This is the
|
||||
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
|
||||
most frequently used conversion operation, in which the original floating-point maps (see remap )
|
||||
are converted to a more compact and much faster fixed-point representation. The first output array
|
||||
contains the rounded coordinates and the second array (created only when nninterpolation=false )
|
||||
contains indices in the interpolation tables.
|
||||
|
||||
- \f$\texttt{(CV\_32FC2)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}\f$. The same as above but
|
||||
- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
|
||||
the original maps are stored in one 2-channel matrix.
|
||||
|
||||
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
|
||||
@ -2352,7 +2352,7 @@ CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[]
|
||||
|
||||
The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
|
||||
|
||||
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map\_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
|
||||
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
|
||||
|
||||
where
|
||||
|
||||
@ -2382,7 +2382,7 @@ CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
|
||||
|
||||
The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
|
||||
|
||||
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map\_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
|
||||
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
|
||||
|
||||
where
|
||||
|
||||
@ -2953,20 +2953,23 @@ The function is similar to cv::undistort and cv::initUndistortRectifyMap but it
|
||||
sparse set of points instead of a raster image. Also the function performs a reverse transformation
|
||||
to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
|
||||
planar object, it does, up to a translation vector, if the proper R is specified.
|
||||
@code
|
||||
// (u,v) is the input point, (u', v') is the output point
|
||||
// camera_matrix=[fx 0 cx; 0 fy cy; 0 0 1]
|
||||
// P=[fx' 0 cx' tx; 0 fy' cy' ty; 0 0 1 tz]
|
||||
x" = (u - cx)/fx
|
||||
y" = (v - cy)/fy
|
||||
(x',y') = undistort(x",y",dist_coeffs)
|
||||
[X,Y,W]T = R*[x' y' 1]T
|
||||
x = X/W, y = Y/W
|
||||
// only performed if P=[fx' 0 cx' [tx]; 0 fy' cy' [ty]; 0 0 1 [tz]] is specified
|
||||
u' = x*fx' + cx'
|
||||
v' = y*fy' + cy',
|
||||
@endcode
|
||||
where cv::undistort is an approximate iterative algorithm that estimates the normalized original
|
||||
|
||||
For each observed point coordinate \f$(u, v)\f$ the function computes:
|
||||
\f[
|
||||
\begin{array}{l}
|
||||
x^{"} \leftarrow (u - c_x)/f_x \\
|
||||
y^{"} \leftarrow (v - c_y)/f_y \\
|
||||
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
|
||||
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
|
||||
x \leftarrow X/W \\
|
||||
y \leftarrow Y/W \\
|
||||
\text{only performed if P is specified:} \\
|
||||
u' \leftarrow x {f'}_x + {c'}_x \\
|
||||
v' \leftarrow y {f'}_y + {c'}_y
|
||||
\end{array}
|
||||
\f]
|
||||
|
||||
where *undistort* is an approximate iterative algorithm that estimates the normalized original
|
||||
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
|
||||
coordinates do not depend on the camera matrix).
|
||||
|
||||
@ -2981,7 +2984,7 @@ transformation. If matrix P is identity or omitted, dst will contain normalized
|
||||
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
|
||||
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
|
||||
cv::stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
|
||||
@param P New camera matrix (3x3) or new projection matrix (3x4). P1 or P2 computed by
|
||||
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
|
||||
cv::stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
|
||||
*/
|
||||
CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
|
||||
|
Loading…
Reference in New Issue
Block a user