Merge remote-tracking branch 'origin/master'

This commit is contained in:
Vsevolod Glumov 2012-08-15 15:12:48 +04:00
commit e578259a34
12 changed files with 726 additions and 36 deletions

View File

@ -112,6 +112,8 @@ namespace cv { namespace gpu
int multiProcessorCount() const { return multi_processor_count_; }
size_t sharedMemPerBlock() const { return sharedMemPerBlock_; }
size_t freeMemory() const;
size_t totalMemory() const;
@ -133,6 +135,7 @@ namespace cv { namespace gpu
int multi_processor_count_;
int majorVersion_;
int minorVersion_;
size_t sharedMemPerBlock_;
};
CV_EXPORTS void printCudaDeviceInfo(int device);

View File

@ -42,7 +42,6 @@
#include "precomp.hpp"
#include "opencv2/core/gpumat.hpp"
#include <iostream>
#ifdef HAVE_CUDA
@ -301,6 +300,7 @@ void cv::gpu::DeviceInfo::query()
multi_processor_count_ = prop.multiProcessorCount;
majorVersion_ = prop.major;
minorVersion_ = prop.minor;
sharedMemPerBlock_ = prop.sharedMemPerBlock;
}
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const

View File

@ -426,10 +426,10 @@ void BFMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMat
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ )
{
const float* distptr = dist.ptr<float>(qIdx);
const float* distptr = distf.ptr<float>(qIdx);
vector<DMatch>& mq = matches[qIdx];
for( int k = 0; k < dist.cols; k++ )
for( int k = 0; k < distf.cols; k++ )
{
if( distptr[k] <= maxDistance )
mq.push_back( DMatch(qIdx, k, iIdx, distptr[k]) );

View File

@ -885,3 +885,94 @@ Finds edges in an image using the [Canny86]_ algorithm.
.. seealso:: :ocv:func:`Canny`
gpu::HoughLines
---------------
Finds lines in a binary image using the classical Hough transform.
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
:param src: 8-bit, single-channel binary source image.
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
:param rho: Distance resolution of the accumulator in pixels.
:param theta: Angle resolution of the accumulator in radians.
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
:param doSort: Performs lines sort by votes.
:param maxLines: Maximum number of output lines.
:param accum: Optional buffer for accumulator to avoid extra memory allocations (for many calls with the same sizes).
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
.. seealso:: :ocv:func:`HoughLines`
gpu::HoughLinesTransform
------------------------
Performs classical Hough transform for line detection.
.. ocv:function:: void gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
:param src: 8-bit, single-channel binary source image.
:param accum: Output accumulator array.
:param buf: Buffer to avoid extra memory allocations (for many calls with the same sizes).
:param rho: Distance resolution of the accumulator in pixels.
:param theta: Angle resolution of the accumulator in radians.
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
.. seealso:: :ocv:func:`gpu::HoughLines`
gpu::HoughLinesGet
------------------
Finds lines in Hough space.
.. ocv:function:: void gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
:param accum: Accumulator array.
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
:param rho: Distance resolution of the accumulator in pixels.
:param theta: Angle resolution of the accumulator in radians.
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
:param doSort: Performs lines sort by votes.
:param maxLines: Maximum number of output lines.
.. seealso:: :ocv:func:`gpu::HoughLines`
gpu::HoughLinesDownload
-----------------------
Downloads results from :ocv:func:`gpu::HoughLines` to host memory.
.. ocv:function:: void gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray())
:param d_lines: Result of :ocv:func:`gpu::HoughLines` .
:param h_lines: Output host array.
:param h_votes: Optional output array for line's votes.
.. seealso:: :ocv:func:`gpu::HoughLines`

View File

@ -820,6 +820,12 @@ private:
int nLayers_;
};
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta);
CV_EXPORTS void HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
////////////////////////////// Matrix reductions //////////////////////////////
//! computes mean value and standard deviation of all or selected array elements

View File

@ -1331,4 +1331,51 @@ INSTANTIATE_TEST_CASE_P(ImgProc, ImagePyramid_getLayer, testing::Combine(
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4))));
//////////////////////////////////////////////////////////////////////
// HoughLines
IMPLEMENT_PARAM_CLASS(DoSort, bool)
GPU_PERF_TEST(HoughLines, cv::gpu::DeviceInfo, cv::Size, DoSort)
{
declare.time(30.0);
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const bool doSort = GET_PARAM(2);
const float rho = 1.0f;
const float theta = CV_PI / 180.0f;
const int threshold = 300;
cv::RNG rng(123456789);
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
const int numLines = rng.uniform(500, 2000);
for (int i = 0; i < numLines; ++i)
{
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
cv::line(src, p1, p2, cv::Scalar::all(255), 2);
}
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_lines;
cv::gpu::GpuMat d_accum;
cv::gpu::GpuMat d_buf;
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort);
TEST_CYCLE()
{
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, HoughLines, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(DoSort(false), DoSort(true))));
#endif

View File

@ -727,4 +727,45 @@ INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine(
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR),
CvtColorInfo(4, 4, cv::COLOR_RGBA2mRGBA))));
//////////////////////////////////////////////////////////////////////
// HoughLines
IMPLEMENT_PARAM_CLASS(DoSort, bool)
GPU_PERF_TEST(HoughLines, cv::gpu::DeviceInfo, cv::Size, DoSort)
{
declare.time(30.0);
const cv::Size size = GET_PARAM(1);
const float rho = 1.0f;
const float theta = CV_PI / 180.0f;
const int threshold = 300;
cv::RNG rng(123456789);
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
const int numLines = rng.uniform(500, 2000);
for (int i = 0; i < numLines; ++i)
{
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
cv::line(src, p1, p2, cv::Scalar::all(255), 2);
}
std::vector<cv::Vec2f> lines;
cv::HoughLines(src, lines, rho, theta, threshold);
TEST_CYCLE()
{
cv::HoughLines(src, lines, rho, theta, threshold);
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, HoughLines, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(DoSort(false), DoSort(true))));
#endif

View File

@ -0,0 +1,295 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <thrust/sort.h>
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/emulation.hpp"
namespace cv { namespace gpu { namespace device
{
namespace hough
{
__device__ int g_counter;
////////////////////////////////////////////////////////////////////////
// buildPointList
const int PIXELS_PER_THREAD = 16;
__global__ void buildPointList(const DevMem2Db src, unsigned int* list)
{
__shared__ int s_queues[4][32 * PIXELS_PER_THREAD];
__shared__ int s_qsize[4];
__shared__ int s_start[4];
const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y >= src.rows)
return;
if (threadIdx.x == 0)
s_qsize[threadIdx.y] = 0;
__syncthreads();
// fill the queue
for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < src.cols; ++i, xx += blockDim.x)
{
if (src(y, xx))
{
const unsigned int val = (y << 16) | xx;
const int qidx = Emulation::smem::atomicAdd(&s_qsize[threadIdx.y], 1);
s_queues[threadIdx.y][qidx] = val;
}
}
__syncthreads();
// let one thread reserve the space required in the global list
if (threadIdx.x == 0 && threadIdx.y == 0)
{
// find how many items are stored in each list
int total_size = 0;
for (int i = 0; i < blockDim.y; ++i)
{
s_start[i] = total_size;
total_size += s_qsize[i];
}
// calculate the offset in the global list
const int global_offset = atomicAdd(&g_counter, total_size);
for (int i = 0; i < blockDim.y; ++i)
s_start[i] += global_offset;
}
__syncthreads();
// copy local queues to global queue
const int qsize = s_qsize[threadIdx.y];
for(int i = threadIdx.x; i < qsize; i += blockDim.x)
{
const unsigned int val = s_queues[threadIdx.y][i];
list[s_start[threadIdx.y] + i] = val;
}
}
int buildPointList_gpu(DevMem2Db src, unsigned int* list)
{
void* counter_ptr;
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) );
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) );
const dim3 block(32, 4);
const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(buildPointList, cudaFuncCachePreferShared) );
buildPointList<<<grid, block>>>(src, list);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int total_count;
cudaSafeCall( cudaMemcpy(&total_count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) );
return total_count;
}
////////////////////////////////////////////////////////////////////////
// linesAccum
__global__ void linesAccumGlobal(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
{
const int n = blockIdx.x;
const float ang = n * theta;
float sin_ang;
float cos_ang;
sincosf(ang, &sin_ang, &cos_ang);
const float tabSin = sin_ang * irho;
const float tabCos = cos_ang * irho;
for (int i = threadIdx.x; i < count; i += blockDim.x)
{
const unsigned int qvalue = list[i];
const int x = (qvalue & 0x0000FFFF);
const int y = (qvalue >> 16) & 0x0000FFFF;
int r = __float2int_rn(x * tabCos + y * tabSin);
r += (numrho - 1) / 2;
::atomicAdd(accum.ptr(n + 1) + r + 1, 1);
}
}
__global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
{
extern __shared__ int smem[];
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x)
smem[i] = 0;
__syncthreads();
const int n = blockIdx.x;
const float ang = n * theta;
float sin_ang;
float cos_ang;
sincosf(ang, &sin_ang, &cos_ang);
const float tabSin = sin_ang * irho;
const float tabCos = cos_ang * irho;
for (int i = threadIdx.x; i < count; i += blockDim.x)
{
const unsigned int qvalue = list[i];
const int x = (qvalue & 0x0000FFFF);
const int y = (qvalue >> 16) & 0x0000FFFF;
int r = __float2int_rn(x * tabCos + y * tabSin);
r += (numrho - 1) / 2;
Emulation::smem::atomicAdd(&smem[r + 1], 1);
}
__syncthreads();
for (int i = threadIdx.x; i < numrho; i += blockDim.x)
accum(n + 1, i) = smem[i];
}
void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock)
{
const dim3 block(1024);
const dim3 grid(accum.rows - 2);
cudaSafeCall( cudaFuncSetCacheConfig(linesAccumShared, cudaFuncCachePreferShared) );
size_t smemSize = (accum.cols - 1) * sizeof(int);
if (smemSize < sharedMemPerBlock - 1000)
linesAccumShared<<<grid, block, smemSize>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2);
else
linesAccumGlobal<<<grid, block>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// linesGetResult
__global__ void linesGetResult(const DevMem2Di accum, float2* out, int* votes, const int maxSize, const float threshold, const float theta, const float rho, const int numrho)
{
__shared__ int smem[8][32];
int r = blockIdx.x * (blockDim.x - 2) + threadIdx.x;
int n = blockIdx.y * (blockDim.y - 2) + threadIdx.y;
if (r >= accum.cols || n >= accum.rows)
return;
smem[threadIdx.y][threadIdx.x] = accum(n, r);
__syncthreads();
r -= 1;
n -= 1;
if (threadIdx.x == 0 || threadIdx.x == blockDim.x - 1 || threadIdx.y == 0 || threadIdx.y == blockDim.y - 1 || r >= accum.cols - 2 || n >= accum.rows - 2)
return;
if (smem[threadIdx.y][threadIdx.x] > threshold &&
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y - 1][threadIdx.x] &&
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y + 1][threadIdx.x] &&
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y][threadIdx.x - 1] &&
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y][threadIdx.x + 1])
{
const float radius = (r - (numrho - 1) * 0.5f) * rho;
const float angle = n * theta;
const int ind = ::atomicAdd(&g_counter, 1);
if (ind < maxSize)
{
out[ind] = make_float2(radius, angle);
votes[ind] = smem[threadIdx.y][threadIdx.x];
}
}
}
int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort)
{
void* counter_ptr;
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) );
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) );
const dim3 block(32, 8);
const dim3 grid(divUp(accum.cols, block.x - 2), divUp(accum.rows, block.y - 2));
linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, threshold, theta, rho, accum.cols - 2);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int total_count;
cudaSafeCall( cudaMemcpy(&total_count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) );
total_count = ::min(total_count, maxSize);
if (doSort && total_count > 0)
{
thrust::device_ptr<float2> out_ptr(out);
thrust::device_ptr<int> votes_ptr(votes);
thrust::sort_by_key(votes_ptr, votes_ptr + total_count, out_ptr, thrust::greater<int>());
}
return total_count;
}
}
}}}

144
modules/gpu/src/hough.cpp Normal file
View File

@ -0,0 +1,144 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined (HAVE_CUDA)
void cv::gpu::HoughLinesTransform(const GpuMat&, GpuMat&, GpuMat&, float, float) { throw_nogpu(); }
void cv::gpu::HoughLinesGet(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device
{
namespace hough
{
int buildPointList_gpu(DevMem2Db src, unsigned int* list);
void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock);
int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort);
}
}}}
void cv::gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
{
using namespace cv::gpu::device::hough;
CV_Assert(src.type() == CV_8UC1);
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf);
const int count = buildPointList_gpu(src, buf.ptr<unsigned int>());
const int numangle = cvRound(CV_PI / theta);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
CV_Assert(numangle > 0 && numrho > 0);
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum);
accum.setTo(cv::Scalar::all(0));
cv::gpu::DeviceInfo devInfo;
if (count > 0)
linesAccum_gpu(buf.ptr<unsigned int>(), count, accum, rho, theta, devInfo.sharedMemPerBlock());
}
void cv::gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{
using namespace cv::gpu::device;
CV_Assert(accum.type() == CV_32SC1);
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines);
int count = hough::linesGetResult_gpu(accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort);
if (count > 0)
lines.cols = count;
else
lines.release();
}
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{
cv::gpu::GpuMat accum, buf;
HoughLines(src, lines, accum, buf, rho, theta, threshold, doSort, maxLines);
}
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
{
HoughLinesTransform(src, accum, buf, rho, theta);
HoughLinesGet(accum, lines, rho, theta, threshold, doSort, maxLines);
}
void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, OutputArray h_votes_)
{
if (d_lines.empty())
{
h_lines_.release();
if (h_votes_.needed())
h_votes_.release();
return;
}
CV_Assert(d_lines.rows == 2 && d_lines.type() == CV_32FC2);
h_lines_.create(1, d_lines.cols, CV_32FC2);
cv::Mat h_lines = h_lines_.getMat();
d_lines.row(0).download(h_lines);
if (h_votes_.needed())
{
h_votes_.create(1, d_lines.cols, CV_32SC1);
cv::Mat h_votes = h_votes_.getMat();
cv::gpu::GpuMat d_votes(1, d_lines.cols, CV_32SC1, const_cast<int*>(d_lines.ptr<int>(1)));
d_votes.download(h_votes);
}
}
#endif /* !defined (HAVE_CUDA) */

View File

@ -99,7 +99,7 @@ namespace cv { namespace gpu { namespace device
}
template<typename T>
static __device__ __forceinline__ void atomicAdd(T* address, T val)
static __device__ __forceinline__ T atomicAdd(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count;
@ -110,8 +110,10 @@ namespace cv { namespace gpu { namespace device
count = tag | (count + val);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - val;
#else
::atomicAdd(address, val);
return ::atomicAdd(address, val);
#endif
}

View File

@ -1124,4 +1124,65 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughLines
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, std::string)
{
};
void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
{
for (size_t i = 0; i < lines.size(); ++i)
{
float rho = lines[i][0], theta = lines[i][1];
cv::Point pt1, pt2;
double a = std::cos(theta), b = std::sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
}
}
TEST_P(HoughLines, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const std::string fileName = GET_PARAM(1);
const float rho = 1.0f;
const float theta = CV_PI / 180.0f;
const int threshold = 50;
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat edges;
cv::Canny(img, edges, 50, 200);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLines(loadMat(edges), d_lines, rho, theta, threshold);
std::vector<cv::Vec2f> lines;
cv::gpu::HoughLinesDownload(d_lines, lines);
cv::Mat dst(img.size(), CV_8UC1, cv::Scalar::all(0));
drawLines(dst, lines);
std::vector<cv::Vec2f> lines_gold;
cv::HoughLines(edges, lines_gold, rho, theta, threshold);
cv::Mat dst_gold(img.size(), CV_8UC1, cv::Scalar::all(0));
drawLines(dst_gold, lines_gold);
ASSERT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("../cv/shared/pic1.png"),
std::string("../cv/shared/pic3.png"),
std::string("../cv/shared/pic5.png"),
std::string("../cv/shared/pic6.png"))));
} // namespace

View File

@ -197,7 +197,7 @@ namespace
void operator() (const cv::Range& range) const;
private:
const cv::Mat frame_;
cv::Mat frame_;
mutable cv::Mat_<uchar> fgmask_;