mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #3583 from oresths:tbb_canny
This commit is contained in:
commit
e4bc592c46
@ -230,7 +230,352 @@ static bool ocl_Canny(InputArray _src, OutputArray _dst, float low_thresh, float
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
#ifdef HAVE_TBB
|
||||
|
||||
// Queue with peaks that will processed serially.
|
||||
static tbb::concurrent_queue<uchar*> borderPeaks;
|
||||
|
||||
class tbbCanny
|
||||
{
|
||||
public:
|
||||
tbbCanny(const Range _boundaries, const Mat& _src, uchar* _map, int _low,
|
||||
int _high, int _aperture_size, bool _L2gradient)
|
||||
: boundaries(_boundaries), src(_src), map(_map), low(_low), high(_high),
|
||||
aperture_size(_aperture_size), L2gradient(_L2gradient)
|
||||
{}
|
||||
|
||||
// This parallel version of Canny algorithm splits the src image in threadsNumber horizontal slices.
|
||||
// The first row of each slice contains the last row of the previous slice and
|
||||
// the last row of each slice contains the first row of the next slice
|
||||
// so that each slice is independent and no mutexes are required.
|
||||
void operator()() const
|
||||
{
|
||||
#if CV_SSE2
|
||||
bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
|
||||
#endif
|
||||
|
||||
const int type = src.type(), cn = CV_MAT_CN(type);
|
||||
|
||||
Mat dx, dy;
|
||||
|
||||
ptrdiff_t mapstep = src.cols + 2;
|
||||
|
||||
// In sobel transform we calculate ksize2 extra lines for the first and last rows of each slice
|
||||
// because IPPDerivSobel expects only isolated ROIs, in contrast with the opencv version which
|
||||
// uses the pixels outside of the ROI to form a border.
|
||||
uchar ksize2 = aperture_size / 2;
|
||||
|
||||
if (boundaries.start == 0 && boundaries.end == src.rows)
|
||||
{
|
||||
Mat tempdx(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
|
||||
Mat tempdy(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
|
||||
|
||||
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
|
||||
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
|
||||
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
|
||||
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));
|
||||
|
||||
Sobel(src, tempdx.rowRange(1, tempdx.rows - 1), CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
Sobel(src, tempdy.rowRange(1, tempdy.rows - 1), CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
|
||||
dx = tempdx;
|
||||
dy = tempdy;
|
||||
}
|
||||
else if (boundaries.start == 0)
|
||||
{
|
||||
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
|
||||
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
|
||||
|
||||
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
|
||||
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
|
||||
|
||||
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdx.rowRange(1, tempdx.rows),
|
||||
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdy.rowRange(1, tempdy.rows),
|
||||
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
|
||||
dx = tempdx.rowRange(0, tempdx.rows - ksize2);
|
||||
dy = tempdy.rowRange(0, tempdy.rows - ksize2);
|
||||
}
|
||||
else if (boundaries.end == src.rows)
|
||||
{
|
||||
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
|
||||
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
|
||||
|
||||
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
|
||||
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));
|
||||
|
||||
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdx.rowRange(0, tempdx.rows - 1),
|
||||
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdy.rowRange(0, tempdy.rows - 1),
|
||||
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
|
||||
dx = tempdx.rowRange(ksize2, tempdx.rows);
|
||||
dy = tempdy.rowRange(ksize2, tempdy.rows);
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat tempdx(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
|
||||
Mat tempdy(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
|
||||
|
||||
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdx,
|
||||
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdy,
|
||||
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
|
||||
|
||||
dx = tempdx.rowRange(ksize2, tempdx.rows - ksize2);
|
||||
dy = tempdy.rowRange(ksize2, tempdy.rows - ksize2);
|
||||
}
|
||||
|
||||
int maxsize = std::max(1 << 10, src.cols * (boundaries.end - boundaries.start) / 10);
|
||||
std::vector<uchar*> stack(maxsize);
|
||||
uchar **stack_top = &stack[0];
|
||||
uchar **stack_bottom = &stack[0];
|
||||
|
||||
AutoBuffer<uchar> buffer(cn * mapstep * 3 * sizeof(int));
|
||||
|
||||
int* mag_buf[3];
|
||||
mag_buf[0] = (int*)(uchar*)buffer;
|
||||
mag_buf[1] = mag_buf[0] + mapstep*cn;
|
||||
mag_buf[2] = mag_buf[1] + mapstep*cn;
|
||||
|
||||
// calculate magnitude and angle of gradient, perform non-maxima suppression.
|
||||
// fill the map with one of the following values:
|
||||
// 0 - the pixel might belong to an edge
|
||||
// 1 - the pixel can not belong to an edge
|
||||
// 2 - the pixel does belong to an edge
|
||||
for (int i = boundaries.start - 1; i <= boundaries.end; i++)
|
||||
{
|
||||
int* _norm = mag_buf[(i > boundaries.start) - (i == boundaries.start - 1) + 1] + 1;
|
||||
|
||||
short* _dx = dx.ptr<short>(i - boundaries.start + 1);
|
||||
short* _dy = dy.ptr<short>(i - boundaries.start + 1);
|
||||
|
||||
if (!L2gradient)
|
||||
{
|
||||
int j = 0, width = src.cols * cn;
|
||||
#if CV_SSE2
|
||||
if (haveSSE2)
|
||||
{
|
||||
__m128i v_zero = _mm_setzero_si128();
|
||||
for ( ; j <= width - 8; j += 8)
|
||||
{
|
||||
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
|
||||
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
|
||||
v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx));
|
||||
v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy));
|
||||
|
||||
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero));
|
||||
_mm_storeu_si128((__m128i *)(_norm + j), v_norm);
|
||||
|
||||
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero));
|
||||
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
|
||||
}
|
||||
}
|
||||
#elif CV_NEON
|
||||
for ( ; j <= width - 8; j += 8)
|
||||
{
|
||||
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
|
||||
vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))),
|
||||
vabsq_s32(vmovl_s16(vget_low_s16(v_dy)))));
|
||||
vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))),
|
||||
vabsq_s32(vmovl_s16(vget_high_s16(v_dy)))));
|
||||
}
|
||||
#endif
|
||||
for ( ; j < width; ++j)
|
||||
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
|
||||
}
|
||||
else
|
||||
{
|
||||
int j = 0, width = src.cols * cn;
|
||||
#if CV_SSE2
|
||||
if (haveSSE2)
|
||||
{
|
||||
for ( ; j <= width - 8; j += 8)
|
||||
{
|
||||
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
|
||||
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
|
||||
|
||||
__m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx);
|
||||
__m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy);
|
||||
|
||||
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh));
|
||||
_mm_storeu_si128((__m128i *)(_norm + j), v_norm);
|
||||
|
||||
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh));
|
||||
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
|
||||
}
|
||||
}
|
||||
#elif CV_NEON
|
||||
for ( ; j <= width - 8; j += 8)
|
||||
{
|
||||
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
|
||||
int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy);
|
||||
int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
|
||||
vst1q_s32(_norm + j, v_dst);
|
||||
|
||||
v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy);
|
||||
v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
|
||||
vst1q_s32(_norm + j + 4, v_dst);
|
||||
}
|
||||
#endif
|
||||
for ( ; j < width; ++j)
|
||||
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
|
||||
}
|
||||
|
||||
if (cn > 1)
|
||||
{
|
||||
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
|
||||
{
|
||||
int maxIdx = jn;
|
||||
for(int k = 1; k < cn; ++k)
|
||||
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
|
||||
_norm[j] = _norm[maxIdx];
|
||||
_dx[j] = _dx[maxIdx];
|
||||
_dy[j] = _dy[maxIdx];
|
||||
}
|
||||
}
|
||||
_norm[-1] = _norm[src.cols] = 0;
|
||||
|
||||
// at the very beginning we do not have a complete ring
|
||||
// buffer of 3 magnitude rows for non-maxima suppression
|
||||
if (i <= boundaries.start)
|
||||
continue;
|
||||
|
||||
uchar* _map = map + mapstep*i + 1;
|
||||
_map[-1] = _map[src.cols] = 1;
|
||||
|
||||
int* _mag = mag_buf[1] + 1; // take the central row
|
||||
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
|
||||
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];
|
||||
|
||||
const short* _x = dx.ptr<short>(i - boundaries.start);
|
||||
const short* _y = dy.ptr<short>(i - boundaries.start);
|
||||
|
||||
if ((stack_top - stack_bottom) + src.cols > maxsize)
|
||||
{
|
||||
int sz = (int)(stack_top - stack_bottom);
|
||||
maxsize = std::max(maxsize * 3/2, sz + src.cols);
|
||||
stack.resize(maxsize);
|
||||
stack_bottom = &stack[0];
|
||||
stack_top = stack_bottom + sz;
|
||||
}
|
||||
|
||||
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d)
|
||||
#define CANNY_POP(d) (d) = *--stack_top
|
||||
|
||||
int prev_flag = 0;
|
||||
bool canny_push = false;
|
||||
for (int j = 0; j < src.cols; j++)
|
||||
{
|
||||
#define CANNY_SHIFT 15
|
||||
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);
|
||||
|
||||
int m = _mag[j];
|
||||
|
||||
if (m > low)
|
||||
{
|
||||
int xs = _x[j];
|
||||
int ys = _y[j];
|
||||
int x = std::abs(xs);
|
||||
int y = std::abs(ys) << CANNY_SHIFT;
|
||||
|
||||
int tg22x = x * TG22;
|
||||
|
||||
if (y < tg22x)
|
||||
{
|
||||
if (m > _mag[j-1] && m >= _mag[j+1]) canny_push = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
int tg67x = tg22x + (x << (CANNY_SHIFT+1));
|
||||
if (y > tg67x)
|
||||
{
|
||||
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) canny_push = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
int s = (xs ^ ys) < 0 ? -1 : 1;
|
||||
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) canny_push = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!canny_push)
|
||||
{
|
||||
prev_flag = 0;
|
||||
_map[j] = uchar(1);
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
// _map[j-mapstep] is short-circuited at the start because previous thread is
|
||||
// responsible for initializing it.
|
||||
if (!prev_flag && m > high && (i <= boundaries.start+1 || _map[j-mapstep] != 2) )
|
||||
{
|
||||
CANNY_PUSH(_map + j);
|
||||
prev_flag = 1;
|
||||
}
|
||||
else
|
||||
_map[j] = 0;
|
||||
|
||||
canny_push = false;
|
||||
}
|
||||
}
|
||||
|
||||
// scroll the ring buffer
|
||||
_mag = mag_buf[0];
|
||||
mag_buf[0] = mag_buf[1];
|
||||
mag_buf[1] = mag_buf[2];
|
||||
mag_buf[2] = _mag;
|
||||
}
|
||||
|
||||
// now track the edges (hysteresis thresholding)
|
||||
while (stack_top > stack_bottom)
|
||||
{
|
||||
if ((stack_top - stack_bottom) + 8 > maxsize)
|
||||
{
|
||||
int sz = (int)(stack_top - stack_bottom);
|
||||
maxsize = maxsize * 3/2;
|
||||
stack.resize(maxsize);
|
||||
stack_bottom = &stack[0];
|
||||
stack_top = stack_bottom + sz;
|
||||
}
|
||||
|
||||
uchar* m;
|
||||
CANNY_POP(m);
|
||||
|
||||
// Stops thresholding from expanding to other slices by sending pixels in the borders of each
|
||||
// slice in a queue to be serially processed later.
|
||||
if ( (m < map + (boundaries.start + 2) * mapstep) || (m >= map + boundaries.end * mapstep) )
|
||||
{
|
||||
borderPeaks.push(m);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!m[-1]) CANNY_PUSH(m - 1);
|
||||
if (!m[1]) CANNY_PUSH(m + 1);
|
||||
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
|
||||
if (!m[-mapstep]) CANNY_PUSH(m - mapstep);
|
||||
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
|
||||
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1);
|
||||
if (!m[mapstep]) CANNY_PUSH(m + mapstep);
|
||||
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const Range boundaries;
|
||||
const Mat& src;
|
||||
uchar* map;
|
||||
int low;
|
||||
int high;
|
||||
int aperture_size;
|
||||
bool L2gradient;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
} // namespace cv
|
||||
|
||||
void cv::Canny( InputArray _src, OutputArray _dst,
|
||||
double low_thresh, double high_thresh,
|
||||
@ -280,6 +625,69 @@ void cv::Canny( InputArray _src, OutputArray _dst,
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_TBB
|
||||
|
||||
if (L2gradient)
|
||||
{
|
||||
low_thresh = std::min(32767.0, low_thresh);
|
||||
high_thresh = std::min(32767.0, high_thresh);
|
||||
|
||||
if (low_thresh > 0) low_thresh *= low_thresh;
|
||||
if (high_thresh > 0) high_thresh *= high_thresh;
|
||||
}
|
||||
int low = cvFloor(low_thresh);
|
||||
int high = cvFloor(high_thresh);
|
||||
|
||||
ptrdiff_t mapstep = src.cols + 2;
|
||||
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2));
|
||||
|
||||
uchar* map = (uchar*)buffer;
|
||||
memset(map, 1, mapstep);
|
||||
memset(map + mapstep*(src.rows + 1), 1, mapstep);
|
||||
|
||||
int threadsNumber = tbb::task_scheduler_init::default_num_threads();
|
||||
int grainSize = src.rows / threadsNumber;
|
||||
|
||||
// Make a fallback for pictures with too few rows.
|
||||
uchar ksize2 = aperture_size / 2;
|
||||
int minGrainSize = 1 + ksize2;
|
||||
int maxGrainSize = src.rows - 2 - 2*ksize2;
|
||||
if ( !( minGrainSize <= grainSize && grainSize <= maxGrainSize ) )
|
||||
{
|
||||
threadsNumber = 1;
|
||||
grainSize = src.rows;
|
||||
}
|
||||
|
||||
tbb::task_group g;
|
||||
|
||||
for (int i = 0; i < threadsNumber; ++i)
|
||||
{
|
||||
if (i < threadsNumber - 1)
|
||||
g.run(tbbCanny(Range(i * grainSize, (i + 1) * grainSize), src, map, low, high, aperture_size, L2gradient));
|
||||
else
|
||||
g.run(tbbCanny(Range(i * grainSize, src.rows), src, map, low, high, aperture_size, L2gradient));
|
||||
}
|
||||
|
||||
g.wait();
|
||||
|
||||
#define CANNY_PUSH_SERIAL(d) *(d) = uchar(2), borderPeaks.push(d)
|
||||
|
||||
// now track the edges (hysteresis thresholding)
|
||||
uchar* m;
|
||||
while (borderPeaks.try_pop(m))
|
||||
{
|
||||
if (!m[-1]) CANNY_PUSH_SERIAL(m - 1);
|
||||
if (!m[1]) CANNY_PUSH_SERIAL(m + 1);
|
||||
if (!m[-mapstep-1]) CANNY_PUSH_SERIAL(m - mapstep - 1);
|
||||
if (!m[-mapstep]) CANNY_PUSH_SERIAL(m - mapstep);
|
||||
if (!m[-mapstep+1]) CANNY_PUSH_SERIAL(m - mapstep + 1);
|
||||
if (!m[mapstep-1]) CANNY_PUSH_SERIAL(m + mapstep - 1);
|
||||
if (!m[mapstep]) CANNY_PUSH_SERIAL(m + mapstep);
|
||||
if (!m[mapstep+1]) CANNY_PUSH_SERIAL(m + mapstep + 1);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
Mat dx(src.rows, src.cols, CV_16SC(cn));
|
||||
Mat dy(src.rows, src.cols, CV_16SC(cn));
|
||||
|
||||
@ -540,6 +948,8 @@ __ocv_canny_push:
|
||||
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// the final pass, form the final image
|
||||
const uchar* pmap = map + mapstep + 1;
|
||||
uchar* pdst = dst.ptr();
|
||||
|
Loading…
Reference in New Issue
Block a user