mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00
batch_norm and blank layer ocl implementation
Signed-off-by: Li Peng <peng.li@intel.com>
This commit is contained in:
parent
67f9406cbe
commit
e3b42bf93b
@ -22,6 +22,7 @@ class BatchNormLayerImpl : public BatchNormLayer
|
|||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Mat weights_, bias_;
|
Mat weights_, bias_;
|
||||||
|
Mat weightMat, biasMat;
|
||||||
|
|
||||||
BatchNormLayerImpl(const LayerParams& params)
|
BatchNormLayerImpl(const LayerParams& params)
|
||||||
{
|
{
|
||||||
@ -96,17 +97,81 @@ public:
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
|
||||||
|
{
|
||||||
|
if (inputs[0]->dims == 4)
|
||||||
|
{
|
||||||
|
int groups = inputs[0]->size[0];
|
||||||
|
int channels = inputs[0]->size[1];
|
||||||
|
int rows = inputs[0]->size[2];
|
||||||
|
int cols = inputs[0]->size[3];
|
||||||
|
MatShape s = shape(groups * channels, rows * cols);
|
||||||
|
weightMat = Mat(s[0], s[1], CV_32FC1);
|
||||||
|
biasMat = Mat(s[0], s[1], CV_32FC1);
|
||||||
|
for (int n = 0; n < s[0]; n++)
|
||||||
|
{
|
||||||
|
weightMat.row(n).setTo(weights_.at<float>(n % channels));
|
||||||
|
biasMat.row(n).setTo(bias_.at<float>(n % channels));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
virtual bool supportBackend(int backendId)
|
virtual bool supportBackend(int backendId)
|
||||||
{
|
{
|
||||||
return backendId == DNN_BACKEND_DEFAULT ||
|
return backendId == DNN_BACKEND_DEFAULT ||
|
||||||
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef HAVE_OPENCL
|
||||||
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
||||||
|
{
|
||||||
|
std::vector<UMat> inputs;
|
||||||
|
std::vector<UMat> outputs;
|
||||||
|
|
||||||
|
inputs_.getUMatVector(inputs);
|
||||||
|
outputs_.getUMatVector(outputs);
|
||||||
|
|
||||||
|
CV_Assert(blobs.size() >= 2);
|
||||||
|
CV_Assert(inputs.size() == 1);
|
||||||
|
|
||||||
|
UMat &inpBlob = inputs[0];
|
||||||
|
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4);
|
||||||
|
int groups = inpBlob.size[0];
|
||||||
|
int channels = inpBlob.size[1];
|
||||||
|
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1;
|
||||||
|
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1;
|
||||||
|
|
||||||
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||||||
|
{
|
||||||
|
if (inpBlob.dims == 2)
|
||||||
|
{
|
||||||
|
UMat& src = inputs[ii];
|
||||||
|
UMat& dst = outputs[ii];
|
||||||
|
multiply(src, weights_, dst);
|
||||||
|
add(dst, bias_, dst);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
MatShape s = shape(groups * channels, rows * cols);
|
||||||
|
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
|
||||||
|
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
|
||||||
|
multiply(src, weightMat, dst);
|
||||||
|
add(dst, biasMat, dst);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
||||||
{
|
{
|
||||||
CV_TRACE_FUNCTION();
|
CV_TRACE_FUNCTION();
|
||||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||||
|
|
||||||
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||||
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||||
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||||
|
|
||||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -63,8 +63,22 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
#ifdef HAVE_OPENCL
|
#ifdef HAVE_OPENCL
|
||||||
bool forward_ocl(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals)
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
||||||
{
|
{
|
||||||
|
std::vector<UMat> inputs;
|
||||||
|
std::vector<UMat> outputs;
|
||||||
|
|
||||||
|
inputs_.getUMatVector(inputs);
|
||||||
|
outputs_.getUMatVector(outputs);
|
||||||
|
|
||||||
|
for (int i = 0, n = outputs.size(); i < n; ++i)
|
||||||
|
{
|
||||||
|
void *src_handle = inputs[i].handle(ACCESS_READ);
|
||||||
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
|
||||||
|
if (src_handle != dst_handle)
|
||||||
|
inputs[i].copyTo(outputs[i]);
|
||||||
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -152,6 +152,13 @@ TEST(Test_TensorFlow, batch_norm)
|
|||||||
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true);
|
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
OCL_TEST(Test_TensorFlow, batch_norm)
|
||||||
|
{
|
||||||
|
runTensorFlowNet("batch_norm", DNN_TARGET_OPENCL);
|
||||||
|
runTensorFlowNet("fused_batch_norm", DNN_TARGET_OPENCL);
|
||||||
|
runTensorFlowNet("batch_norm_text", DNN_TARGET_OPENCL, true);
|
||||||
|
}
|
||||||
|
|
||||||
TEST(Test_TensorFlow, pooling)
|
TEST(Test_TensorFlow, pooling)
|
||||||
{
|
{
|
||||||
runTensorFlowNet("max_pool_even");
|
runTensorFlowNet("max_pool_even");
|
||||||
|
@ -170,6 +170,11 @@ TEST(Torch_Importer, run_batch_norm)
|
|||||||
runTorchNet("net_batch_norm", DNN_TARGET_CPU, "", false, true);
|
runTorchNet("net_batch_norm", DNN_TARGET_CPU, "", false, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
OCL_TEST(Torch_Importer, run_batch_norm)
|
||||||
|
{
|
||||||
|
runTorchNet("net_batch_norm", DNN_TARGET_OPENCL, "", false, true);
|
||||||
|
}
|
||||||
|
|
||||||
TEST(Torch_Importer, net_prelu)
|
TEST(Torch_Importer, net_prelu)
|
||||||
{
|
{
|
||||||
runTorchNet("net_prelu");
|
runTorchNet("net_prelu");
|
||||||
@ -242,6 +247,11 @@ TEST(Torch_Importer, net_non_spatial)
|
|||||||
runTorchNet("net_non_spatial", DNN_TARGET_CPU, "", false, true);
|
runTorchNet("net_non_spatial", DNN_TARGET_CPU, "", false, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
OCL_TEST(Torch_Importer, net_non_spatial)
|
||||||
|
{
|
||||||
|
runTorchNet("net_non_spatial", DNN_TARGET_OPENCL, "", false, true);
|
||||||
|
}
|
||||||
|
|
||||||
TEST(Torch_Importer, ENet_accuracy)
|
TEST(Torch_Importer, ENet_accuracy)
|
||||||
{
|
{
|
||||||
Net net;
|
Net net;
|
||||||
|
Loading…
Reference in New Issue
Block a user