mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #1457 from pengx17:2.4_oclsvm
This commit is contained in:
commit
e35bc11504
@ -1900,6 +1900,26 @@ namespace cv
|
||||
private:
|
||||
oclMat samples_ocl;
|
||||
};
|
||||
/*!*************** SVM *************!*/
|
||||
class CV_EXPORTS CvSVM_OCL : public CvSVM
|
||||
{
|
||||
public:
|
||||
CvSVM_OCL();
|
||||
|
||||
CvSVM_OCL(const cv::Mat& trainData, const cv::Mat& responses,
|
||||
const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
|
||||
CvSVMParams params=CvSVMParams());
|
||||
CV_WRAP float predict( const int row_index, Mat& src, bool returnDFVal=false ) const;
|
||||
CV_WRAP void predict( cv::InputArray samples, cv::OutputArray results ) const;
|
||||
CV_WRAP float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
|
||||
float predict( const CvMat* samples, CV_OUT CvMat* results ) const;
|
||||
|
||||
protected:
|
||||
float predict( const int row_index, int row_len, Mat& src, bool returnDFVal=false ) const;
|
||||
void create_kernel();
|
||||
void create_solver();
|
||||
};
|
||||
/*!*************** END *************!*/
|
||||
}
|
||||
}
|
||||
#if defined _MSC_VER && _MSC_VER >= 1200
|
||||
|
209
modules/ocl/src/opencl/svm.cl
Normal file
209
modules/ocl/src/opencl/svm.cl
Normal file
@ -0,0 +1,209 @@
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2013, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Erping Pang, erping@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//
|
||||
#if defined (DOUBLE_SUPPORT)
|
||||
#ifdef cl_khr_fp64
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#elif defined (cl_amd_fp64)
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#endif
|
||||
#define TYPE double
|
||||
#else
|
||||
#define TYPE float
|
||||
#endif
|
||||
#if defined ADDEXP
|
||||
#define EXP(X) exp(X)
|
||||
#else
|
||||
#define EXP(X) X
|
||||
#endif
|
||||
#if defined ADDPOW
|
||||
#define POW(X,Y) pow(fabs(X),(Y))
|
||||
#else
|
||||
#define POW(X,Y) X
|
||||
#endif
|
||||
#define FLT_MAX 3.402823466e+38F
|
||||
#define MAX_VAL (FLT_MAX*1e-3)
|
||||
|
||||
__kernel void svm_linear(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
|
||||
int width, TYPE alpha, TYPE beta)
|
||||
{
|
||||
const int col = get_global_id(0);
|
||||
const int row = get_global_id(1);
|
||||
|
||||
if(row < src_rows && col < src2_cols)
|
||||
{
|
||||
int t = 0;
|
||||
TYPE temp = 0.0;
|
||||
for(t = 0; t < width - 16; t += 16)
|
||||
{
|
||||
float16 t0 = vload16(0, src + row * src_step + t);
|
||||
float16 t1 = vload16(0, src2 + col * src2_step + t);
|
||||
t0 *= t1;
|
||||
temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
|
||||
t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
|
||||
}
|
||||
for(; t < width; t++)
|
||||
{
|
||||
temp += src[row * src_step + t] * src2[col * src2_step + t];
|
||||
}
|
||||
|
||||
TYPE temp1 = (TYPE) (temp * alpha + beta);
|
||||
|
||||
if( temp1 > MAX_VAL )
|
||||
{
|
||||
dst[row * dst_step + col] = MAX_VAL;
|
||||
}
|
||||
else
|
||||
{
|
||||
dst[row * dst_step + col] = temp1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
__kernel void svm_sigmod(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
|
||||
int width, TYPE alpha, TYPE beta)
|
||||
{
|
||||
const int col = get_global_id(0);
|
||||
const int row = get_global_id(1);
|
||||
|
||||
if(row < src_rows && col < src2_cols)
|
||||
{
|
||||
int t = 0;
|
||||
TYPE temp = 0.0;
|
||||
for(t = 0; t < width - 16; t += 16)
|
||||
{
|
||||
float16 t0 = vload16(0, src + row * src_step + t);
|
||||
float16 t1 = vload16(0, src2 + col * src2_step + t);
|
||||
t0 *= t1;
|
||||
temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
|
||||
t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
|
||||
}
|
||||
for(; t < width; t++)
|
||||
{
|
||||
temp += src[row * src_step + t] * src2[col * src2_step + t];
|
||||
}
|
||||
TYPE tp = (TYPE) (temp * alpha + beta);
|
||||
TYPE e = exp(-fabs(tp));
|
||||
TYPE temp1;
|
||||
if(tp > 0)
|
||||
{
|
||||
temp1 = (TYPE)((1. - e) / (1. + e));
|
||||
}
|
||||
else
|
||||
{
|
||||
temp1 = (TYPE)((e - 1.) / (e + 1.));
|
||||
}
|
||||
|
||||
if( temp1 > MAX_VAL )
|
||||
{
|
||||
dst[row * dst_step + col] = MAX_VAL;
|
||||
}
|
||||
else
|
||||
{
|
||||
dst[row * dst_step + col] = temp1;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
__kernel void svm_poly(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
|
||||
int width, TYPE alpha, TYPE beta, TYPE degree)
|
||||
{
|
||||
const int col = get_global_id(0);
|
||||
const int row = get_global_id(1);
|
||||
|
||||
if(row < src_rows && col < src2_cols)
|
||||
{
|
||||
int t = 0;
|
||||
TYPE temp = 0.0;
|
||||
for(t = 0; t < width - 16; t += 16)
|
||||
{
|
||||
float16 t0 = vload16(0, src + row * src_step + t);
|
||||
float16 t1 = vload16(0, src2 + col * src2_step + t);
|
||||
t0 *= t1;
|
||||
temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
|
||||
t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
|
||||
}
|
||||
for(; t < width; t++)
|
||||
{
|
||||
temp += src[row * src_step + t] * src2[col * src2_step + t];
|
||||
}
|
||||
TYPE temp1 = (TYPE)(POW((temp * alpha + beta), degree));
|
||||
|
||||
if( temp1 > MAX_VAL )
|
||||
{
|
||||
dst[row * dst_step + col] = MAX_VAL;
|
||||
}
|
||||
else
|
||||
{
|
||||
dst[row * dst_step + col] = temp1;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
__kernel void svm_rbf(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
|
||||
int width, TYPE gamma)
|
||||
{
|
||||
const int col = get_global_id(0);
|
||||
const int row = get_global_id(1);
|
||||
|
||||
if(row < src_rows && col < src2_cols)
|
||||
{
|
||||
int t = 0;
|
||||
TYPE temp = 0.0;
|
||||
for(t = 0; t < width - 16; t += 16)
|
||||
{
|
||||
float16 t0 = vload16(0, src + row * src_step + t);
|
||||
float16 t1 = vload16(0, src2 + col * src2_step + t);
|
||||
t0 = (t0 - t1) * (t0 - t1);
|
||||
temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
|
||||
t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
|
||||
}
|
||||
for(; t < width; t++)
|
||||
{
|
||||
temp += (src[row * src_step + t] - src2[col * src2_step + t]) * (src[row * src_step + t] - src2[col * src2_step + t]);
|
||||
}
|
||||
TYPE temp1 = EXP((TYPE)(temp * gamma));
|
||||
|
||||
if( temp1 > MAX_VAL )
|
||||
{
|
||||
dst[row * dst_step + col] = MAX_VAL;
|
||||
}
|
||||
else
|
||||
{
|
||||
dst[row * dst_step + col] = temp1;
|
||||
}
|
||||
}
|
||||
}
|
1201
modules/ocl/src/svm.cpp
Normal file
1201
modules/ocl/src/svm.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -121,4 +121,180 @@ TEST_P(KNN, Accuracy)
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
|
||||
Values(4, 3), Values(false, true)));
|
||||
#endif // HAVE_OPENCL
|
||||
|
||||
////////////////////////////////SVM/////////////////////////////////////////////////
|
||||
PARAM_TEST_CASE(SVM_OCL, int, int, int)
|
||||
{
|
||||
cv::Size size;
|
||||
int kernel_type;
|
||||
int svm_type;
|
||||
Mat src, labels, samples, labels_predict;
|
||||
int K;
|
||||
cv::RNG rng ;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
|
||||
kernel_type = GET_PARAM(0);
|
||||
svm_type = GET_PARAM(1);
|
||||
K = GET_PARAM(2);
|
||||
rng = TS::ptr()->get_rng();
|
||||
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
|
||||
src.create(size, CV_32FC1);
|
||||
labels.create(1, size.height, CV_32SC1);
|
||||
int row_idx = 0;
|
||||
const int max_number = size.height / K - 1;
|
||||
CV_Assert(K <= size.height);
|
||||
for(int i = 0; i < K; i++ )
|
||||
{
|
||||
Mat center_row_header = src.row(row_idx);
|
||||
center_row_header.setTo(0);
|
||||
int nchannel = center_row_header.channels();
|
||||
for(int j = 0; j < nchannel; j++)
|
||||
{
|
||||
center_row_header.at<float>(0, i * nchannel + j) = 500.0;
|
||||
}
|
||||
labels.at<int>(0, row_idx) = i;
|
||||
for(int j = 0; (j < max_number) ||
|
||||
(i == K - 1 && j < max_number + size.height % K); j ++)
|
||||
{
|
||||
Mat cur_row_header = src.row(row_idx + 1 + j);
|
||||
center_row_header.copyTo(cur_row_header);
|
||||
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
|
||||
cur_row_header += tmpmat;
|
||||
labels.at<int>(0, row_idx + 1 + j) = i;
|
||||
}
|
||||
row_idx += 1 + max_number;
|
||||
}
|
||||
labels.convertTo(labels, CV_32FC1);
|
||||
cv::Size test_size = cv::Size(MWIDTH, 100);
|
||||
samples.create(test_size, CV_32FC1);
|
||||
labels_predict.create(1, test_size.height, CV_32SC1);
|
||||
const int max_number_test = test_size.height / K - 1;
|
||||
row_idx = 0;
|
||||
for(int i = 0; i < K; i++ )
|
||||
{
|
||||
Mat center_row_header = samples.row(row_idx);
|
||||
center_row_header.setTo(0);
|
||||
int nchannel = center_row_header.channels();
|
||||
for(int j = 0; j < nchannel; j++)
|
||||
{
|
||||
center_row_header.at<float>(0, i * nchannel + j) = 500.0;
|
||||
}
|
||||
labels_predict.at<int>(0, row_idx) = i;
|
||||
for(int j = 0; (j < max_number_test) ||
|
||||
(i == K - 1 && j < max_number_test + test_size.height % K); j ++)
|
||||
{
|
||||
Mat cur_row_header = samples.row(row_idx + 1 + j);
|
||||
center_row_header.copyTo(cur_row_header);
|
||||
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
|
||||
cur_row_header += tmpmat;
|
||||
labels_predict.at<int>(0, row_idx + 1 + j) = i;
|
||||
}
|
||||
row_idx += 1 + max_number_test;
|
||||
}
|
||||
labels_predict.convertTo(labels_predict, CV_32FC1);
|
||||
}
|
||||
};
|
||||
TEST_P(SVM_OCL, Accuracy)
|
||||
{
|
||||
CvSVMParams params;
|
||||
params.degree = 0.4;
|
||||
params.gamma = 1;
|
||||
params.coef0 = 1;
|
||||
params.C = 1;
|
||||
params.nu = 0.5;
|
||||
params.p = 1;
|
||||
params.svm_type = svm_type;
|
||||
params.kernel_type = kernel_type;
|
||||
|
||||
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001);
|
||||
|
||||
CvSVM SVM;
|
||||
SVM.train(src, labels, Mat(), Mat(), params);
|
||||
|
||||
cv::ocl::CvSVM_OCL SVM_OCL;
|
||||
SVM_OCL.train(src, labels, Mat(), Mat(), params);
|
||||
|
||||
int c = SVM.get_support_vector_count();
|
||||
int c1 = SVM_OCL.get_support_vector_count();
|
||||
|
||||
Mat sv(c, MHEIGHT, CV_32FC1);
|
||||
Mat sv_ocl(c1, MHEIGHT, CV_32FC1);
|
||||
for(int i = 0; i < c; i++)
|
||||
{
|
||||
const float* v = SVM.get_support_vector(i);
|
||||
|
||||
for(int j = 0; j < MHEIGHT; j++)
|
||||
{
|
||||
sv.at<float>(i, j) = v[j];
|
||||
}
|
||||
}
|
||||
for(int i = 0; i < c1; i++)
|
||||
{
|
||||
const float* v_ocl = SVM_OCL.get_support_vector(i);
|
||||
|
||||
for(int j = 0; j < MHEIGHT; j++)
|
||||
{
|
||||
sv_ocl.at<float>(i, j) = v_ocl[j];
|
||||
}
|
||||
}
|
||||
cv::BFMatcher matcher(cv::NORM_L2);
|
||||
std::vector<cv::DMatch> matches;
|
||||
matcher.match(sv, sv_ocl, matches);
|
||||
int count = 0;
|
||||
|
||||
for(std::vector<cv::DMatch>::iterator itr = matches.begin(); itr != matches.end(); itr++)
|
||||
{
|
||||
if((*itr).distance < 0.1)
|
||||
{
|
||||
count ++;
|
||||
}
|
||||
}
|
||||
if(c != 0)
|
||||
{
|
||||
float matchedRatio = (float)count / c;
|
||||
EXPECT_GT(matchedRatio, 0.95);
|
||||
}
|
||||
if(c != 0)
|
||||
{
|
||||
CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1);
|
||||
CvMat test_samples = samples;
|
||||
|
||||
CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1);
|
||||
|
||||
SVM.predict(&test_samples, result);
|
||||
|
||||
SVM_OCL.predict(&test_samples, result_ocl);
|
||||
|
||||
int true_resp = 0, true_resp_ocl = 0;
|
||||
for (int i = 0; i < samples.rows; i++)
|
||||
{
|
||||
if (result->data.fl[i] == labels_predict.at<float>(0, i))
|
||||
{
|
||||
true_resp++;
|
||||
}
|
||||
}
|
||||
float matchedRatio = (float)true_resp / samples.rows;
|
||||
|
||||
for (int i = 0; i < samples.rows; i++)
|
||||
{
|
||||
if (result_ocl->data.fl[i] == labels_predict.at<float>(0, i))
|
||||
{
|
||||
true_resp_ocl++;
|
||||
}
|
||||
}
|
||||
float matchedRatio_ocl = (float)true_resp_ocl / samples.rows;
|
||||
|
||||
if(matchedRatio != 0 && true_resp_ocl < true_resp)
|
||||
{
|
||||
EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03);
|
||||
}
|
||||
}
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
|
||||
Values(CvSVM::LINEAR, CvSVM::POLY, CvSVM::RBF, CvSVM::SIGMOID),
|
||||
Values(CvSVM::C_SVC, CvSVM::NU_SVC, CvSVM::ONE_CLASS, CvSVM::EPS_SVR, CvSVM::NU_SVR),
|
||||
Values(2, 3, 4)
|
||||
));
|
||||
#endif // HAVE_OPENCL
|
||||
|
Loading…
Reference in New Issue
Block a user