mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
Merge remote-tracking branch 'itseezstream/master'
This commit is contained in:
commit
e3e5fd5baa
@ -47,6 +47,7 @@
|
||||
#include "opencv2/core.hpp"
|
||||
#include <vector>
|
||||
#include <deque>
|
||||
#include <string>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -163,7 +164,8 @@ public:
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
\param cb Callback with the classifier.
|
||||
if omitted tries to load a default classifier from file trained_classifierNM1.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM1()
|
||||
from file in samples/cpp/trained_classifierNM1.xml
|
||||
\param thresholdDelta Threshold step in subsequent thresholds when extracting the component tree
|
||||
\param minArea The minimum area (% of image size) allowed for retreived ER's
|
||||
\param minArea The maximum area (% of image size) allowed for retreived ER's
|
||||
@ -171,7 +173,7 @@ public:
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param minProbability The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = Ptr<ERFilter::Callback>(),
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb,
|
||||
int thresholdDelta = 1, float minArea = 0.00025,
|
||||
float maxArea = 0.13, float minProbability = 0.4,
|
||||
bool nonMaxSuppression = true,
|
||||
@ -187,13 +189,31 @@ CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = P
|
||||
additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.
|
||||
|
||||
\param cb Callback with the classifier
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM2()
|
||||
from file in samples/cpp/trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb = Ptr<ERFilter::Callback>(),
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb,
|
||||
float minProbability = 0.3);
|
||||
|
||||
|
||||
/*!
|
||||
Allow to implicitly load the default classifier when creating an ERFilter object.
|
||||
The function takes as parameter the XML or YAML file with the classifier model
|
||||
(e.g. trained_classifierNM1.xml) returns a pointer to ERFilter::Callback.
|
||||
*/
|
||||
|
||||
CV_EXPORTS Ptr<ERFilter::Callback> loadClassifierNM1(const std::string& filename);
|
||||
|
||||
/*!
|
||||
Allow to implicitly load the default classifier when creating an ERFilter object.
|
||||
The function takes as parameter the XML or YAML file with the classifier model
|
||||
(e.g. trained_classifierNM1.xml) returns a pointer to ERFilter::Callback.
|
||||
*/
|
||||
|
||||
CV_EXPORTS Ptr<ERFilter::Callback> loadClassifierNM2(const std::string& filename);
|
||||
|
||||
|
||||
// computeNMChannels operation modes
|
||||
enum { ERFILTER_NM_RGBLGrad = 0,
|
||||
ERFILTER_NM_IHSGrad = 1
|
||||
|
@ -137,7 +137,7 @@ class CV_EXPORTS ERClassifierNM1 : public ERFilter::Callback
|
||||
{
|
||||
public:
|
||||
//Constructor
|
||||
ERClassifierNM1();
|
||||
ERClassifierNM1(const std::string& filename);
|
||||
// Destructor
|
||||
~ERClassifierNM1() {};
|
||||
|
||||
@ -153,7 +153,7 @@ class CV_EXPORTS ERClassifierNM2 : public ERFilter::Callback
|
||||
{
|
||||
public:
|
||||
//constructor
|
||||
ERClassifierNM2();
|
||||
ERClassifierNM2(const std::string& filename);
|
||||
// Destructor
|
||||
~ERClassifierNM2() {};
|
||||
|
||||
@ -988,24 +988,13 @@ int ERFilterNM::getNumRejected()
|
||||
|
||||
|
||||
// load default 1st stage classifier if found
|
||||
ERClassifierNM1::ERClassifierNM1()
|
||||
ERClassifierNM1::ERClassifierNM1(const std::string& filename)
|
||||
{
|
||||
|
||||
if (ifstream("./trained_classifierNM1.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./trained_classifierNM1.xml", "boost");
|
||||
}
|
||||
else if (ifstream("./training/trained_classifierNM1.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./training/trained_classifierNM1.xml", "boost");
|
||||
}
|
||||
if (ifstream(filename.c_str()))
|
||||
boost.load( filename.c_str(), "boost" );
|
||||
else
|
||||
{
|
||||
// File not found
|
||||
CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM1.xml not found!");
|
||||
}
|
||||
CV_Error(CV_StsBadArg, "Default classifier file not found!");
|
||||
};
|
||||
|
||||
double ERClassifierNM1::eval(const ERStat& stat)
|
||||
@ -1026,24 +1015,12 @@ double ERClassifierNM1::eval(const ERStat& stat)
|
||||
|
||||
|
||||
// load default 2nd stage classifier if found
|
||||
ERClassifierNM2::ERClassifierNM2()
|
||||
ERClassifierNM2::ERClassifierNM2(const std::string& filename)
|
||||
{
|
||||
|
||||
if (ifstream("./trained_classifierNM2.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./trained_classifierNM2.xml", "boost");
|
||||
}
|
||||
else if (ifstream("./training/trained_classifierNM2.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./training/trained_classifierNM2.xml", "boost");
|
||||
}
|
||||
if (ifstream(filename.c_str()))
|
||||
boost.load( filename.c_str(), "boost" );
|
||||
else
|
||||
{
|
||||
// File not found
|
||||
CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM2.xml not found!");
|
||||
}
|
||||
CV_Error(CV_StsBadArg, "Default classifier file not found!");
|
||||
};
|
||||
|
||||
double ERClassifierNM2::eval(const ERStat& stat)
|
||||
@ -1079,7 +1056,8 @@ double ERClassifierNM2::eval(const ERStat& stat)
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
\param cb Callback with the classifier.
|
||||
if omitted tries to load a default classifier from file trained_classifierNM1.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM1()
|
||||
from file in samples/cpp/trained_classifierNM1.xml
|
||||
\param thresholdDelta Threshold step in subsequent thresholds when extracting the component tree
|
||||
\param minArea The minimum area (% of image size) allowed for retreived ER's
|
||||
\param minArea The maximum area (% of image size) allowed for retreived ER's
|
||||
@ -1099,9 +1077,6 @@ Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int threshold
|
||||
|
||||
Ptr<ERFilterNM> filter = makePtr<ERFilterNM>();
|
||||
|
||||
if (cb == NULL)
|
||||
filter->setCallback(makePtr<ERClassifierNM1>());
|
||||
else
|
||||
filter->setCallback(cb);
|
||||
|
||||
filter->setThresholdDelta(thresholdDelta);
|
||||
@ -1123,7 +1098,8 @@ Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int threshold
|
||||
additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.
|
||||
|
||||
\param cb Callback with the classifier
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
default classifier can be implicitly load with function loadClassifierNM1()
|
||||
from file in samples/cpp/trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProbability)
|
||||
@ -1133,15 +1109,33 @@ Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProb
|
||||
|
||||
Ptr<ERFilterNM> filter = makePtr<ERFilterNM>();
|
||||
|
||||
if (cb == NULL)
|
||||
filter->setCallback(makePtr<ERClassifierNM2>());
|
||||
else
|
||||
filter->setCallback(cb);
|
||||
|
||||
filter->setMinProbability(minProbability);
|
||||
return (Ptr<ERFilter>)filter;
|
||||
}
|
||||
|
||||
/*!
|
||||
Allow to implicitly load the default classifier when creating an ERFilter object.
|
||||
The function takes as parameter the XML or YAML file with the classifier model
|
||||
(e.g. trained_classifierNM1.xml) returns a pointer to ERFilter::Callback.
|
||||
*/
|
||||
Ptr<ERFilter::Callback> loadClassifierNM1(const std::string& filename)
|
||||
|
||||
{
|
||||
return makePtr<ERClassifierNM1>(filename);
|
||||
}
|
||||
|
||||
/*!
|
||||
Allow to implicitly load the default classifier when creating an ERFilter object.
|
||||
The function takes as parameter the XML or YAML file with the classifier model
|
||||
(e.g. trained_classifierNM2.xml) returns a pointer to ERFilter::Callback.
|
||||
*/
|
||||
Ptr<ERFilter::Callback> loadClassifierNM2(const std::string& filename)
|
||||
{
|
||||
return makePtr<ERClassifierNM2>(filename);
|
||||
}
|
||||
|
||||
|
||||
/* ------------------------------------------------------------------------------------*/
|
||||
/* -------------------------------- Compute Channels NM -------------------------------*/
|
||||
|
@ -58,7 +58,7 @@ int main(int argc, const char * argv[])
|
||||
double t = (double)getTickCount();
|
||||
|
||||
// Build ER tree and filter with the 1st stage default classifier
|
||||
Ptr<ERFilter> er_filter1 = createERFilterNM1();
|
||||
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"));
|
||||
|
||||
er_filter1->run(grey, regions);
|
||||
|
||||
@ -89,7 +89,7 @@ int main(int argc, const char * argv[])
|
||||
t = (double)getTickCount();
|
||||
|
||||
// Default second stage classifier
|
||||
Ptr<ERFilter> er_filter2 = createERFilterNM2();
|
||||
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"));
|
||||
er_filter2->run(grey, regions);
|
||||
|
||||
t = (double)getTickCount() - t;
|
||||
|
Loading…
Reference in New Issue
Block a user