diff --git a/modules/3d/test/test_fundam.cpp b/modules/3d/test/test_fundam.cpp index c0c379a045..279c6d7110 100644 --- a/modules/3d/test/test_fundam.cpp +++ b/modules/3d/test/test_fundam.cpp @@ -40,328 +40,7 @@ //M*/ #include "test_precomp.hpp" -#include "opencv2/core/core_c.h" -namespace cvtest { - -using namespace cv; - -static int cvTsRodrigues( const CvMat* src, CvMat* dst, CvMat* jacobian ) -{ - int depth; - int i; - float Jf[27]; - double J[27]; - CvMat _Jf, matJ = cvMat( 3, 9, CV_64F, J ); - - depth = CV_MAT_DEPTH(src->type); - - if( jacobian ) - { - CV_Assert( (jacobian->rows == 9 && jacobian->cols == 3) || - (jacobian->rows == 3 && jacobian->cols == 9) ); - } - - if( src->cols == 1 || src->rows == 1 ) - { - double r[3], theta; - CvMat _r = cvMat( src->rows, src->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(src->type)), r); - - CV_Assert( dst->rows == 3 && dst->cols == 3 ); - - cvConvert( src, &_r ); - - theta = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]); - if( theta < DBL_EPSILON ) - { - cvSetIdentity( dst ); - - if( jacobian ) - { - memset( J, 0, sizeof(J) ); - J[5] = J[15] = J[19] = 1; - J[7] = J[11] = J[21] = -1; - } - } - else - { - // omega = r/theta (~[w1, w2, w3]) - double itheta = 1./theta; - double w1 = r[0]*itheta, w2 = r[1]*itheta, w3 = r[2]*itheta; - double alpha = cos(theta); - double beta = sin(theta); - double gamma = 1 - alpha; - double omegav[] = - { - 0, -w3, w2, - w3, 0, -w1, - -w2, w1, 0 - }; - double A[] = - { - w1*w1, w1*w2, w1*w3, - w2*w1, w2*w2, w2*w3, - w3*w1, w3*w2, w3*w3 - }; - double R[9]; - CvMat _omegav = cvMat(3, 3, CV_64F, omegav); - CvMat matA = cvMat(3, 3, CV_64F, A); - CvMat matR = cvMat(3, 3, CV_64F, R); - - cvSetIdentity( &matR, cvRealScalar(alpha) ); - cvScaleAdd( &_omegav, cvRealScalar(beta), &matR, &matR ); - cvScaleAdd( &matA, cvRealScalar(gamma), &matR, &matR ); - cvConvert( &matR, dst ); - - if( jacobian ) - { - // m3 = [r, theta] - double dm3din[] = - { - 1, 0, 0, - 0, 1, 0, - 0, 0, 1, - w1, w2, w3 - }; - // m2 = [omega, theta] - double dm2dm3[] = - { - itheta, 0, 0, -w1*itheta, - 0, itheta, 0, -w2*itheta, - 0, 0, itheta, -w3*itheta, - 0, 0, 0, 1 - }; - double t0[9*4]; - double dm1dm2[21*4]; - double dRdm1[9*21]; - CvMat _dm3din = cvMat( 4, 3, CV_64FC1, dm3din ); - CvMat _dm2dm3 = cvMat( 4, 4, CV_64FC1, dm2dm3 ); - CvMat _dm1dm2 = cvMat( 21, 4, CV_64FC1, dm1dm2 ); - CvMat _dRdm1 = cvMat( 9, 21, CV_64FC1, dRdm1 ); - CvMat _dRdm1_part; - CvMat _t0 = cvMat( 9, 4, CV_64FC1, t0 ); - CvMat _t1 = cvMat( 9, 4, CV_64FC1, dRdm1 ); - - // m1 = [alpha, beta, gamma, omegav; A] - memset( dm1dm2, 0, sizeof(dm1dm2) ); - dm1dm2[3] = -beta; - dm1dm2[7] = alpha; - dm1dm2[11] = beta; - - // dm1dm2(4:12,1:3) = [0 0 0 0 0 1 0 -1 0; - // 0 0 -1 0 0 0 1 0 0; - // 0 1 0 -1 0 0 0 0 0]' - // ------------------- - // 0 0 0 0 0 0 0 0 0 - dm1dm2[12 + 6] = dm1dm2[12 + 20] = dm1dm2[12 + 25] = 1; - dm1dm2[12 + 9] = dm1dm2[12 + 14] = dm1dm2[12 + 28] = -1; - - double dm1dw[] = - { - 2*w1, w2, w3, w2, 0, 0, w3, 0, 0, - 0, w1, 0, w1, 2*w2, w3, 0, w3, 0, - 0, 0, w1, 0, 0, w2, w1, w2, 2*w3 - }; - - CvMat _dm1dw = cvMat( 3, 9, CV_64FC1, dm1dw ); - CvMat _dm1dm2_part; - - cvGetSubRect( &_dm1dm2, &_dm1dm2_part, cvRect(0,12,3,9) ); - cvTranspose( &_dm1dw, &_dm1dm2_part ); - - memset( dRdm1, 0, sizeof(dRdm1) ); - dRdm1[0*21] = dRdm1[4*21] = dRdm1[8*21] = 1; - - cvGetCol( &_dRdm1, &_dRdm1_part, 1 ); - cvTranspose( &_omegav, &_omegav ); - cvReshape( &_omegav, &_omegav, 1, 1 ); - cvTranspose( &_omegav, &_dRdm1_part ); - - cvGetCol( &_dRdm1, &_dRdm1_part, 2 ); - cvReshape( &matA, &matA, 1, 1 ); - cvTranspose( &matA, &_dRdm1_part ); - - cvGetSubRect( &_dRdm1, &_dRdm1_part, cvRect(3,0,9,9) ); - cvSetIdentity( &_dRdm1_part, cvScalarAll(beta) ); - - cvGetSubRect( &_dRdm1, &_dRdm1_part, cvRect(12,0,9,9) ); - cvSetIdentity( &_dRdm1_part, cvScalarAll(gamma) ); - - matJ = cvMat( 9, 3, CV_64FC1, J ); - - cvMatMul( &_dRdm1, &_dm1dm2, &_t0 ); - cvMatMul( &_t0, &_dm2dm3, &_t1 ); - cvMatMul( &_t1, &_dm3din, &matJ ); - - _t0 = cvMat( 3, 9, CV_64FC1, t0 ); - cvTranspose( &matJ, &_t0 ); - - for( i = 0; i < 3; i++ ) - { - _t1 = cvMat( 3, 3, CV_64FC1, t0 + i*9 ); - cvTranspose( &_t1, &_t1 ); - } - - cvTranspose( &_t0, &matJ ); - } - } - } - else if( src->cols == 3 && src->rows == 3 ) - { - double R[9], A[9], I[9], r[3], W[3], U[9], V[9]; - double tr, alpha, beta, theta; - CvMat matR = cvMat( 3, 3, CV_64F, R ); - CvMat matA = cvMat( 3, 3, CV_64F, A ); - CvMat matI = cvMat( 3, 3, CV_64F, I ); - CvMat _r = cvMat( dst->rows, dst->cols, CV_MAKETYPE(CV_64F, CV_MAT_CN(dst->type)), r ); - CvMat matW = cvMat( 1, 3, CV_64F, W ); - CvMat matU = cvMat( 3, 3, CV_64F, U ); - CvMat matV = cvMat( 3, 3, CV_64F, V ); - - cvConvert( src, &matR ); - cvSVD( &matR, &matW, &matU, &matV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); - cvGEMM( &matU, &matV, 1, 0, 0, &matR, CV_GEMM_A_T ); - - cvMulTransposed( &matR, &matA, 0 ); - cvSetIdentity( &matI ); - - if( cvNorm( &matA, &matI, NORM_INF ) > 1e-3 || - fabs( cvDet(&matR) - 1 ) > 1e-3 ) - return 0; - - tr = (cvTrace(&matR).val[0] - 1.)*0.5; - tr = tr > 1. ? 1. : tr < -1. ? -1. : tr; - theta = acos(tr); - alpha = cos(theta); - beta = sin(theta); - - if( beta >= 1e-5 ) - { - double dtheta_dtr = -1./sqrt(1 - tr*tr); - double vth = 1/(2*beta); - - // om1 = [R(3,2) - R(2,3), R(1,3) - R(3,1), R(2,1) - R(1,2)]' - double om1[] = { R[7] - R[5], R[2] - R[6], R[3] - R[1] }; - // om = om1*vth - // r = om*theta - double d3 = vth*theta; - - r[0] = om1[0]*d3; r[1] = om1[1]*d3; r[2] = om1[2]*d3; - cvConvert( &_r, dst ); - - if( jacobian ) - { - // var1 = [vth;theta] - // var = [om1;var1] = [om1;vth;theta] - double dvth_dtheta = -vth*alpha/beta; - double d1 = 0.5*dvth_dtheta*dtheta_dtr; - double d2 = 0.5*dtheta_dtr; - // dvar1/dR = dvar1/dtheta*dtheta/dR = [dvth/dtheta; 1] * dtheta/dtr * dtr/dR - double dvardR[5*9] = - { - 0, 0, 0, 0, 0, 1, 0, -1, 0, - 0, 0, -1, 0, 0, 0, 1, 0, 0, - 0, 1, 0, -1, 0, 0, 0, 0, 0, - d1, 0, 0, 0, d1, 0, 0, 0, d1, - d2, 0, 0, 0, d2, 0, 0, 0, d2 - }; - // var2 = [om;theta] - double dvar2dvar[] = - { - vth, 0, 0, om1[0], 0, - 0, vth, 0, om1[1], 0, - 0, 0, vth, om1[2], 0, - 0, 0, 0, 0, 1 - }; - double domegadvar2[] = - { - theta, 0, 0, om1[0]*vth, - 0, theta, 0, om1[1]*vth, - 0, 0, theta, om1[2]*vth - }; - - CvMat _dvardR = cvMat( 5, 9, CV_64FC1, dvardR ); - CvMat _dvar2dvar = cvMat( 4, 5, CV_64FC1, dvar2dvar ); - CvMat _domegadvar2 = cvMat( 3, 4, CV_64FC1, domegadvar2 ); - double t0[3*5]; - CvMat _t0 = cvMat( 3, 5, CV_64FC1, t0 ); - - cvMatMul( &_domegadvar2, &_dvar2dvar, &_t0 ); - cvMatMul( &_t0, &_dvardR, &matJ ); - } - } - else if( tr > 0 ) - { - cvZero( dst ); - if( jacobian ) - { - memset( J, 0, sizeof(J) ); - J[5] = J[15] = J[19] = 0.5; - J[7] = J[11] = J[21] = -0.5; - } - } - else - { - r[0] = theta*sqrt((R[0] + 1)*0.5); - r[1] = theta*sqrt((R[4] + 1)*0.5)*(R[1] >= 0 ? 1 : -1); - r[2] = theta*sqrt((R[8] + 1)*0.5)*(R[2] >= 0 ? 1 : -1); - cvConvert( &_r, dst ); - - if( jacobian ) - memset( J, 0, sizeof(J) ); - } - - if( jacobian ) - { - for( i = 0; i < 3; i++ ) - { - CvMat t = cvMat( 3, 3, CV_64F, J + i*9 ); - cvTranspose( &t, &t ); - } - } - } - else - { - CV_Assert(0); - return 0; - } - - if( jacobian ) - { - if( depth == CV_32F ) - { - if( jacobian->rows == matJ.rows ) - cvConvert( &matJ, jacobian ); - else - { - _Jf = cvMat( matJ.rows, matJ.cols, CV_32FC1, Jf ); - cvConvert( &matJ, &_Jf ); - cvTranspose( &_Jf, jacobian ); - } - } - else if( jacobian->rows == matJ.rows ) - cvCopy( &matJ, jacobian ); - else - cvTranspose( &matJ, jacobian ); - } - - return 1; -} - - -/*extern*/ void Rodrigues(const Mat& src, Mat& dst, Mat* jac) -{ - if(src.rows == 1 || src.cols == 1) - dst.create(3, 3, src.depth()); - else - dst.create(3, 1, src.depth()); - CvMat _src = cvMat(src), _dst = cvMat(dst), _jac; - if( jac ) - _jac = cvMat(*jac); - cvTsRodrigues(&_src, &_dst, jac ? &_jac : 0); -} - -} // namespace namespace opencv_test { static void test_convertHomogeneous( const Mat& _src, Mat& _dst ) @@ -472,936 +151,6 @@ static void test_convertHomogeneous( const Mat& _src, Mat& _dst ) namespace { -void -test_projectPoints( const Mat& _3d, const Mat& Rt, const Mat& A, Mat& _2d, RNG* rng, double sigma ) -{ - CV_Assert( _3d.isContinuous() ); - - double p[12]; - Mat P( 3, 4, CV_64F, p ); - gemm(A, Rt, 1, Mat(), 0, P); - - int i, count = _3d.cols; - - Mat noise; - if( rng ) - { - if( sigma == 0 ) - rng = 0; - else - { - noise.create( 1, _3d.cols, CV_64FC2 ); - rng->fill(noise, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma) ); - } - } - - Mat temp( 1, count, CV_64FC3 ); - - for( i = 0; i < count; i++ ) - { - const double* M = _3d.ptr() + i*3; - double* m = temp.ptr() + i*3; - double X = M[0], Y = M[1], Z = M[2]; - double u = p[0]*X + p[1]*Y + p[2]*Z + p[3]; - double v = p[4]*X + p[5]*Y + p[6]*Z + p[7]; - double s = p[8]*X + p[9]*Y + p[10]*Z + p[11]; - - if( !noise.empty() ) - { - u += noise.at(i).x*s; - v += noise.at(i).y*s; - } - - m[0] = u; - m[1] = v; - m[2] = s; - } - - test_convertHomogeneous( temp, _2d ); -} - - -/********************************** Rodrigues transform ********************************/ - -class CV_RodriguesTest : public cvtest::ArrayTest -{ -public: - CV_RodriguesTest(); - -protected: - int read_params( const cv::FileStorage& fs ); - void fill_array( int test_case_idx, int i, int j, Mat& arr ); - int prepare_test_case( int test_case_idx ); - void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); - double get_success_error_level( int test_case_idx, int i, int j ); - void run_func(); - void prepare_to_validation( int ); - - bool calc_jacobians; - bool test_cpp; -}; - - -CV_RodriguesTest::CV_RodriguesTest() -{ - test_array[INPUT].push_back(NULL); // rotation vector - test_array[OUTPUT].push_back(NULL); // rotation matrix - test_array[OUTPUT].push_back(NULL); // jacobian (J) - test_array[OUTPUT].push_back(NULL); // rotation vector (backward transform result) - test_array[OUTPUT].push_back(NULL); // inverse transform jacobian (J1) - test_array[OUTPUT].push_back(NULL); // J*J1 (or J1*J) == I(3x3) - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - - element_wise_relative_error = false; - calc_jacobians = false; - - test_cpp = false; -} - - -int CV_RodriguesTest::read_params( const cv::FileStorage& fs ) -{ - int code = cvtest::ArrayTest::read_params( fs ); - return code; -} - - -void CV_RodriguesTest::get_test_array_types_and_sizes( - int /*test_case_idx*/, vector >& sizes, vector >& types ) -{ - RNG& rng = ts->get_rng(); - int depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F; - int i, code; - - code = cvtest::randInt(rng) % 3; - types[INPUT][0] = CV_MAKETYPE(depth, 1); - - if( code == 0 ) - { - sizes[INPUT][0] = cvSize(1,1); - types[INPUT][0] = CV_MAKETYPE(depth, 3); - } - else if( code == 1 ) - sizes[INPUT][0] = cvSize(3,1); - else - sizes[INPUT][0] = cvSize(1,3); - - sizes[OUTPUT][0] = cvSize(3, 3); - types[OUTPUT][0] = CV_MAKETYPE(depth, 1); - - types[OUTPUT][1] = CV_MAKETYPE(depth, 1); - - if( cvtest::randInt(rng) % 2 ) - sizes[OUTPUT][1] = cvSize(3,9); - else - sizes[OUTPUT][1] = cvSize(9,3); - - types[OUTPUT][2] = types[INPUT][0]; - sizes[OUTPUT][2] = sizes[INPUT][0]; - - types[OUTPUT][3] = types[OUTPUT][1]; - sizes[OUTPUT][3] = cvSize(sizes[OUTPUT][1].height, sizes[OUTPUT][1].width); - - types[OUTPUT][4] = types[OUTPUT][1]; - sizes[OUTPUT][4] = cvSize(3,3); - - calc_jacobians = cvtest::randInt(rng) % 3 != 0; - if( !calc_jacobians ) - sizes[OUTPUT][1] = sizes[OUTPUT][3] = sizes[OUTPUT][4] = cvSize(0,0); - - for( i = 0; i < 5; i++ ) - { - types[REF_OUTPUT][i] = types[OUTPUT][i]; - sizes[REF_OUTPUT][i] = sizes[OUTPUT][i]; - } - test_cpp = (cvtest::randInt(rng) & 256) == 0; -} - - -double CV_RodriguesTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int j ) -{ - return j == 4 ? 1e-2 : 1e-2; -} - - -void CV_RodriguesTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) -{ - if( i == INPUT && j == 0 ) - { - double r[3], theta0, theta1, f; - Mat _r( arr.rows, arr.cols, CV_MAKETYPE(CV_64F,arr.channels()), r ); - RNG& rng = ts->get_rng(); - - r[0] = cvtest::randReal(rng)*CV_PI*2; - r[1] = cvtest::randReal(rng)*CV_PI*2; - r[2] = cvtest::randReal(rng)*CV_PI*2; - - theta0 = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]); - theta1 = fmod(theta0, CV_PI*2); - - if( theta1 > CV_PI ) - theta1 = -(CV_PI*2 - theta1); - - f = theta1/(theta0 ? theta0 : 1); - r[0] *= f; - r[1] *= f; - r[2] *= f; - - cvtest::convert( _r, arr, arr.type() ); - } - else - cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); -} - - -int CV_RodriguesTest::prepare_test_case( int test_case_idx ) -{ - int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); - return code; -} - - -void CV_RodriguesTest::run_func() -{ - cv::Mat v = test_mat[INPUT][0], M = test_mat[OUTPUT][0], v2 = test_mat[OUTPUT][2]; - cv::Mat M0 = M, v2_0 = v2; - if( !calc_jacobians ) - { - cv::Rodrigues(v, M); - cv::Rodrigues(M, v2); - } - else - { - cv::Mat J1 = test_mat[OUTPUT][1], J2 = test_mat[OUTPUT][3]; - cv::Mat J1_0 = J1, J2_0 = J2; - cv::Rodrigues(v, M, J1); - cv::Rodrigues(M, v2, J2); - if( J1.data != J1_0.data ) - { - if( J1.size() != J1_0.size() ) - J1 = J1.t(); - J1.convertTo(J1_0, J1_0.type()); - } - if( J2.data != J2_0.data ) - { - if( J2.size() != J2_0.size() ) - J2 = J2.t(); - J2.convertTo(J2_0, J2_0.type()); - } - } - if( M.data != M0.data ) - M.reshape(M0.channels(), M0.rows).convertTo(M0, M0.type()); - if( v2.data != v2_0.data ) - v2.reshape(v2_0.channels(), v2_0.rows).convertTo(v2_0, v2_0.type()); -} - - -void CV_RodriguesTest::prepare_to_validation( int /*test_case_idx*/ ) -{ - const Mat& vec = test_mat[INPUT][0]; - Mat& m = test_mat[REF_OUTPUT][0]; - Mat& vec2 = test_mat[REF_OUTPUT][2]; - Mat* v2m_jac = 0, *m2v_jac = 0; - double theta0, theta1; - - if( calc_jacobians ) - { - v2m_jac = &test_mat[REF_OUTPUT][1]; - m2v_jac = &test_mat[REF_OUTPUT][3]; - } - - - cvtest::Rodrigues( vec, m, v2m_jac ); - cvtest::Rodrigues( m, vec2, m2v_jac ); - cvtest::copy( vec, vec2 ); - - theta0 = cvtest::norm( vec2, NORM_L2 ); - theta1 = fmod( theta0, CV_PI*2 ); - - if( theta1 > CV_PI ) - theta1 = -(CV_PI*2 - theta1); - vec2 *= theta1/(theta0 ? theta0 : 1); - - if( calc_jacobians ) - { - //cvInvert( v2m_jac, m2v_jac, CV_SVD ); - double nrm = cvtest::norm(test_mat[REF_OUTPUT][3], NORM_INF); - if( FLT_EPSILON < nrm && nrm < 1000 ) - { - gemm( test_mat[OUTPUT][1], test_mat[OUTPUT][3], - 1, Mat(), 0, test_mat[OUTPUT][4], - v2m_jac->rows == 3 ? 0 : CV_GEMM_A_T + CV_GEMM_B_T ); - } - else - { - setIdentity(test_mat[OUTPUT][4], Scalar::all(1.)); - cvtest::copy( test_mat[REF_OUTPUT][2], test_mat[OUTPUT][2] ); - } - setIdentity(test_mat[REF_OUTPUT][4], Scalar::all(1.)); - } -} - - -/********************************** fundamental matrix *********************************/ - -class CV_FundamentalMatTest : public cvtest::ArrayTest -{ -public: - CV_FundamentalMatTest(); - -protected: - int read_params( const cv::FileStorage& fs ); - void fill_array( int test_case_idx, int i, int j, Mat& arr ); - int prepare_test_case( int test_case_idx ); - void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); - double get_success_error_level( int test_case_idx, int i, int j ); - void run_func(); - void prepare_to_validation( int ); - - int method; - int img_size; - int cube_size; - int dims; - int f_result; - double min_f, max_f; - double sigma; - bool test_cpp; -}; - - -CV_FundamentalMatTest::CV_FundamentalMatTest() -{ - // input arrays: - // 0, 1 - arrays of 2d points that are passed to %func%. - // Can have different data type, layout, be stored in homogeneous coordinates or not. - // 2 - array of 3d points that are projected to both view planes - // 3 - [R|t] matrix for the second view plane (for the first one it is [I|0] - // 4, 5 - intrinsic matrices - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[OUTPUT].push_back(NULL); - test_array[OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - - element_wise_relative_error = false; - - method = 0; - img_size = 10; - cube_size = 10; - dims = 0; - min_f = 1; - max_f = 3; - sigma = 0;//0.1; - f_result = 0; - - test_cpp = false; -} - - -int CV_FundamentalMatTest::read_params( const cv::FileStorage& fs ) -{ - int code = cvtest::ArrayTest::read_params( fs ); - return code; -} - - -void CV_FundamentalMatTest::get_test_array_types_and_sizes( int /*test_case_idx*/, - vector >& sizes, vector >& types ) -{ - RNG& rng = ts->get_rng(); - int pt_depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F; - double pt_count_exp = cvtest::randReal(rng)*6 + 1; - int pt_count = cvRound(exp(pt_count_exp)); - - dims = cvtest::randInt(rng) % 2 + 2; - method = 1 << (cvtest::randInt(rng) % 4); - - if( method == FM_7POINT ) - pt_count = 7; - else - { - pt_count = MAX( pt_count, 8 + (method == FM_8POINT) ); - if( pt_count >= 8 && cvtest::randInt(rng) % 2 ) - method |= FM_8POINT; - } - - types[INPUT][0] = CV_MAKETYPE(pt_depth, 1); - - sizes[INPUT][0] = cvSize(dims, pt_count); - if( cvtest::randInt(rng) % 2 ) - { - types[INPUT][0] = CV_MAKETYPE(pt_depth, dims); - if( cvtest::randInt(rng) % 2 ) - sizes[INPUT][0] = cvSize(pt_count, 1); - else - sizes[INPUT][0] = cvSize(1, pt_count); - } - - sizes[INPUT][1] = sizes[INPUT][0]; - types[INPUT][1] = types[INPUT][0]; - - sizes[INPUT][2] = cvSize(pt_count, 1 ); - types[INPUT][2] = CV_64FC3; - - sizes[INPUT][3] = cvSize(4,3); - types[INPUT][3] = CV_64FC1; - - sizes[INPUT][4] = sizes[INPUT][5] = cvSize(3,3); - types[INPUT][4] = types[INPUT][5] = CV_MAKETYPE(CV_64F, 1); - - sizes[TEMP][0] = cvSize(3,3); - types[TEMP][0] = CV_64FC1; - sizes[TEMP][1] = cvSize(pt_count,1); - types[TEMP][1] = CV_8UC1; - - sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,1); - types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; - sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(pt_count,1); - types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_8UC1; - - test_cpp = (cvtest::randInt(rng) & 256) == 0; -} - - -double CV_FundamentalMatTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) -{ - return 1e-2; -} - - -void CV_FundamentalMatTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) -{ - double t[12]={0}; - RNG& rng = ts->get_rng(); - - if( i != INPUT ) - { - cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); - return; - } - - switch( j ) - { - case 0: - case 1: - return; // fill them later in prepare_test_case - case 2: - { - double* p = arr.ptr(); - for( i = 0; i < arr.cols*3; i += 3 ) - { - p[i] = cvtest::randReal(rng)*cube_size; - p[i+1] = cvtest::randReal(rng)*cube_size; - p[i+2] = cvtest::randReal(rng)*cube_size + cube_size; - } - } - break; - case 3: - { - double r[3]; - Mat rot_vec( 3, 1, CV_64F, r ); - Mat rot_mat( 3, 3, CV_64F, t, 4*sizeof(t[0]) ); - r[0] = cvtest::randReal(rng)*CV_PI*2; - r[1] = cvtest::randReal(rng)*CV_PI*2; - r[2] = cvtest::randReal(rng)*CV_PI*2; - - cvtest::Rodrigues( rot_vec, rot_mat ); - t[3] = cvtest::randReal(rng)*cube_size; - t[7] = cvtest::randReal(rng)*cube_size; - t[11] = cvtest::randReal(rng)*cube_size; - Mat( 3, 4, CV_64F, t ).convertTo(arr, arr.type()); - } - break; - case 4: - case 5: - t[0] = t[4] = cvtest::randReal(rng)*(max_f - min_f) + min_f; - t[2] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[0]; - t[5] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[4]; - t[8] = 1.; - Mat( 3, 3, CV_64F, t ).convertTo( arr, arr.type() ); - break; - } -} - - -int CV_FundamentalMatTest::prepare_test_case( int test_case_idx ) -{ - int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); - if( code > 0 ) - { - const Mat& _3d = test_mat[INPUT][2]; - RNG& rng = ts->get_rng(); - double Idata[] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0 }; - Mat I( 3, 4, CV_64F, Idata ); - int k; - - for( k = 0; k < 2; k++ ) - { - const Mat& Rt = k == 0 ? I : test_mat[INPUT][3]; - const Mat& A = test_mat[INPUT][k == 0 ? 4 : 5]; - Mat& _2d = test_mat[INPUT][k]; - - test_projectPoints( _3d, Rt, A, _2d, &rng, sigma ); - } - } - - return code; -} - -void CV_FundamentalMatTest::run_func() -{ - // cvFindFundamentalMat calls cv::findFundamentalMat - cv::Mat _input0 = test_mat[INPUT][0], _input1 = test_mat[INPUT][1]; - cv::Mat& F = test_mat[TEMP][0], &mask = test_mat[TEMP][1]; - F = cv::findFundamentalMat( _input0, _input1, method, MAX(sigma*3, 0.01), 0, mask ); - f_result = !F.empty(); -} - -void CV_FundamentalMatTest::prepare_to_validation( int test_case_idx ) -{ - const Mat& Rt = test_mat[INPUT][3]; - const Mat& A1 = test_mat[INPUT][4]; - const Mat& A2 = test_mat[INPUT][5]; - double f0[9], f[9]; - Mat F0(3, 3, CV_64FC1, f0), F(3, 3, CV_64F, f); - - Mat invA1, invA2, R=Rt.colRange(0, 3), T; - - cv::invert(A1, invA1, CV_SVD); - cv::invert(A2, invA2, CV_SVD); - - double tx = Rt.at(0, 3); - double ty = Rt.at(1, 3); - double tz = Rt.at(2, 3); - - double _t_x[] = { 0, -tz, ty, tz, 0, -tx, -ty, tx, 0 }; - - // F = (A2^-T)*[t]_x*R*(A1^-1) - cv::gemm( invA2, Mat( 3, 3, CV_64F, _t_x ), 1, Mat(), 0, T, CV_GEMM_A_T ); - cv::gemm( R, invA1, 1, Mat(), 0, invA2 ); - cv::gemm( T, invA2, 1, Mat(), 0, F0 ); - F0 *= 1./f0[8]; - - uchar* status = test_mat[TEMP][1].ptr(); - double err_level = get_success_error_level( test_case_idx, OUTPUT, 1 ); - uchar* mtfm1 = test_mat[REF_OUTPUT][1].ptr(); - uchar* mtfm2 = test_mat[OUTPUT][1].ptr(); - double* f_prop1 = test_mat[REF_OUTPUT][0].ptr(); - double* f_prop2 = test_mat[OUTPUT][0].ptr(); - - int i, pt_count = test_mat[INPUT][2].cols; - Mat p1( 1, pt_count, CV_64FC2 ); - Mat p2( 1, pt_count, CV_64FC2 ); - - test_convertHomogeneous( test_mat[INPUT][0], p1 ); - test_convertHomogeneous( test_mat[INPUT][1], p2 ); - - Mat Fsrc = test_mat[TEMP][0]; - if( Fsrc.rows > 3 ) - Fsrc = Fsrc.rowRange(0, 3); - - cvtest::convert(Fsrc, F, F.type()); - - if( method <= FM_8POINT ) - memset( status, 1, pt_count ); - - for( i = 0; i < pt_count; i++ ) - { - double x1 = p1.at(i).x; - double y1 = p1.at(i).y; - double x2 = p2.at(i).x; - double y2 = p2.at(i).y; - double n1 = 1./sqrt(x1*x1 + y1*y1 + 1); - double n2 = 1./sqrt(x2*x2 + y2*y2 + 1); - double t0 = fabs(f0[0]*x2*x1 + f0[1]*x2*y1 + f0[2]*x2 + - f0[3]*y2*x1 + f0[4]*y2*y1 + f0[5]*y2 + - f0[6]*x1 + f0[7]*y1 + f0[8])*n1*n2; - double t = fabs(f[0]*x2*x1 + f[1]*x2*y1 + f[2]*x2 + - f[3]*y2*x1 + f[4]*y2*y1 + f[5]*y2 + - f[6]*x1 + f[7]*y1 + f[8])*n1*n2; - mtfm1[i] = 1; - mtfm2[i] = !status[i] || t0 > err_level || t < err_level; - } - - f_prop1[0] = 1; - f_prop1[1] = 1; - f_prop1[2] = 0; - - f_prop2[0] = f_result != 0; - f_prop2[1] = f[8]; - f_prop2[2] = cv::determinant( F ); -} -/******************************* find essential matrix ***********************************/ -class CV_EssentialMatTest : public cvtest::ArrayTest -{ -public: - CV_EssentialMatTest(); - -protected: - int read_params( const cv::FileStorage& fs ); - void fill_array( int test_case_idx, int i, int j, Mat& arr ); - int prepare_test_case( int test_case_idx ); - void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); - double get_success_error_level( int test_case_idx, int i, int j ); - void run_func(); - void prepare_to_validation( int ); - -#if 0 - double sampson_error(const double* f, double x1, double y1, double x2, double y2); -#endif - - int method; - int img_size; - int cube_size; - int dims; - double min_f, max_f; - double sigma; -}; - - -CV_EssentialMatTest::CV_EssentialMatTest() -{ - // input arrays: - // 0, 1 - arrays of 2d points that are passed to %func%. - // Can have different data type, layout, be stored in homogeneous coordinates or not. - // 2 - array of 3d points that are projected to both view planes - // 3 - [R|t] matrix for the second view plane (for the first one it is [I|0] - // 4 - intrinsic matrix for both camera - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[INPUT].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[TEMP].push_back(NULL); - test_array[OUTPUT].push_back(NULL); // Essential Matrix singularity - test_array[OUTPUT].push_back(NULL); // Inliers mask - test_array[OUTPUT].push_back(NULL); // Translation error - test_array[OUTPUT].push_back(NULL); // Positive depth count - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - - element_wise_relative_error = false; - - method = 0; - img_size = 10; - cube_size = 10; - dims = 0; - min_f = 1; - max_f = 3; - sigma = 0; -} - - -int CV_EssentialMatTest::read_params( const cv::FileStorage& fs ) -{ - int code = cvtest::ArrayTest::read_params( fs ); - return code; -} - - -void CV_EssentialMatTest::get_test_array_types_and_sizes( int /*test_case_idx*/, - vector >& sizes, vector >& types ) -{ - RNG& rng = ts->get_rng(); - int pt_depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F; - double pt_count_exp = cvtest::randReal(rng)*6 + 1; - int pt_count = MAX(5, cvRound(exp(pt_count_exp))); - - dims = cvtest::randInt(rng) % 2 + 2; - dims = 2; - method = LMEDS << (cvtest::randInt(rng) % 2); - - types[INPUT][0] = CV_MAKETYPE(pt_depth, 1); - - sizes[INPUT][0] = cvSize(dims, pt_count); - if( cvtest::randInt(rng) % 2 ) - { - types[INPUT][0] = CV_MAKETYPE(pt_depth, dims); - if( cvtest::randInt(rng) % 2 ) - sizes[INPUT][0] = cvSize(pt_count, 1); - else - sizes[INPUT][0] = cvSize(1, pt_count); - } - - sizes[INPUT][1] = sizes[INPUT][0]; - types[INPUT][1] = types[INPUT][0]; - - sizes[INPUT][2] = cvSize(pt_count, 1 ); - types[INPUT][2] = CV_64FC3; - - sizes[INPUT][3] = cvSize(4,3); - types[INPUT][3] = CV_64FC1; - - sizes[INPUT][4] = cvSize(3,3); - types[INPUT][4] = CV_MAKETYPE(CV_64F, 1); - - sizes[TEMP][0] = cvSize(3,3); - types[TEMP][0] = CV_64FC1; - sizes[TEMP][1] = cvSize(pt_count,1); - types[TEMP][1] = CV_8UC1; - sizes[TEMP][2] = cvSize(3,3); - types[TEMP][2] = CV_64FC1; - sizes[TEMP][3] = cvSize(3, 1); - types[TEMP][3] = CV_64FC1; - sizes[TEMP][4] = cvSize(pt_count,1); - types[TEMP][4] = CV_8UC1; - - sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,1); - types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; - sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(pt_count,1); - types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_8UC1; - sizes[OUTPUT][2] = sizes[REF_OUTPUT][2] = cvSize(1,1); - types[OUTPUT][2] = types[REF_OUTPUT][2] = CV_64FC1; - sizes[OUTPUT][3] = sizes[REF_OUTPUT][3] = cvSize(1,1); - types[OUTPUT][3] = types[REF_OUTPUT][3] = CV_8UC1; - -} - - -double CV_EssentialMatTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) -{ - return 1e-2; -} - - -void CV_EssentialMatTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) -{ - double t[12]={0}; - RNG& rng = ts->get_rng(); - - if( i != INPUT ) - { - cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); - return; - } - - switch( j ) - { - case 0: - case 1: - return; // fill them later in prepare_test_case - case 2: - { - double* p = arr.ptr(); - for( i = 0; i < arr.cols*3; i += 3 ) - { - p[i] = cvtest::randReal(rng)*cube_size; - p[i+1] = cvtest::randReal(rng)*cube_size; - p[i+2] = cvtest::randReal(rng)*cube_size + cube_size; - } - } - break; - case 3: - { - double r[3]; - Mat rot_vec( 3, 1, CV_64F, r ); - Mat rot_mat( 3, 3, CV_64F, t, 4*sizeof(t[0]) ); - r[0] = cvtest::randReal(rng)*CV_PI*2; - r[1] = cvtest::randReal(rng)*CV_PI*2; - r[2] = cvtest::randReal(rng)*CV_PI*2; - - cvtest::Rodrigues( rot_vec, rot_mat ); - t[3] = cvtest::randReal(rng)*cube_size; - t[7] = cvtest::randReal(rng)*cube_size; - t[11] = cvtest::randReal(rng)*cube_size; - Mat( 3, 4, CV_64F, t ).convertTo(arr, arr.type()); - } - break; - case 4: - t[0] = t[4] = cvtest::randReal(rng)*(max_f - min_f) + min_f; - t[2] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[0]; - t[5] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[4]; - t[8] = 1.; - Mat( 3, 3, CV_64F, t ).convertTo( arr, arr.type() ); - break; - } -} - - -int CV_EssentialMatTest::prepare_test_case( int test_case_idx ) -{ - int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); - if( code > 0 ) - { - const Mat& _3d = test_mat[INPUT][2]; - RNG& rng = ts->get_rng(); - double Idata[] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0 }; - Mat I( 3, 4, CV_64F, Idata ); - int k; - - for( k = 0; k < 2; k++ ) - { - const Mat& Rt = k == 0 ? I : test_mat[INPUT][3]; - const Mat& A = test_mat[INPUT][4]; - Mat& _2d = test_mat[INPUT][k]; - - test_projectPoints( _3d, Rt, A, _2d, &rng, sigma ); - } - } - - return code; -} - - -void CV_EssentialMatTest::run_func() -{ - Mat _input0(test_mat[INPUT][0]), _input1(test_mat[INPUT][1]); - Mat K(test_mat[INPUT][4]); - double focal(K.at(0, 0)); - cv::Point2d pp(K.at(0, 2), K.at(1, 2)); - - RNG& rng = ts->get_rng(); - Mat E, mask1(test_mat[TEMP][1]); - E = cv::findEssentialMat( _input0, _input1, focal, pp, method, 0.99, MAX(sigma*3, 0.0001), 1000/*maxIters*/, mask1 ); - if (E.rows > 3) - { - int count = E.rows / 3; - int row = (cvtest::randInt(rng) % count) * 3; - E = E.rowRange(row, row + 3) * 1.0; - } - - E.copyTo(test_mat[TEMP][0]); - - Mat R, t, mask2; - recoverPose( E, _input0, _input1, R, t, focal, pp, mask2 ); - R.copyTo(test_mat[TEMP][2]); - t.copyTo(test_mat[TEMP][3]); - mask2.copyTo(test_mat[TEMP][4]); -} - -#if 0 -double CV_EssentialMatTest::sampson_error(const double * f, double x1, double y1, double x2, double y2) -{ - double Fx1[3] = { - f[0] * x1 + f[1] * y1 + f[2], - f[3] * x1 + f[4] * y1 + f[5], - f[6] * x1 + f[7] * y1 + f[8] - }; - double Ftx2[3] = { - f[0] * x2 + f[3] * y2 + f[6], - f[1] * x2 + f[4] * y2 + f[7], - f[2] * x2 + f[5] * y2 + f[8] - }; - double x2tFx1 = Fx1[0] * x2 + Fx1[1] * y2 + Fx1[2]; - - double error = x2tFx1 * x2tFx1 / (Fx1[0] * Fx1[0] + Fx1[1] * Fx1[1] + Ftx2[0] * Ftx2[0] + Ftx2[1] * Ftx2[1]); - error = sqrt(error); - return error; -} -#endif - -void CV_EssentialMatTest::prepare_to_validation( int test_case_idx ) -{ - const Mat& Rt0 = test_mat[INPUT][3]; - const Mat& A = test_mat[INPUT][4]; - double f0[9], f[9], e[9]; - Mat F0(3, 3, CV_64FC1, f0), F(3, 3, CV_64F, f); - Mat E(3, 3, CV_64F, e); - - Mat invA, R=Rt0.colRange(0, 3), T1, T2; - - cv::invert(A, invA, CV_SVD); - - double tx = Rt0.at(0, 3); - double ty = Rt0.at(1, 3); - double tz = Rt0.at(2, 3); - - double _t_x[] = { 0, -tz, ty, tz, 0, -tx, -ty, tx, 0 }; - - // F = (A2^-T)*[t]_x*R*(A1^-1) - cv::gemm( invA, Mat( 3, 3, CV_64F, _t_x ), 1, Mat(), 0, T1, CV_GEMM_A_T ); - cv::gemm( R, invA, 1, Mat(), 0, T2 ); - cv::gemm( T1, T2, 1, Mat(), 0, F0 ); - F0 *= 1./f0[8]; - - uchar* status = test_mat[TEMP][1].ptr(); - double err_level = get_success_error_level( test_case_idx, OUTPUT, 1 ); - uchar* mtfm1 = test_mat[REF_OUTPUT][1].ptr(); - uchar* mtfm2 = test_mat[OUTPUT][1].ptr(); - double* e_prop1 = test_mat[REF_OUTPUT][0].ptr(); - double* e_prop2 = test_mat[OUTPUT][0].ptr(); - Mat E_prop2 = Mat(3, 1, CV_64F, e_prop2); - - int i, pt_count = test_mat[INPUT][2].cols; - Mat p1( 1, pt_count, CV_64FC2 ); - Mat p2( 1, pt_count, CV_64FC2 ); - - test_convertHomogeneous( test_mat[INPUT][0], p1 ); - test_convertHomogeneous( test_mat[INPUT][1], p2 ); - - cvtest::convert(test_mat[TEMP][0], E, E.type()); - cv::gemm( invA, E, 1, Mat(), 0, T1, CV_GEMM_A_T ); - cv::gemm( T1, invA, 1, Mat(), 0, F ); - - for( i = 0; i < pt_count; i++ ) - { - double x1 = p1.at(i).x; - double y1 = p1.at(i).y; - double x2 = p2.at(i).x; - double y2 = p2.at(i).y; -// double t0 = sampson_error(f0, x1, y1, x2, y2); -// double t = sampson_error(f, x1, y1, x2, y2); - double n1 = 1./sqrt(x1*x1 + y1*y1 + 1); - double n2 = 1./sqrt(x2*x2 + y2*y2 + 1); - double t0 = fabs(f0[0]*x2*x1 + f0[1]*x2*y1 + f0[2]*x2 + - f0[3]*y2*x1 + f0[4]*y2*y1 + f0[5]*y2 + - f0[6]*x1 + f0[7]*y1 + f0[8])*n1*n2; - double t = fabs(f[0]*x2*x1 + f[1]*x2*y1 + f[2]*x2 + - f[3]*y2*x1 + f[4]*y2*y1 + f[5]*y2 + - f[6]*x1 + f[7]*y1 + f[8])*n1*n2; - mtfm1[i] = 1; - mtfm2[i] = !status[i] || t0 > err_level || t < err_level; - } - - e_prop1[0] = sqrt(0.5); - e_prop1[1] = sqrt(0.5); - e_prop1[2] = 0; - - e_prop2[0] = 0; - e_prop2[1] = 0; - e_prop2[2] = 0; - SVD::compute(E, E_prop2); - - - - double* pose_prop1 = test_mat[REF_OUTPUT][2].ptr(); - double* pose_prop2 = test_mat[OUTPUT][2].ptr(); - double terr1 = cvtest::norm(Rt0.col(3) / cvtest::norm(Rt0.col(3), NORM_L2) + test_mat[TEMP][3], NORM_L2); - double terr2 = cvtest::norm(Rt0.col(3) / cvtest::norm(Rt0.col(3), NORM_L2) - test_mat[TEMP][3], NORM_L2); - Mat rvec(3, 1, CV_32F); - cvtest::Rodrigues(Rt0.colRange(0, 3), rvec); - pose_prop1[0] = 0; - // No check for CV_LMeDS on translation. Since it - // involves with some degraded problem, when data is exact inliers. - pose_prop2[0] = method == LMEDS || pt_count == 5 ? 0 : MIN(terr1, terr2); - - -// int inliers_count = countNonZero(test_mat[TEMP][1]); -// int good_count = countNonZero(test_mat[TEMP][4]); - test_mat[OUTPUT][3] = true; //good_count >= inliers_count / 2; - test_mat[REF_OUTPUT][3] = true; - - -} - - /********************************** convert homogeneous *********************************/ class CV_ConvertHomogeneousTest : public cvtest::ArrayTest @@ -1460,18 +209,18 @@ void CV_ConvertHomogeneousTest::get_test_array_types_and_sizes( int /*test_case_ types[INPUT][0] = CV_MAKETYPE(pt_depth1, 1); - sizes[INPUT][0] = cvSize(dims1, pt_count); + sizes[INPUT][0] = Size(dims1, pt_count); if( cvtest::randInt(rng) % 2 ) { types[INPUT][0] = CV_MAKETYPE(pt_depth1, dims1); if( cvtest::randInt(rng) % 2 ) - sizes[INPUT][0] = cvSize(pt_count, 1); + sizes[INPUT][0] = Size(pt_count, 1); else - sizes[INPUT][0] = cvSize(1, pt_count); + sizes[INPUT][0] = Size(1, pt_count); } types[OUTPUT][0] = CV_MAKETYPE(pt_depth2, dims2); - sizes[OUTPUT][0] = cvSize(1, pt_count); + sizes[OUTPUT][0] = Size(1, pt_count); types[REF_OUTPUT][0] = types[OUTPUT][0]; sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; @@ -1488,7 +237,7 @@ void CV_ConvertHomogeneousTest::fill_array( int /*test_case_idx*/, int /*i*/, in { Mat temp( 1, pt_count, CV_MAKETYPE(CV_64FC1,dims1) ); RNG& rng = ts->get_rng(); - CvScalar low = cvScalarAll(0), high = cvScalarAll(10); + Scalar low = Scalar::all(0), high = Scalar::all(10); if( dims1 > dims2 ) low.val[dims1-1] = 1.; @@ -1573,21 +322,21 @@ void CV_ComputeEpilinesTest::get_test_array_types_and_sizes( int /*test_case_idx types[INPUT][0] = CV_MAKETYPE(pt_depth, 1); - sizes[INPUT][0] = cvSize(dims, pt_count); + sizes[INPUT][0] = Size(dims, pt_count); if( cvtest::randInt(rng) % 2 || few_points ) { types[INPUT][0] = CV_MAKETYPE(pt_depth, dims); if( cvtest::randInt(rng) % 2 ) - sizes[INPUT][0] = cvSize(pt_count, 1); + sizes[INPUT][0] = Size(pt_count, 1); else - sizes[INPUT][0] = cvSize(1, pt_count); + sizes[INPUT][0] = Size(1, pt_count); } types[INPUT][1] = CV_MAKETYPE(fm_depth, 1); - sizes[INPUT][1] = cvSize(3, 3); + sizes[INPUT][1] = Size(3, 3); types[OUTPUT][0] = CV_MAKETYPE(ln_depth, 3); - sizes[OUTPUT][0] = cvSize(1, pt_count); + sizes[OUTPUT][0] = Size(1, pt_count); types[REF_OUTPUT][0] = types[OUTPUT][0]; sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; @@ -1607,11 +356,11 @@ void CV_ComputeEpilinesTest::fill_array( int test_case_idx, int i, int j, Mat& a if( i == INPUT && j == 0 ) { Mat temp( 1, pt_count, CV_MAKETYPE(CV_64FC1,dims) ); - cvtest::randUni( rng, temp, cvScalar(0,0,1), cvScalarAll(10) ); + cvtest::randUni( rng, temp, Scalar(0,0,1), Scalar::all(10) ); test_convertHomogeneous( temp, arr ); } else if( i == INPUT && j == 1 ) - cvtest::randUni( rng, arr, cvScalarAll(0), cvScalarAll(10) ); + cvtest::randUni( rng, arr, Scalar::all(0), Scalar::all(10) ); else cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); } @@ -1651,11 +400,8 @@ void CV_ComputeEpilinesTest::prepare_to_validation( int /*test_case_idx*/ ) test_convertHomogeneous( lines, test_mat[REF_OUTPUT][0] ); } -TEST(Calib3d_Rodrigues, accuracy) { CV_RodriguesTest test; test.safe_run(); } -TEST(Calib3d_FindFundamentalMat, accuracy) { CV_FundamentalMatTest test; test.safe_run(); } TEST(Calib3d_ConvertHomogeneoous, accuracy) { CV_ConvertHomogeneousTest test; test.safe_run(); } TEST(Calib3d_ComputeEpilines, accuracy) { CV_ComputeEpilinesTest test; test.safe_run(); } -TEST(Calib3d_FindEssentialMat, accuracy) { CV_EssentialMatTest test; test.safe_run(); } TEST(Calib3d_FindFundamentalMat, correctMatches) { diff --git a/modules/3d/test/test_precomp.hpp b/modules/3d/test/test_precomp.hpp index 6fa258d7d0..331a259cae 100644 --- a/modules/3d/test/test_precomp.hpp +++ b/modules/3d/test/test_precomp.hpp @@ -15,13 +15,4 @@ #include #endif -namespace cvtest -{ - void Rodrigues(const Mat& src, Mat& dst, Mat* jac=0); -} - -namespace opencv_test { -CVTEST_GUARD_SYMBOL(Rodrigues) -} // namespace - #endif diff --git a/modules/3d/test/test_undistort.cpp b/modules/3d/test/test_undistort.cpp index da55d4892f..9c492ee6f7 100644 --- a/modules/3d/test/test_undistort.cpp +++ b/modules/3d/test/test_undistort.cpp @@ -41,7 +41,6 @@ //M*/ #include "test_precomp.hpp" -#include "opencv2/core/core_c.h" namespace opencv_test { namespace { @@ -84,7 +83,7 @@ void CV_DefaultNewCameraMatrixTest::get_test_array_types_and_sizes( int test_cas cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); RNG& rng = ts->get_rng(); matrix_type = types[INPUT][0] = types[OUTPUT][0]= types[REF_OUTPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,3); + sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size(3,3); } int CV_DefaultNewCameraMatrixTest::prepare_test_case(int test_case_idx) @@ -199,8 +198,8 @@ void CV_GetOptimalNewCameraMatrixNoDistortionTest::get_test_array_types_and_size cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx, sizes, types); RNG& rng = ts->get_rng(); matrix_type = types[INPUT][0] = types[INPUT][1] = types[OUTPUT][0] = types[REF_OUTPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,3); - sizes[INPUT][1] = cvSize(1,4); + sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size(3,3); + sizes[INPUT][1] = Size(1,4); } int CV_GetOptimalNewCameraMatrixNoDistortionTest::prepare_test_case(int test_case_idx) @@ -253,846 +252,10 @@ void CV_GetOptimalNewCameraMatrixNoDistortionTest::prepare_to_validation(int /*t cvtest::convert(new_camera_mat, output, output.type()); } -//--------- - -class CV_UndistortPointsTest : public cvtest::ArrayTest -{ -public: - CV_UndistortPointsTest(); -protected: - int prepare_test_case (int test_case_idx); - void prepare_to_validation( int test_case_idx ); - void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); - double get_success_error_level( int test_case_idx, int i, int j ); - void run_func(); - void distortPoints(const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, - const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP); - -private: - bool useDstMat; - static const int N_POINTS = 10; - static const int MAX_X = 2048; - static const int MAX_Y = 2048; - - bool zero_new_cam; - bool zero_distortion; - bool zero_R; - - cv::Size img_size; - cv::Mat dst_points_mat; - - cv::Mat camera_mat; - cv::Mat R; - cv::Mat P; - cv::Mat distortion_coeffs; - cv::Mat src_points; - std::vector dst_points; -}; - -CV_UndistortPointsTest::CV_UndistortPointsTest() -{ - test_array[INPUT].push_back(NULL); // points matrix - test_array[INPUT].push_back(NULL); // camera matrix - test_array[INPUT].push_back(NULL); // distortion coeffs - test_array[INPUT].push_back(NULL); // R matrix - test_array[INPUT].push_back(NULL); // P matrix - test_array[OUTPUT].push_back(NULL); // distorted dst points - test_array[TEMP].push_back(NULL); // dst points - test_array[REF_OUTPUT].push_back(NULL); - - useDstMat = false; - zero_new_cam = zero_distortion = zero_R = false; -} - -void CV_UndistortPointsTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) -{ - cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); - RNG& rng = ts->get_rng(); - //rng.next(); - types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0]= CV_32FC2; - types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][4] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - - sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sizes[TEMP][0]= cvtest::randInt(rng)%2 ? cvSize(1,N_POINTS) : cvSize(N_POINTS,1); - sizes[INPUT][1] = sizes[INPUT][3] = cvSize(3,3); - sizes[INPUT][4] = cvtest::randInt(rng)%2 ? cvSize(3,3) : cvSize(4,3); - - if (cvtest::randInt(rng)%2) - { - if (cvtest::randInt(rng)%2) - { - sizes[INPUT][2] = cvSize(1,4); - } - else - { - sizes[INPUT][2] = cvSize(1,5); - } - } - else - { - if (cvtest::randInt(rng)%2) - { - sizes[INPUT][2] = cvSize(4,1); - } - else - { - sizes[INPUT][2] = cvSize(5,1); - } - } -} - -int CV_UndistortPointsTest::prepare_test_case(int test_case_idx) -{ - RNG& rng = ts->get_rng(); - int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); - - if (code <= 0) - return code; - - useDstMat = (cvtest::randInt(rng) % 2) == 0; - - img_size.width = cvtest::randInt(rng) % MAX_X + 1; - img_size.height = cvtest::randInt(rng) % MAX_Y + 1; - int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows; - double cam[9] = {0,0,0,0,0,0,0,0,1}; - vector dist(dist_size); - vector proj(test_mat[INPUT][4].cols * test_mat[INPUT][4].rows); - vector points(N_POINTS); - - Mat _camera(3,3,CV_64F,cam); - Mat _distort(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,&dist[0]); - Mat _proj(test_mat[INPUT][4].size(), CV_64F, &proj[0]); - Mat _points(test_mat[INPUT][0].size(), CV_64FC2, &points[0]); - - _proj = Scalar::all(0); - - //Generating points - for( int i = 0; i < N_POINTS; i++ ) - { - points[i].x = cvtest::randReal(rng)*img_size.width; - points[i].y = cvtest::randReal(rng)*img_size.height; - } - - //Generating camera matrix - double sz = MAX(img_size.width,img_size.height); - double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; - cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); - cam[4] = aspect_ratio*cam[0]; - - //Generating distortion coeffs - dist[0] = cvtest::randReal(rng)*0.06 - 0.03; - dist[1] = cvtest::randReal(rng)*0.06 - 0.03; - if( dist[0]*dist[1] > 0 ) - dist[1] = -dist[1]; - if( cvtest::randInt(rng)%4 != 0 ) - { - dist[2] = cvtest::randReal(rng)*0.004 - 0.002; - dist[3] = cvtest::randReal(rng)*0.004 - 0.002; - if (dist_size > 4) - dist[4] = cvtest::randReal(rng)*0.004 - 0.002; - } - else - { - dist[2] = dist[3] = 0; - if (dist_size > 4) - dist[4] = 0; - } - - //Generating P matrix (projection) - if( test_mat[INPUT][4].cols != 4 ) - { - proj[8] = 1; - if (cvtest::randInt(rng)%2 == 0) // use identity new camera matrix - { - proj[0] = 1; - proj[4] = 1; - } - else - { - proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% - proj[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% - proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% - proj[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% - } - } - else - { - proj[10] = 1; - proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% - proj[5] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% - proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% - proj[6] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% - - proj[3] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - proj[7] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - proj[11] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - } - - //Generating R matrix - Mat _rot(3,3,CV_64F); - Mat rotation(1,3,CV_64F); - rotation.at(0) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // phi - rotation.at(1) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // ksi - rotation.at(2) = CV_PI*(cvtest::randReal(rng) - (double)0.5); //khi - cvtest::Rodrigues(rotation, _rot); - - //copying data - //src_points = &_points; - _points.convertTo(test_mat[INPUT][0], test_mat[INPUT][0].type()); - _camera.convertTo(test_mat[INPUT][1], test_mat[INPUT][1].type()); - _distort.convertTo(test_mat[INPUT][2], test_mat[INPUT][2].type()); - _rot.convertTo(test_mat[INPUT][3], test_mat[INPUT][3].type()); - _proj.convertTo(test_mat[INPUT][4], test_mat[INPUT][4].type()); - - zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; - zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; - zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; - - _points.convertTo(src_points, CV_32F); - - camera_mat = test_mat[INPUT][1]; - distortion_coeffs = test_mat[INPUT][2]; - R = test_mat[INPUT][3]; - P = test_mat[INPUT][4]; - - return code; -} - -void CV_UndistortPointsTest::prepare_to_validation(int /*test_case_idx*/) -{ - int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows; - double cam[9] = {0,0,0,0,0,0,0,0,1}; - double rot[9] = {1,0,0,0,1,0,0,0,1}; - - double* dist = new double[dist_size ]; - double* proj = new double[test_mat[INPUT][4].cols * test_mat[INPUT][4].rows]; - double* points = new double[N_POINTS*2]; - double* r_points = new double[N_POINTS*2]; - //Run reference calculations - CvMat ref_points= cvMat(test_mat[INPUT][0].rows,test_mat[INPUT][0].cols,CV_64FC2,r_points); - CvMat _camera = cvMat(3,3,CV_64F,cam); - CvMat _rot = cvMat(3,3,CV_64F,rot); - CvMat _distort = cvMat(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,dist); - CvMat _proj = cvMat(test_mat[INPUT][4].rows,test_mat[INPUT][4].cols,CV_64F,proj); - CvMat _points= cvMat(test_mat[TEMP][0].rows,test_mat[TEMP][0].cols,CV_64FC2,points); - - Mat __camera = cvarrToMat(&_camera); - Mat __distort = cvarrToMat(&_distort); - Mat __rot = cvarrToMat(&_rot); - Mat __proj = cvarrToMat(&_proj); - Mat __points = cvarrToMat(&_points); - Mat _ref_points = cvarrToMat(&ref_points); - - cvtest::convert(test_mat[INPUT][1], __camera, __camera.type()); - cvtest::convert(test_mat[INPUT][2], __distort, __distort.type()); - cvtest::convert(test_mat[INPUT][3], __rot, __rot.type()); - cvtest::convert(test_mat[INPUT][4], __proj, __proj.type()); - - if (useDstMat) - { - CvMat temp = cvMat(dst_points_mat); - for (int i=0;icols == 3)) - __P = cvCreateMat(3,3,CV_64F); - else - __P = cvCreateMat(3,4,CV_64F); - if (matP) - { - cvtest::convert(cvarrToMat(matP), cvarrToMat(__P), -1); - } - else - { - cvZero(__P); - __P->data.db[0] = 1; - __P->data.db[4] = 1; - __P->data.db[8] = 1; - } - CvMat* __R = cvCreateMat(3,3,CV_64F); - if (matR) - { - cvCopy(matR,__R); - } - else - { - cvZero(__R); - __R->data.db[0] = 1; - __R->data.db[4] = 1; - __R->data.db[8] = 1; - } - for (int i=0;icols > 3 ? 1 : 0; - double x = (_src->data.db[2*i]-__P->data.db[2])/__P->data.db[0]; - double y = (_src->data.db[2*i+1]-__P->data.db[5+movement])/__P->data.db[4+movement]; - CvMat inverse = cvMat(3,3,CV_64F,a); - cvInvert(__R,&inverse); - double w1 = x*inverse.data.db[6]+y*inverse.data.db[7]+inverse.data.db[8]; - double _x = (x*inverse.data.db[0]+y*inverse.data.db[1]+inverse.data.db[2])/w1; - double _y = (x*inverse.data.db[3]+y*inverse.data.db[4]+inverse.data.db[5])/w1; - - //Distortions - - double __x = _x; - double __y = _y; - if (_distCoeffs) - { - double r2 = _x*_x+_y*_y; - - __x = _x*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+ - 2*_distCoeffs->data.db[2]*_x*_y+_distCoeffs->data.db[3]*(r2+2*_x*_x); - __y = _y*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+ - 2*_distCoeffs->data.db[3]*_x*_y+_distCoeffs->data.db[2]*(r2+2*_y*_y); - if ((_distCoeffs->cols > 4) || (_distCoeffs->rows > 4)) - { - __x+=_x*_distCoeffs->data.db[4]*r2*r2*r2; - __y+=_y*_distCoeffs->data.db[4]*r2*r2*r2; - } - } - - - _dst->data.db[2*i] = __x*_cameraMatrix->data.db[0]+_cameraMatrix->data.db[2]; - _dst->data.db[2*i+1] = __y*_cameraMatrix->data.db[4]+_cameraMatrix->data.db[5]; - - } - - cvReleaseMat(&__R); - cvReleaseMat(&__P); - -} - - -double CV_UndistortPointsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) -{ - return 5e-2; -} - -//------------------------------------------------------ - -class CV_InitUndistortRectifyMapTest : public cvtest::ArrayTest -{ -public: - CV_InitUndistortRectifyMapTest(); -protected: - int prepare_test_case (int test_case_idx); - void prepare_to_validation( int test_case_idx ); - void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); - double get_success_error_level( int test_case_idx, int i, int j ); - void run_func(); - -private: - static const int MAX_X = 1024; - static const int MAX_Y = 1024; - bool zero_new_cam; - bool zero_distortion; - bool zero_R; - - cv::Size img_size; - int map_type; -}; - -CV_InitUndistortRectifyMapTest::CV_InitUndistortRectifyMapTest() -{ - test_array[INPUT].push_back(NULL); // camera matrix - test_array[INPUT].push_back(NULL); // distortion coeffs - test_array[INPUT].push_back(NULL); // R matrix - test_array[INPUT].push_back(NULL); // new camera matrix - test_array[OUTPUT].push_back(NULL); // distorted mapx - test_array[OUTPUT].push_back(NULL); // distorted mapy - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - - zero_distortion = zero_new_cam = zero_R = false; - map_type = 0; -} - -void CV_InitUndistortRectifyMapTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) -{ - cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); - RNG& rng = ts->get_rng(); - //rng.next(); - - map_type = CV_32F; - types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type; - - img_size.width = cvtest::randInt(rng) % MAX_X + 1; - img_size.height = cvtest::randInt(rng) % MAX_Y + 1; - - types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - - sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size; - sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3); - - Size dsize; - - if (cvtest::randInt(rng)%2) - { - if (cvtest::randInt(rng)%2) - { - dsize = Size(1,4); - } - else - { - dsize = Size(1,5); - } - } - else - { - if (cvtest::randInt(rng)%2) - { - dsize = Size(4,1); - } - else - { - dsize = Size(5,1); - } - } - sizes[INPUT][1] = dsize; -} - - -int CV_InitUndistortRectifyMapTest::prepare_test_case(int test_case_idx) -{ - RNG& rng = ts->get_rng(); - int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); - - if (code <= 0) - return code; - - int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows; - double cam[9] = {0,0,0,0,0,0,0,0,1}; - vector dist(dist_size); - vector new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows); - - Mat _camera(3,3,CV_64F,cam); - Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]); - Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]); - - //Generating camera matrix - double sz = MAX(img_size.width,img_size.height); - double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; - cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); - cam[4] = aspect_ratio*cam[0]; - - //Generating distortion coeffs - dist[0] = cvtest::randReal(rng)*0.06 - 0.03; - dist[1] = cvtest::randReal(rng)*0.06 - 0.03; - if( dist[0]*dist[1] > 0 ) - dist[1] = -dist[1]; - if( cvtest::randInt(rng)%4 != 0 ) - { - dist[2] = cvtest::randReal(rng)*0.004 - 0.002; - dist[3] = cvtest::randReal(rng)*0.004 - 0.002; - if (dist_size > 4) - dist[4] = cvtest::randReal(rng)*0.004 - 0.002; - } - else - { - dist[2] = dist[3] = 0; - if (dist_size > 4) - dist[4] = 0; - } - - //Generating new camera matrix - _new_cam = Scalar::all(0); - new_cam[8] = 1; - - //new_cam[0] = cam[0]; - //new_cam[4] = cam[4]; - //new_cam[2] = cam[2]; - //new_cam[5] = cam[5]; - - new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% - new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% - new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% - new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% - - //Generating R matrix - Mat _rot(3,3,CV_64F); - Mat rotation(1,3,CV_64F); - rotation.at(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi - rotation.at(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi - rotation.at(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi - cvtest::Rodrigues(rotation, _rot); - - //cvSetIdentity(_rot); - //copying data - cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type()); - cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type()); - cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type()); - cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type()); - - zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; - zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; - zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; - - return code; -} - -void CV_InitUndistortRectifyMapTest::prepare_to_validation(int/* test_case_idx*/) -{ - cvtest::initUndistortMap(test_mat[INPUT][0], - zero_distortion ? cv::Mat() : test_mat[INPUT][1], - zero_R ? cv::Mat() : test_mat[INPUT][2], - zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3], - img_size, test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][1], - test_mat[REF_OUTPUT][0].type()); -} - -void CV_InitUndistortRectifyMapTest::run_func() -{ - cv::Mat camera_mat = test_mat[INPUT][0]; - cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; - cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2]; - cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3]; - cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1]; - initUndistortRectifyMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy); -} - -double CV_InitUndistortRectifyMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) -{ - return 8; -} - -//------------------------------------------------------ - -class CV_InitInverseRectificationMapTest : public cvtest::ArrayTest -{ -public: - CV_InitInverseRectificationMapTest(); -protected: - int prepare_test_case (int test_case_idx); - void prepare_to_validation( int test_case_idx ); - void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); - double get_success_error_level( int test_case_idx, int i, int j ); - void run_func(); - -private: - static const int MAX_X = 1024; - static const int MAX_Y = 1024; - bool zero_new_cam; - bool zero_distortion; - bool zero_R; - - cv::Size img_size; - int map_type; -}; - -CV_InitInverseRectificationMapTest::CV_InitInverseRectificationMapTest() -{ - test_array[INPUT].push_back(NULL); // camera matrix - test_array[INPUT].push_back(NULL); // distortion coeffs - test_array[INPUT].push_back(NULL); // R matrix - test_array[INPUT].push_back(NULL); // new camera matrix - test_array[OUTPUT].push_back(NULL); // inverse rectified mapx - test_array[OUTPUT].push_back(NULL); // inverse rectified mapy - test_array[REF_OUTPUT].push_back(NULL); - test_array[REF_OUTPUT].push_back(NULL); - - zero_distortion = zero_new_cam = zero_R = false; - map_type = 0; -} - -void CV_InitInverseRectificationMapTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) -{ - cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); - RNG& rng = ts->get_rng(); - //rng.next(); - - map_type = CV_32F; - types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type; - - img_size.width = cvtest::randInt(rng) % MAX_X + 1; - img_size.height = cvtest::randInt(rng) % MAX_Y + 1; - - types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - - sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size; - sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3); - - Size dsize; - - if (cvtest::randInt(rng)%2) - { - if (cvtest::randInt(rng)%2) - { - dsize = Size(1,4); - } - else - { - dsize = Size(1,5); - } - } - else - { - if (cvtest::randInt(rng)%2) - { - dsize = Size(4,1); - } - else - { - dsize = Size(5,1); - } - } - sizes[INPUT][1] = dsize; -} - - -int CV_InitInverseRectificationMapTest::prepare_test_case(int test_case_idx) -{ - RNG& rng = ts->get_rng(); - int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); - - if (code <= 0) - return code; - - int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows; - double cam[9] = {0,0,0,0,0,0,0,0,1}; - vector dist(dist_size); - vector new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows); - - Mat _camera(3,3,CV_64F,cam); - Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]); - Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]); - - //Generating camera matrix - double sz = MAX(img_size.width,img_size.height); - double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; - cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; - cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); - cam[4] = aspect_ratio*cam[0]; - - //Generating distortion coeffs - dist[0] = cvtest::randReal(rng)*0.06 - 0.03; - dist[1] = cvtest::randReal(rng)*0.06 - 0.03; - if( dist[0]*dist[1] > 0 ) - dist[1] = -dist[1]; - if( cvtest::randInt(rng)%4 != 0 ) - { - dist[2] = cvtest::randReal(rng)*0.004 - 0.002; - dist[3] = cvtest::randReal(rng)*0.004 - 0.002; - if (dist_size > 4) - dist[4] = cvtest::randReal(rng)*0.004 - 0.002; - } - else - { - dist[2] = dist[3] = 0; - if (dist_size > 4) - dist[4] = 0; - } - - //Generating new camera matrix - _new_cam = Scalar::all(0); - new_cam[8] = 1; - - // If P == K - //new_cam[0] = cam[0]; - //new_cam[4] = cam[4]; - //new_cam[2] = cam[2]; - //new_cam[5] = cam[5]; - - // If P != K - new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% - new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% - new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% - new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% - - //Generating R matrix - Mat _rot(3,3,CV_64F); - Mat rotation(1,3,CV_64F); - rotation.at(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi - rotation.at(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi - rotation.at(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi - cvtest::Rodrigues(rotation, _rot); - - //cvSetIdentity(_rot); - //copying data - cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type()); - cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type()); - cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type()); - cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type()); - - zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; - zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; - zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; - - return code; -} - -void CV_InitInverseRectificationMapTest::prepare_to_validation(int/* test_case_idx*/) -{ - // Configure Parameters - Mat _a0 = test_mat[INPUT][0]; - Mat _d0 = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; - Mat _R0 = zero_R ? cv::Mat() : test_mat[INPUT][2]; - Mat _new_cam0 = zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3]; - Mat _mapx(img_size, CV_32F), _mapy(img_size, CV_32F); - - double a[9], d[5]={0., 0., 0., 0. , 0.}, R[9]={1., 0., 0., 0., 1., 0., 0., 0., 1.}, a1[9]; - Mat _a(3, 3, CV_64F, a), _a1(3, 3, CV_64F, a1); - Mat _d(_d0.rows,_d0.cols, CV_MAKETYPE(CV_64F,_d0.channels()),d); - Mat _R(3, 3, CV_64F, R); - double fx, fy, cx, cy, ifx, ify, cxn, cyn; - - // Camera matrix - CV_Assert(_a0.size() == Size(3, 3)); - _a0.convertTo(_a, CV_64F); - if( !_new_cam0.empty() ) - { - CV_Assert(_new_cam0.size() == Size(3, 3)); - _new_cam0.convertTo(_a1, CV_64F); - } - else - { - _a.copyTo(_a1); - } - - // Distortion - CV_Assert(_d0.empty() || - _d0.size() == Size(5, 1) || - _d0.size() == Size(1, 5) || - _d0.size() == Size(4, 1) || - _d0.size() == Size(1, 4)); - if( !_d0.empty() ) - _d0.convertTo(_d, CV_64F); - - // Rotation - if( !_R0.empty() ) - { - CV_Assert(_R0.size() == Size(3, 3)); - Mat tmp; - _R0.convertTo(_R, CV_64F); - } - - // Copy camera matrix - fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5]; - - // Copy new camera matrix - ifx = a1[0]; ify = a1[4]; cxn = a1[2]; cyn = a1[5]; - - // Undistort - for( int v = 0; v < img_size.height; v++ ) - { - for( int u = 0; u < img_size.width; u++ ) - { - // Convert from image to pin-hole coordinates - double x = (u - cx)/fx; - double y = (v - cy)/fy; - - // Undistort - double x2 = x*x, y2 = y*y; - double r2 = x2 + y2; - double cdist = 1./(1. + (d[0] + (d[1] + d[4]*r2)*r2)*r2); // (1. + (d[5] + (d[6] + d[7]*r2)*r2)*r2) == 1 as d[5-7]=0; - double x_ = (x - (d[2]*2.*x*y + d[3]*(r2 + 2.*x2)))*cdist; - double y_ = (y - (d[3]*2.*x*y + d[2]*(r2 + 2.*y2)))*cdist; - - // Rectify - double X = R[0]*x_ + R[1]*y_ + R[2]; - double Y = R[3]*x_ + R[4]*y_ + R[5]; - double Z = R[6]*x_ + R[7]*y_ + R[8]; - double x__ = X/Z; - double y__ = Y/Z; - - // Convert from pin-hole to image coordinates - _mapy.at(v, u) = (float)(y__*ify + cyn); - _mapx.at(v, u) = (float)(x__*ifx + cxn); - } - } - - // Convert - _mapx.convertTo(test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].type()); - _mapy.convertTo(test_mat[REF_OUTPUT][1], test_mat[REF_OUTPUT][0].type()); -} - -void CV_InitInverseRectificationMapTest::run_func() -{ - cv::Mat camera_mat = test_mat[INPUT][0]; - cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; - cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2]; - cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3]; - cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1]; - cv::initInverseRectificationMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy); -} - -double CV_InitInverseRectificationMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) -{ - return 8; -} - ////////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Calib3d_DefaultNewCameraMatrix, accuracy) { CV_DefaultNewCameraMatrixTest test; test.safe_run(); } TEST(Calib3d_GetOptimalNewCameraMatrixNoDistortion, accuracy) { CV_GetOptimalNewCameraMatrixNoDistortionTest test; test.safe_run(); } -TEST(Calib3d_UndistortPoints, accuracy) { CV_UndistortPointsTest test; test.safe_run(); } -TEST(Calib3d_InitUndistortRectifyMap, accuracy) { CV_InitUndistortRectifyMapTest test; test.safe_run(); } -TEST(DISABLED_Calib3d_InitInverseRectificationMap, accuracy) { CV_InitInverseRectificationMapTest test; test.safe_run(); } ////////////////////////////// undistort ///////////////////////////////// @@ -1413,8 +576,8 @@ void CV_UndistortTest::get_test_array_types_and_sizes( int test_case_idx, vector types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = type; types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; - sizes[INPUT][1] = cvSize(3,3); - sizes[INPUT][2] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4); + sizes[INPUT][1] = Size(3,3); + sizes[INPUT][2] = cvtest::randInt(rng)%2 ? Size(4,1) : Size(1,4); types[INPUT][3] = types[INPUT][1]; sizes[INPUT][3] = sizes[INPUT][1]; interpolation = cv::INTER_LINEAR; @@ -1568,8 +731,8 @@ void CV_UndistortMapTest::get_test_array_types_and_sizes( int test_case_idx, vec dualChannel = cvtest::randInt(rng)%2 == 0; types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = dualChannel ? CV_32FC2 : CV_32F; - sizes[INPUT][0] = cvSize(3,3); - sizes[INPUT][1] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4); + sizes[INPUT][0] = Size(3,3); + sizes[INPUT][1] = cvtest::randInt(rng)%2 ? Size(4,1) : Size(1,4); sz.width = MAX(sz.width,16); sz.height = MAX(sz.height,16); diff --git a/modules/3d/test/test_undistort_badarg.cpp b/modules/3d/test/test_undistort_badarg.cpp index 71bb21a0bd..1cc559991f 100644 --- a/modules/3d/test/test_undistort_badarg.cpp +++ b/modules/3d/test/test_undistort_badarg.cpp @@ -40,7 +40,6 @@ //M*/ #include "test_precomp.hpp" -#include "opencv2/core/core_c.h" namespace opencv_test { namespace { @@ -93,29 +92,22 @@ void CV_UndistortPointsBadArgTest::run(int) double p[9] = {155.f, 0.f, img_size.width/2.f+img_size.width/50.f, 0, 310.f, img_size.height/2.f+img_size.height/50.f, 0.f, 0.f, 1.f}; double r[9] = {1,0,0,0,1,0,0,0,1}; - CvMat _camera_mat_orig = cvMat(3,3,CV_64F,cam); - CvMat _distortion_coeffs_orig = cvMat(1,4,CV_64F,dist); - CvMat _P_orig = cvMat(3,3,CV_64F,p); - CvMat _R_orig = cvMat(3,3,CV_64F,r); - CvMat _src_points_orig = cvMat(1,4,CV_64FC2,s_points); - - camera_mat = cv::cvarrToMat(&_camera_mat_orig); - distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig); - P = cv::cvarrToMat(&_P_orig); - R = cv::cvarrToMat(&_R_orig); - src_points = cv::cvarrToMat(&_src_points_orig); + camera_mat = Mat(3,3,CV_64F,cam); + distortion_coeffs = Mat(1,4,CV_64F,dist); + P = Mat(3,3,CV_64F,p); + R = Mat(3,3,CV_64F,r); src_points.create(2, 2, CV_32FC2); errcount += run_test_case( cv::Error::StsAssert, "Invalid input data matrix size" ); - src_points = cv::cvarrToMat(&_src_points_orig); + src_points = Mat(1,4,CV_64FC2,s_points); src_points.create(1, 4, CV_64FC2); errcount += run_test_case( cv::Error::StsAssert, "Invalid input data matrix type" ); - src_points = cv::cvarrToMat(&_src_points_orig); + src_points = Mat(1,4,CV_64FC2,s_points); src_points = cv::Mat(); errcount += run_test_case( cv::Error::StsBadArg, "Input data matrix is not continuous" ); - src_points = cv::cvarrToMat(&_src_points_orig); + src_points = Mat(1,4,CV_64FC2,s_points); //------------ ts->set_failed_test_info(errcount > 0 ? cvtest::TS::FAIL_BAD_ARG_CHECK : cvtest::TS::OK); @@ -165,20 +157,14 @@ void CV_InitUndistortRectifyMapBadArgTest::run(int) double arr_new_camera_mat[9] = {155.f, 0.f, img_size.width/2.f+img_size.width/50.f, 0, 310.f, img_size.height/2.f+img_size.height/50.f, 0.f, 0.f, 1.f}; double r[9] = {1,0,0,0,1,0,0,0,1}; - CvMat _camera_mat_orig = cvMat(3,3,CV_64F,cam); - CvMat _distortion_coeffs_orig = cvMat(1,4,CV_64F,dist); - CvMat _new_camera_mat_orig = cvMat(3,3,CV_64F,arr_new_camera_mat); - CvMat _R_orig = cvMat(3,3,CV_64F,r); - CvMat _mapx_orig = cvMat(img_size.height,img_size.width,CV_32FC1,&arr_mapx[0]); - CvMat _mapy_orig = cvMat(img_size.height,img_size.width,CV_32FC1,&arr_mapy[0]); int mat_type_orig = CV_32FC1; - camera_mat = cv::cvarrToMat(&_camera_mat_orig); - distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig); - new_camera_mat = cv::cvarrToMat(&_new_camera_mat_orig); - R = cv::cvarrToMat(&_R_orig); - mapx = cv::cvarrToMat(&_mapx_orig); - mapy = cv::cvarrToMat(&_mapy_orig); + camera_mat = Mat(3,3,CV_64F,cam); + distortion_coeffs = Mat(1,4,CV_64F,dist); + new_camera_mat = Mat(3,3,CV_64F,arr_new_camera_mat); + R = Mat(3,3,CV_64F,r); + mapx = Mat(img_size.height,img_size.width,CV_32FC1,&arr_mapx[0]); + mapy = Mat(img_size.height,img_size.width,CV_32FC1,&arr_mapy[0]); mat_type = CV_64F; errcount += run_test_case( cv::Error::StsAssert, "Invalid map matrix type" ); @@ -186,15 +172,15 @@ void CV_InitUndistortRectifyMapBadArgTest::run(int) camera_mat.create(3, 2, CV_32F); errcount += run_test_case( cv::Error::StsAssert, "Invalid camera data matrix size" ); - camera_mat = cv::cvarrToMat(&_camera_mat_orig); + camera_mat = Mat(3,3,CV_64F,cam); R.create(4, 3, CV_32F); errcount += run_test_case( cv::Error::StsAssert, "Invalid R data matrix size" ); - R = cv::cvarrToMat(&_R_orig); + R = Mat(3,3,CV_64F,r); distortion_coeffs.create(6, 1, CV_32F); errcount += run_test_case( cv::Error::StsAssert, "Invalid distortion coefficients data matrix size" ); - distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig); + distortion_coeffs = Mat(1,4,CV_64F,dist); //------------ ts->set_failed_test_info(errcount > 0 ? cvtest::TS::FAIL_BAD_ARG_CHECK : cvtest::TS::OK); @@ -243,17 +229,11 @@ void CV_UndistortBadArgTest::run(int) std::vector arr_dst(img_size.width*img_size.height); double arr_new_camera_mat[9] = {155.f, 0.f, img_size.width/2.f+img_size.width/50.f, 0, 310.f, img_size.height/2.f+img_size.height/50.f, 0.f, 0.f, 1.f}; - CvMat _camera_mat_orig = cvMat(3,3,CV_64F,cam); - CvMat _distortion_coeffs_orig = cvMat(1,4,CV_64F,dist); - CvMat _new_camera_mat_orig = cvMat(3,3,CV_64F,arr_new_camera_mat); - CvMat _src_orig = cvMat(img_size.height,img_size.width,CV_32FC1,&arr_src[0]); - CvMat _dst_orig = cvMat(img_size.height,img_size.width,CV_32FC1,&arr_dst[0]); - - camera_mat = cv::cvarrToMat(&_camera_mat_orig); - distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig); - new_camera_mat = cv::cvarrToMat(&_new_camera_mat_orig); - src = cv::cvarrToMat(&_src_orig); - dst = cv::cvarrToMat(&_dst_orig); + camera_mat = Mat(3,3,CV_64F,cam); + distortion_coeffs = Mat(1,4,CV_64F,dist); + new_camera_mat = Mat(3,3,CV_64F,arr_new_camera_mat); + src = Mat(img_size.height,img_size.width,CV_32FC1,&arr_src[0]); + dst = Mat(img_size.height,img_size.width,CV_32FC1,&arr_dst[0]); camera_mat.create(5, 5, CV_64F); errcount += run_test_case( cv::Error::StsAssert, "Invalid camera data matrix size" ); diff --git a/modules/calib/test/test_cameracalibration_badarg.cpp b/modules/calib/test/test_cameracalibration_badarg.cpp index 0ded9876a6..6593015eed 100644 --- a/modules/calib/test/test_cameracalibration_badarg.cpp +++ b/modules/calib/test/test_cameracalibration_badarg.cpp @@ -41,7 +41,6 @@ #include "test_precomp.hpp" #include "test_chessboardgenerator.hpp" -#include "opencv2/core/types_c.h" namespace opencv_test { namespace {