refactored approxpoly

This commit is contained in:
Vadim Pisarevsky 2013-01-17 00:11:08 +04:00
parent 867ddebe07
commit e3941d0965
4 changed files with 190 additions and 128 deletions

View File

@ -3107,6 +3107,10 @@ public:
void allocate(size_t _size);
//! deallocates the buffer if it was dynamically allocated
void deallocate();
//! resizes the buffer and preserves the content
void resize(size_t _size);
//! returns the current buffer size
size_t size() const;
//! returns pointer to the real buffer, stack-allocated or head-allocated
operator _Tp* ();
//! returns read-only pointer to the real buffer, stack-allocated or head-allocated
@ -3116,7 +3120,7 @@ protected:
//! pointer to the real buffer, can point to buf if the buffer is small enough
_Tp* ptr;
//! size of the real buffer
size_t size;
size_t sz;
//! pre-allocated buffer
_Tp buf[fixed_size+buffer_padding];
};

View File

@ -2537,13 +2537,13 @@ inline Point LineIterator::pos() const
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::AutoBuffer()
{
ptr = buf;
size = fixed_size;
sz = fixed_size;
}
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size)
{
ptr = buf;
size = fixed_size;
sz = fixed_size;
allocate(_size);
}
@ -2552,13 +2552,16 @@ template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::~A
template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size>::allocate(size_t _size)
{
if(_size <= size)
if(_size <= sz)
{
sz = _size;
return;
}
deallocate();
if(_size > fixed_size)
{
ptr = cv::allocate<_Tp>(_size);
size = _size;
ptr = new _Tp[_size];
sz = _size;
}
}
@ -2566,12 +2569,38 @@ template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size
{
if( ptr != buf )
{
cv::deallocate<_Tp>(ptr, size);
delete[] ptr;
ptr = buf;
size = fixed_size;
sz = 0;
}
}
template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size>::resize(size_t _size)
{
if(_size <= sz)
{
sz = _size;
return;
}
size_t i, prevsize = sz, minsize = MIN(prevsize, _size);
_Tp* prevptr = ptr;
ptr = _size > fixed_size ? new _Tp[_size] : buf;
sz = _size;
if( ptr != prevptr )
for( i = 0; i < minsize; i++ )
ptr[i] = prevptr[i];
for( i = prevsize; i < _size; i++ )
ptr[i] = _Tp();
if( prevptr != buf )
delete[] prevptr;
}
template<typename _Tp, size_t fixed_size> inline size_t AutoBuffer<_Tp, fixed_size>::size() const
{ return sz; }
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::operator _Tp* ()
{ return ptr; }

View File

@ -469,48 +469,59 @@ cvApproxChains( CvSeq* src_seq,
/* Ramer-Douglas-Peucker algorithm for polygon simplification */
/* the version for integer point coordinates */
template<typename T> static CvSeq*
icvApproxPolyDP( CvSeq* src_contour, int header_size,
CvMemStorage* storage, double eps )
namespace cv
{
template<typename T> static int
approxPolyDP_( const Point_<T>* src_contour, int count0, Point_<T>* dst_contour,
bool is_closed0, double eps, AutoBuffer<Range>* _stack )
{
#define PUSH_SLICE(slice) \
if( top >= stacksz ) \
{ \
_stack->resize(stacksz*3/2); \
stack = *_stack; \
stacksz = _stack->size(); \
} \
stack[top++] = slice
#define READ_PT(pt, pos) \
pt = src_contour[pos]; \
if( ++pos >= count ) pos = 0
#define READ_DST_PT(pt, pos) \
pt = dst_contour[pos]; \
if( ++pos >= count ) pos = 0
#define WRITE_PT(pt) \
dst_contour[new_count++] = pt
typedef cv::Point_<T> PT;
int init_iters = 3;
CvSlice slice = {0, 0}, right_slice = {0, 0};
CvSeqReader reader, reader2;
CvSeqWriter writer;
PT start_pt(-1000000, -1000000), end_pt(0, 0), pt(0,0);
int i = 0, j, count = src_contour->total, new_count;
int is_closed = CV_IS_SEQ_CLOSED( src_contour );
Range slice(0, 0), right_slice(0, 0);
PT start_pt((T)-1000000, (T)-1000000), end_pt(0, 0), pt(0,0);
int i = 0, j, pos = 0, wpos, count = count0, new_count=0;
int is_closed = is_closed0;
bool le_eps = false;
CvMemStorage* temp_storage = 0;
CvSeq* stack = 0;
CvSeq* dst_contour;
size_t top = 0, stacksz = _stack->size();
Range* stack = *_stack;
assert( CV_SEQ_ELTYPE(src_contour) == cv::DataType<PT>::type );
cvStartWriteSeq( src_contour->flags, header_size, sizeof(pt), storage, &writer );
if( count == 0 )
return 0;
if( src_contour->total == 0 )
return cvEndWriteSeq( &writer );
temp_storage = cvCreateChildMemStorage( storage );
assert( src_contour->first != 0 );
stack = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvSlice), temp_storage );
eps *= eps;
cvStartReadSeq( src_contour, &reader, 0 );
if( !is_closed )
{
right_slice.start_index = count;
end_pt = *(PT*)(reader.ptr);
start_pt = *(PT*)cvGetSeqElem( src_contour, -1 );
right_slice.start = count;
end_pt = src_contour[0];
start_pt = src_contour[count-1];
if( start_pt.x != end_pt.x || start_pt.y != end_pt.y )
{
slice.start_index = 0;
slice.end_index = count - 1;
cvSeqPush( stack, &slice );
slice.start = 0;
slice.end = count - 1;
PUSH_SLICE(slice);
}
else
{
@ -521,20 +532,20 @@ icvApproxPolyDP( CvSeq* src_contour, int header_size,
if( is_closed )
{
/* 1. Find approximately two farthest points of the contour */
right_slice.start_index = 0;
// 1. Find approximately two farthest points of the contour
right_slice.start = 0;
for( i = 0; i < init_iters; i++ )
{
double dist, max_dist = 0;
cvSetSeqReaderPos( &reader, right_slice.start_index, 1 );
CV_READ_SEQ_ELEM( start_pt, reader ); /* read the first point */
pos = (pos + right_slice.start) % count;
READ_PT(start_pt, pos);
for( j = 1; j < count; j++ )
{
double dx, dy;
CV_READ_SEQ_ELEM( pt, reader );
READ_PT(pt, pos);
dx = pt.x - start_pt.x;
dy = pt.y - start_pt.y;
@ -543,43 +554,35 @@ icvApproxPolyDP( CvSeq* src_contour, int header_size,
if( dist > max_dist )
{
max_dist = dist;
right_slice.start_index = j;
right_slice.start = j;
}
}
le_eps = max_dist <= eps;
}
/* 2. initialize the stack */
// 2. initialize the stack
if( !le_eps )
{
slice.start_index = cvGetSeqReaderPos( &reader );
slice.end_index = right_slice.start_index += slice.start_index;
right_slice.end = slice.start = pos % count;
slice.end = right_slice.start = (right_slice.start + slice.start) % count;
right_slice.start_index -= right_slice.start_index >= count ? count : 0;
right_slice.end_index = slice.start_index;
if( right_slice.end_index < right_slice.start_index )
right_slice.end_index += count;
cvSeqPush( stack, &right_slice );
cvSeqPush( stack, &slice );
PUSH_SLICE(right_slice);
PUSH_SLICE(slice);
}
else
CV_WRITE_SEQ_ELEM( start_pt, writer );
WRITE_PT(start_pt);
}
/* 3. run recursive process */
while( stack->total != 0 )
// 3. run recursive process
while( top > 0 )
{
cvSeqPop( stack, &slice );
slice = stack[--top];
end_pt = src_contour[slice.end];
pos = slice.start;
READ_PT(start_pt, pos);
cvSetSeqReaderPos( &reader, slice.end_index );
CV_READ_SEQ_ELEM( end_pt, reader );
cvSetSeqReaderPos( &reader, slice.start_index );
CV_READ_SEQ_ELEM( start_pt, reader );
if( slice.end_index > slice.start_index + 1 )
if( pos != slice.end )
{
double dx, dy, dist, max_dist = 0;
@ -588,15 +591,15 @@ icvApproxPolyDP( CvSeq* src_contour, int header_size,
assert( dx != 0 || dy != 0 );
for( i = slice.start_index + 1; i < slice.end_index; i++ )
while( pos != slice.end )
{
CV_READ_SEQ_ELEM( pt, reader );
READ_PT(pt, pos);
dist = fabs((pt.y - start_pt.y) * dx - (pt.x - start_pt.x) * dy);
if( dist > max_dist )
{
max_dist = dist;
right_slice.start_index = i;
right_slice.start = (pos+count-1)%count;
}
}
@ -604,46 +607,40 @@ icvApproxPolyDP( CvSeq* src_contour, int header_size,
}
else
{
assert( slice.end_index > slice.start_index );
le_eps = true;
/* read starting point */
cvSetSeqReaderPos( &reader, slice.start_index );
CV_READ_SEQ_ELEM( start_pt, reader );
// read starting point
start_pt = src_contour[slice.start];
}
if( le_eps )
{
CV_WRITE_SEQ_ELEM( start_pt, writer );
WRITE_PT(start_pt);
}
else
{
right_slice.end_index = slice.end_index;
slice.end_index = right_slice.start_index;
cvSeqPush( stack, &right_slice );
cvSeqPush( stack, &slice );
right_slice.end = slice.end;
slice.end = right_slice.start;
PUSH_SLICE(right_slice);
PUSH_SLICE(slice);
}
}
is_closed = CV_IS_SEQ_CLOSED( src_contour );
if( !is_closed )
CV_WRITE_SEQ_ELEM( end_pt, writer );
dst_contour = cvEndWriteSeq( &writer );
WRITE_PT( src_contour[count-1] );
// last stage: do final clean-up of the approximated contour -
// remove extra points on the [almost] stright lines.
is_closed = is_closed0;
count = new_count;
pos = is_closed ? count - 1 : 0;
READ_DST_PT(start_pt, pos);
wpos = pos;
READ_DST_PT(pt, pos);
cvStartReadSeq( dst_contour, &reader, is_closed );
CV_READ_SEQ_ELEM( start_pt, reader );
reader2 = reader;
CV_READ_SEQ_ELEM( pt, reader );
new_count = count = dst_contour->total;
for( i = !is_closed; i < count - !is_closed && new_count > 2; i++ )
{
double dx, dy, dist, successive_inner_product;
CV_READ_SEQ_ELEM( end_pt, reader );
READ_DST_PT( end_pt, pos );
dx = end_pt.x - start_pt.x;
dy = end_pt.y - start_pt.y;
@ -655,25 +652,51 @@ icvApproxPolyDP( CvSeq* src_contour, int header_size,
successive_inner_product >= 0 )
{
new_count--;
*((PT*)reader2.ptr) = start_pt = end_pt;
CV_NEXT_SEQ_ELEM( sizeof(pt), reader2 );
CV_READ_SEQ_ELEM( pt, reader );
dst_contour[wpos] = start_pt = end_pt;
if(++wpos >= count) wpos = 0;
READ_DST_PT(pt, pos);
i++;
continue;
}
*((PT*)reader2.ptr) = start_pt = pt;
CV_NEXT_SEQ_ELEM( sizeof(pt), reader2 );
dst_contour[wpos] = start_pt = pt;
if(++wpos >= count) wpos = 0;
pt = end_pt;
}
if( !is_closed )
*((PT*)reader2.ptr) = pt;
dst_contour[wpos] = pt;
if( new_count < count )
cvSeqPopMulti( dst_contour, 0, count - new_count );
return new_count;
}
cvReleaseMemStorage( &temp_storage );
return dst_contour;
}
void cv::approxPolyDP( InputArray _curve, OutputArray _approxCurve,
double epsilon, bool closed )
{
Mat curve = _curve.getMat();
int npoints = curve.checkVector(2), depth = curve.depth();
CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F));
if( npoints == 0 )
{
_approxCurve.release();
return;
}
AutoBuffer<Point> _buf(npoints);
AutoBuffer<Range> _stack(npoints);
Point* buf = _buf;
int nout = 0;
if( depth == CV_32S )
nout = approxPolyDP_(curve.ptr<Point>(), npoints, buf, closed, epsilon, &_stack);
else if( depth == CV_32F )
nout = approxPolyDP_(curve.ptr<Point2f>(), npoints, (Point2f*)buf, closed, epsilon, &_stack);
else
CV_Error( CV_StsUnsupportedFormat, "" );
Mat(nout, 1, CV_MAKETYPE(depth, 2), buf).copyTo(_approxCurve);
}
@ -682,6 +705,8 @@ cvApproxPoly( const void* array, int header_size,
CvMemStorage* storage, int method,
double parameter, int parameter2 )
{
cv::AutoBuffer<cv::Point> _buf;
cv::AutoBuffer<cv::Range> stack(100);
CvSeq* dst_seq = 0;
CvSeq *prev_contour = 0, *parent = 0;
CvContour contour_header;
@ -749,13 +774,34 @@ cvApproxPoly( const void* array, int header_size,
if( parameter < 0 )
CV_Error( CV_StsOutOfRange, "Accuracy must be non-negative" );
if( CV_SEQ_ELTYPE(src_seq) == CV_32SC2 )
contour = icvApproxPolyDP<int>( src_seq, header_size, storage, parameter );
CV_Assert( CV_SEQ_ELTYPE(src_seq) == CV_32SC2 ||
CV_SEQ_ELTYPE(src_seq) == CV_32FC2 );
{
int npoints = src_seq->total, nout = 0;
_buf.allocate(npoints*2);
cv::Point *src = _buf, *dst = src + npoints;
bool closed = CV_IS_SEQ_CLOSED(src_seq);
if( src_seq->first->next == src_seq->first )
src = (cv::Point*)src_seq->first->data;
else
contour = icvApproxPolyDP<float>( src_seq, header_size, storage, parameter );
cvCvtSeqToArray(src_seq, src);
if( CV_SEQ_ELTYPE(src_seq) == CV_32SC2 )
nout = cv::approxPolyDP_(src, npoints, dst, closed, parameter, &stack);
else if( CV_SEQ_ELTYPE(src_seq) == CV_32FC2 )
nout = cv::approxPolyDP_((cv::Point2f*)src, npoints,
(cv::Point2f*)dst, closed, parameter, &stack);
else
CV_Error( CV_StsUnsupportedFormat, "" );
contour = cvCreateSeq( src_seq->flags, header_size,
src_seq->elem_size, storage );
cvSeqPushMulti(contour, dst, nout);
}
break;
default:
assert(0);
CV_Error( CV_StsBadArg, "Invalid approximation method" );
}

View File

@ -1753,23 +1753,6 @@ void cv::findContours( InputOutputArray _image, OutputArrayOfArrays _contours,
findContours(_image, _contours, noArray(), mode, method, offset);
}
void cv::approxPolyDP( InputArray _curve, OutputArray _approxCurve,
double epsilon, bool closed )
{
Mat curve = _curve.getMat();
int npoints = curve.checkVector(2), depth = curve.depth();
CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F));
CvMat _ccurve = curve;
MemStorage storage(cvCreateMemStorage());
CvSeq* result = cvApproxPoly(&_ccurve, sizeof(CvContour), storage, CV_POLY_APPROX_DP, epsilon, closed);
if( result->total > 0 )
{
_approxCurve.create(result->total, 1, CV_MAKETYPE(curve.depth(), 2), -1, true);
cvCvtSeqToArray(result, _approxCurve.getMat().data );
}
}
double cv::arcLength( InputArray _curve, bool closed )
{
Mat curve = _curve.getMat();