diff --git a/modules/core/include/opencv2/core/ocl.hpp b/modules/core/include/opencv2/core/ocl.hpp index f50ed378f9..f2535940f0 100644 --- a/modules/core/include/opencv2/core/ocl.hpp +++ b/modules/core/include/opencv2/core/ocl.hpp @@ -286,7 +286,7 @@ public: Kernel(); Kernel(const char* kname, const Program& prog); Kernel(const char* kname, const ProgramSource2& prog, - const String& buildopts, String* errmsg=0); + const String& buildopts = String(), String* errmsg=0); ~Kernel(); Kernel(const Kernel& k); Kernel& operator = (const Kernel& k); diff --git a/modules/core/src/umatrix.cpp b/modules/core/src/umatrix.cpp index 9ed00ac6f7..c35d4ccfa8 100644 --- a/modules/core/src/umatrix.cpp +++ b/modules/core/src/umatrix.cpp @@ -578,6 +578,7 @@ Mat UMat::getMat(int accessFlags) const u->currAllocator->map(u, accessFlags | ACCESS_READ); CV_Assert(u->data != 0); Mat hdr(dims, size.p, type(), u->data + offset, step.p); + hdr.flags = flags; hdr.u = u; hdr.datastart = u->data; hdr.data = hdr.datastart + offset; diff --git a/modules/imgproc/src/imgwarp.cpp b/modules/imgproc/src/imgwarp.cpp index 15d7c6a875..8758130687 100644 --- a/modules/imgproc/src/imgwarp.cpp +++ b/modules/imgproc/src/imgwarp.cpp @@ -2010,6 +2010,8 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize, iscale_x, iscale_y, 1.0f / (iscale_x * iscale_y)); k.create("resizeAREA_FAST", ocl::imgproc::resize_oclsrc, buildOption); + if (k.empty()) + return false; int smap_tab_size = dst.cols * iscale_x + dst.rows * iscale_y; AutoBuffer dmap_tab(dst.cols + dst.rows), smap_tab(smap_tab_size); @@ -2026,6 +2028,8 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize, { buildOption = buildOption + format(" -D convertToT=%s", ocl::convertTypeStr(wdepth, depth, cn, cvt[0])); k.create("resizeAREA", ocl::imgproc::resize_oclsrc, buildOption); + if (k.empty()) + return false; Size ssize = src.size(); int xytab_size = (ssize.width + ssize.height) << 1; @@ -3383,6 +3387,78 @@ private: const void *ctab; }; +static bool ocl_remap(InputArray _src, OutputArray _dst, InputArray _map1, InputArray _map2, + int interpolation, int borderType, const Scalar& borderValue) +{ + int cn = _src.channels(), type = _src.type(), depth = _src.depth(); + + if (borderType == BORDER_TRANSPARENT || cn == 3 || !(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST) + || _map1.type() == CV_16SC1 || _map2.type() == CV_16SC1) + return false; + + UMat src = _src.getUMat(), map1 = _map1.getUMat(), map2 = _map2.getUMat(); + + if( (map1.type() == CV_16SC2 && (map2.type() == CV_16UC1 || map2.empty())) || + (map2.type() == CV_16SC2 && (map1.type() == CV_16UC1 || map1.empty())) ) + { + if (map1.type() != CV_16SC2) + std::swap(map1, map2); + } + else + CV_Assert( map1.type() == CV_32FC2 || (map1.type() == CV_32FC1 && map2.type() == CV_32FC1) ); + + _dst.create(map1.size(), type); + UMat dst = _dst.getUMat(); + + String kernelName = "remap"; + if (map1.type() == CV_32FC2 && map2.empty()) + kernelName += "_32FC2"; + else if (map1.type() == CV_16SC2) + { + kernelName += "_16SC2"; + if (!map2.empty()) + kernelName += "_16UC1"; + } + else if (map1.type() == CV_32FC1 && map2.type() == CV_32FC1) + kernelName += "_2_32FC1"; + else + CV_Error(Error::StsBadArg, "Unsupported map types"); + + static const char * const interMap[] = { "INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_LINEAR", "INTER_LANCZOS" }; + static const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", + "BORDER_REFLECT_101", "BORDER_TRANSPARENT" }; + String buildOptions = format("-D %s -D %s -D T=%s", interMap[interpolation], borderMap[borderType], ocl::typeToStr(type)); + + if (interpolation != INTER_NEAREST) + { + char cvt[3][40]; + int wdepth = std::max(CV_32F, dst.depth()); + buildOptions = buildOptions + + format(" -D WT=%s -D convertToT=%s -D convertToWT=%s" + " -D convertToWT2=%s -D WT2=%s", + ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), + ocl::convertTypeStr(wdepth, depth, cn, cvt[0]), + ocl::convertTypeStr(depth, wdepth, cn, cvt[1]), + ocl::convertTypeStr(CV_32S, wdepth, 2, cvt[2]), + ocl::typeToStr(CV_MAKE_TYPE(wdepth, 2))); + } + + ocl::Kernel k(kernelName.c_str(), ocl::imgproc::remap_oclsrc, buildOptions); + + Mat scalar(1, 1, type, borderValue); + ocl::KernelArg srcarg = ocl::KernelArg::ReadOnly(src), dstarg = ocl::KernelArg::WriteOnly(dst), + map1arg = ocl::KernelArg::ReadOnlyNoSize(map1), + scalararg = ocl::KernelArg::Constant((void*)scalar.data, scalar.elemSize()); + + if (map2.empty()) + k.args(srcarg, dstarg, map1arg, scalararg); + else + k.args(srcarg, dstarg, map1arg, ocl::KernelArg::ReadOnlyNoSize(map2), scalararg); + + size_t globalThreads[2] = { dst.cols, dst.rows }; + return k.run(2, globalThreads, NULL, false); +} + } void cv::remap( InputArray _src, OutputArray _dst, @@ -3422,11 +3498,13 @@ void cv::remap( InputArray _src, OutputArray _dst, remapLanczos4, float, 1>, 0 }; + CV_Assert( _map1.size().area() > 0 ); + CV_Assert( _map2.empty() || (_map2.size() == _map1.size())); + + if (ocl::useOpenCL() && _dst.isUMat() && ocl_remap(_src, _dst, _map1, _map2, interpolation, borderType, borderValue)) + return; + Mat src = _src.getMat(), map1 = _map1.getMat(), map2 = _map2.getMat(); - - CV_Assert( map1.size().area() > 0 ); - CV_Assert( !map2.data || (map2.size() == map1.size())); - _dst.create( map1.size(), src.type() ); Mat dst = _dst.getMat(); if( dst.data == src.data ) @@ -3789,6 +3867,89 @@ private: }; #endif +enum { OCL_OP_PERSPECTIVE = 1, OCL_OP_AFFINE = 0 }; + +static bool ocl_warpTransform(InputArray _src, OutputArray _dst, InputArray _M0, + Size dsize, int flags, int borderType, const Scalar& borderValue, + int op_type) +{ + CV_Assert(op_type == OCL_OP_AFFINE || op_type == OCL_OP_PERSPECTIVE); + + int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), wdepth = depth; + double doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; + + int interpolation = flags & INTER_MAX; + if( interpolation == INTER_AREA ) + interpolation = INTER_LINEAR; + + if ( !(borderType == cv::BORDER_CONSTANT && + (interpolation == cv::INTER_NEAREST || interpolation == cv::INTER_LINEAR || interpolation == cv::INTER_CUBIC)) || + (!doubleSupport && depth == CV_64F) || cn > 4 || cn == 3) + return false; + + const char * const interpolationMap[3] = { "NEAREST", "LINEAR", "CUBIC" }; + ocl::ProgramSource2 program = op_type == OCL_OP_AFFINE ? + ocl::imgproc::warp_affine_oclsrc : ocl::imgproc::warp_perspective_oclsrc; + const char * const kernelName = op_type == OCL_OP_AFFINE ? "warpAffine" : "warpPerspective"; + + ocl::Kernel k; + if (interpolation == INTER_NEAREST) + { + k.create(kernelName, program, + format("-D INTER_NEAREST -D T=%s%s", ocl::typeToStr(type), + doubleSupport ? " -D DOUBLE_SUPPORT" : "")); + } + else + { + char cvt[2][50]; + wdepth = std::max(CV_32S, depth); + k.create(kernelName, program, + format("-D INTER_%s -D T=%s -D WT=%s -D depth=%d -D convertToWT=%s -D convertToT=%s%s", + interpolationMap[interpolation], ocl::typeToStr(type), + ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), depth, + ocl::convertTypeStr(depth, wdepth, cn, cvt[0]), + ocl::convertTypeStr(wdepth, depth, cn, cvt[1]), + doubleSupport ? " -D DOUBLE_SUPPORT" : "")); + } + if (k.empty()) + return false; + + UMat src = _src.getUMat(), M0; + _dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() ); + UMat dst = _dst.getUMat(); + + double M[9]; + int matRows = (op_type == OCL_OP_AFFINE ? 2 : 3); + Mat matM(matRows, 3, CV_64F, M), M1 = _M0.getMat(); + CV_Assert( (M1.type() == CV_32F || M1.type() == CV_64F) && + M1.rows == matRows && M1.cols == 3 ); + M1.convertTo(matM, matM.type()); + + if( !(flags & WARP_INVERSE_MAP) ) + { + if (op_type == OCL_OP_PERSPECTIVE) + invert(matM, matM); + else + { + double D = M[0]*M[4] - M[1]*M[3]; + D = D != 0 ? 1./D : 0; + double A11 = M[4]*D, A22=M[0]*D; + M[0] = A11; M[1] *= -D; + M[3] *= -D; M[4] = A22; + double b1 = -M[0]*M[2] - M[1]*M[5]; + double b2 = -M[3]*M[2] - M[4]*M[5]; + M[2] = b1; M[5] = b2; + } + } + matM.convertTo(M0, doubleSupport ? CV_64F : CV_32F); + + k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(M0), + ocl::KernelArg::Constant(Mat(1, 1, CV_MAKE_TYPE(wdepth, cn), borderValue))); + + size_t globalThreads[2] = { dst.cols, dst.rows }; + return k.run(2, globalThreads, NULL, false); +} + } @@ -3796,6 +3957,11 @@ void cv::warpAffine( InputArray _src, OutputArray _dst, InputArray _M0, Size dsize, int flags, int borderType, const Scalar& borderValue ) { + if (ocl::useOpenCL() && _dst.isUMat() && + ocl_warpTransform(_src, _dst, _M0, dsize, flags, borderType, + borderValue, OCL_OP_AFFINE)) + return; + Mat src = _src.getMat(), M0 = _M0.getMat(); _dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() ); Mat dst = _dst.getMat(); @@ -4035,11 +4201,17 @@ private: void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0, Size dsize, int flags, int borderType, const Scalar& borderValue ) { + CV_Assert( _src.total() > 0 ); + + if (ocl::useOpenCL() && _dst.isUMat() && + ocl_warpTransform(_src, _dst, _M0, dsize, flags, borderType, borderValue, + OCL_OP_PERSPECTIVE)) + return; + Mat src = _src.getMat(), M0 = _M0.getMat(); _dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() ); Mat dst = _dst.getMat(); - CV_Assert( src.cols > 0 && src.rows > 0 ); if( dst.data == src.data ) src = src.clone(); diff --git a/modules/imgproc/src/opencl/remap.cl b/modules/imgproc/src/opencl/remap.cl new file mode 100644 index 0000000000..aaa9dc371b --- /dev/null +++ b/modules/imgproc/src/opencl/remap.cl @@ -0,0 +1,435 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. +// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// @Authors +// Wu Zailong, bullet@yeah.net +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors as is and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef DOUBLE_SUPPORT +#ifdef cl_amd_fp64 +#pragma OPENCL EXTENSION cl_amd_fp64:enable +#elif defined (cl_khr_fp64) +#pragma OPENCL EXTENSION cl_khr_fp64:enable +#endif +#endif + +#define noconvert + +enum +{ + INTER_BITS = 5, + INTER_TAB_SIZE = 1 << INTER_BITS, + INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE +}; + +#ifdef INTER_NEAREST +#define convertToWT +#endif + +#ifdef BORDER_CONSTANT +#define EXTRAPOLATE(v2, v) v = scalar; +#elif defined BORDER_REPLICATE +#define EXTRAPOLATE(v2, v) \ + { \ + v2 = max(min(v2, (int2)(src_cols - 1, src_rows - 1)), (int2)(0)); \ + v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \ + } +#elif defined BORDER_WRAP +#define EXTRAPOLATE(v2, v) \ + { \ + if (v2.x < 0) \ + v2.x -= ((v2.x - src_cols + 1) / src_cols) * src_cols; \ + if (v2.x >= src_cols) \ + v2.x %= src_cols; \ + \ + if (v2.y < 0) \ + v2.y -= ((v2.y - src_rows + 1) / src_rows) * src_rows; \ + if( v2.y >= src_rows ) \ + v2.y %= src_rows; \ + v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \ + } +#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101) +#ifdef BORDER_REFLECT +#define DELTA int delta = 0 +#else +#define DELTA int delta = 1 +#endif +#define EXTRAPOLATE(v2, v) \ + { \ + DELTA; \ + if (src_cols == 1) \ + v2.x = 0; \ + else \ + do \ + { \ + if( v2.x < 0 ) \ + v2.x = -v2.x - 1 + delta; \ + else \ + v2.x = src_cols - 1 - (v2.x - src_cols) - delta; \ + } \ + while (v2.x >= src_cols || v2.x < 0); \ + \ + if (src_rows == 1) \ + v2.y = 0; \ + else \ + do \ + { \ + if( v2.y < 0 ) \ + v2.y = -v2.y - 1 + delta; \ + else \ + v2.y = src_rows - 1 - (v2.y - src_rows) - delta; \ + } \ + while (v2.y >= src_rows || v2.y < 0); \ + v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \ + } +#else +#error No extrapolation method +#endif + +#define NEED_EXTRAPOLATION(gx, gy) (gx >= src_cols || gy >= src_rows || gx < 0 || gy < 0) + +#ifdef INTER_NEAREST + +__kernel void remap_2_32FC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * map1ptr, int map1_step, int map1_offset, + __global const uchar * map2ptr, int map2_step, int map2_offset, + T scalar) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int map1_index = mad24(y, map1_step, x * (int)sizeof(float) + map1_offset); + int map2_index = mad24(y, map2_step, x * (int)sizeof(float) + map2_offset); + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + + __global const float * map1 = (__global const float *)(map1ptr + map1_index); + __global const float * map2 = (__global const float *)(map2ptr + map2_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + int gx = convert_int_sat_rte(map1[0]); + int gy = convert_int_sat_rte(map2[0]); + + if (NEED_EXTRAPOLATION(gx, gy)) + { +#ifndef BORDER_CONSTANT + int2 gxy = (int2)(gx, gy); +#endif + EXTRAPOLATE(gxy, dst[0]) + } + else + { + int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset); + dst[0] = *((__global const T*)(srcptr + src_index)); + } + } +} + +__kernel void remap_32FC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * mapptr, int map_step, int map_offset, + T scalar) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + int map_index = mad24(y, map_step, x * (int)sizeof(float2) + map_offset); + + __global const float2 * map = (__global const float2 *)(mapptr + map_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + int2 gxy = convert_int2_sat_rte(map[0]); + int gx = gxy.x, gy = gxy.y; + + if (NEED_EXTRAPOLATION(gx, gy)) + EXTRAPOLATE(gxy, dst[0]) + else + { + int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset); + dst[0] = *((__global const T *)(srcptr + src_index)); + } + } +} + +__kernel void remap_16SC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * mapptr, int map_step, int map_offset, + T scalar) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + int map_index = mad24(y, map_step, x * (int)sizeof(short2) + map_offset); + + __global const short2 * map = (__global const short2 *)(mapptr + map_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + int2 gxy = convert_int2(map[0]); + int gx = gxy.x, gy = gxy.y; + + if (NEED_EXTRAPOLATION(gx, gy)) + EXTRAPOLATE(gxy, dst[0]) + else + { + int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset); + dst[0] = *((__global const T *)(srcptr + src_index)); + } + } +} + +__kernel void remap_16SC2_16UC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * map1ptr, int map1_step, int map1_offset, + __global const uchar * map2ptr, int map2_step, int map2_offset, + T scalar) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + int map1_index = mad24(y, map1_step, x * (int)sizeof(short2) + map1_offset); + int map2_index = mad24(y, map2_step, x * (int)sizeof(ushort) + map2_offset); + + __global const short2 * map1 = (__global const short2 *)(map1ptr + map1_index); + __global const ushort * map2 = (__global const ushort *)(map2ptr + map2_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + int map2Value = convert_int(map2[0]) & (INTER_TAB_SIZE2 - 1); + int dx = (map2Value & (INTER_TAB_SIZE - 1)) < (INTER_TAB_SIZE >> 1) ? 1 : 0; + int dy = (map2Value >> INTER_BITS) < (INTER_TAB_SIZE >> 1) ? 1 : 0; + int2 gxy = convert_int2(map1[0]) + (int2)(dx, dy); + int gx = gxy.x, gy = gxy.y; + + if (NEED_EXTRAPOLATION(gx, gy)) + EXTRAPOLATE(gxy, dst[0]) + else + { + int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset); + dst[0] = *((__global const T *)(srcptr + src_index)); + } + } +} + +#elif INTER_LINEAR + +__kernel void remap_16SC2_16UC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * map1ptr, int map1_step, int map1_offset, + __global const uchar * map2ptr, int map2_step, int map2_offset, + T nVal) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + int map1_index = mad24(y, map1_step, x * (int)sizeof(short2) + map1_offset); + int map2_index = mad24(y, map2_step, x * (int)sizeof(ushort) + map2_offset); + + __global const short2 * map1 = (__global const short2 *)(map1ptr + map1_index); + __global const ushort * map2 = (__global const ushort *)(map2ptr + map2_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + int2 map_dataA = convert_int2(map1[0]); + int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y); + int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1); + int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1); + + ushort map2Value = (ushort)(map2[0] & (INTER_TAB_SIZE2 - 1)); + WT2 u = (WT2)(map2Value & (INTER_TAB_SIZE - 1), map2Value >> INTER_BITS) / (WT2)(INTER_TAB_SIZE); + + WT scalar = convertToWT(nVal); + WT a = scalar, b = scalar, c = scalar, d = scalar; + + if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y)) + a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataA, a); + + if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y)) + b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataB, b); + + if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y)) + c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataC, c); + + if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y)) + d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataD, d); + + WT dst_data = a * (1 - u.x) * (1 - u.y) + + b * (u.x) * (1 - u.y) + + c * (1 - u.x) * (u.y) + + d * (u.x) * (u.y); + dst[0] = convertToT(dst_data); + } +} + +__kernel void remap_2_32FC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * map1ptr, int map1_step, int map1_offset, + __global const uchar * map2ptr, int map2_step, int map2_offset, + T nVal) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + int map1_index = mad24(y, map1_step, x * (int)sizeof(float) + map1_offset); + int map2_index = mad24(y, map2_step, x * (int)sizeof(float) + map2_offset); + + __global const float * map1 = (__global const float *)(map1ptr + map1_index); + __global const float * map2 = (__global const float *)(map2ptr + map2_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + float2 map_data = (float2)(map1[0], map2[0]); + + int2 map_dataA = convert_int2_sat_rtn(map_data); + int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y); + int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1); + int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1); + + float2 _u = map_data - convert_float2(map_dataA); + WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)INTER_TAB_SIZE)) / (WT2)INTER_TAB_SIZE; + WT scalar = convertToWT(nVal); + WT a = scalar, b = scalar, c = scalar, d = scalar; + + if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y)) + a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataA, a); + + if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y)) + b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataB, b); + + if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y)) + c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataC, c); + + if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y)) + d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataD, d); + + WT dst_data = a * (1 - u.x) * (1 - u.y) + + b * (u.x) * (1 - u.y) + + c * (1 - u.x) * (u.y) + + d * (u.x) * (u.y); + dst[0] = convertToT(dst_data); + } +} + +__kernel void remap_32FC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __global const uchar * mapptr, int map_step, int map_offset, + T nVal) +{ + int x = get_global_id(0); + int y = get_global_id(1); + + if (x < dst_cols && y < dst_rows) + { + int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset); + int map_index = mad24(y, map_step, x * (int)sizeof(float2) + map_offset); + + __global const float2 * map = (__global const float2 *)(mapptr + map_index); + __global T * dst = (__global T *)(dstptr + dst_index); + + float2 map_data = map[0]; + int2 map_dataA = convert_int2_sat_rtn(map_data); + int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y); + int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1); + int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1); + + float2 _u = map_data - convert_float2(map_dataA); + WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)INTER_TAB_SIZE)) / (WT2)INTER_TAB_SIZE; + WT scalar = convertToWT(nVal); + WT a = scalar, b = scalar, c = scalar, d = scalar; + + if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y)) + a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataA, a); + + if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y)) + b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataB, b); + + if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y)) + c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataC, c); + + if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y)) + d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset)))); + else + EXTRAPOLATE(map_dataD, d); + + WT dst_data = a * (1 - u.x) * (1 - u.y) + + b * (u.x) * (1 - u.y) + + c * (1 - u.x) * (u.y) + + d * (u.x) * (u.y); + dst[0] = convertToT(dst_data); + } +} + +#endif diff --git a/modules/imgproc/src/opencl/warp_affine.cl b/modules/imgproc/src/opencl/warp_affine.cl new file mode 100644 index 0000000000..340cfdd8e0 --- /dev/null +++ b/modules/imgproc/src/opencl/warp_affine.cl @@ -0,0 +1,234 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. +// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// @Authors +// Zhang Ying, zhangying913@gmail.com +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors as is and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef DOUBLE_SUPPORT +#ifdef cl_amd_fp64 +#pragma OPENCL EXTENSION cl_amd_fp64:enable +#elif defined (cl_khr_fp64) +#pragma OPENCL EXTENSION cl_khr_fp64:enable +#endif +#define CT double +#else +#define CT float +#endif + +#define INTER_BITS 5 +#define INTER_TAB_SIZE (1 << INTER_BITS) +#define INTER_SCALE 1.f/INTER_TAB_SIZE +#define AB_BITS max(10, (int)INTER_BITS) +#define AB_SCALE (1 << AB_BITS) +#define INTER_REMAP_COEF_BITS 15 +#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) + +#define noconvert + +#ifdef INTER_NEAREST + +__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __constant CT * M, T scalar) +{ + int dx = get_global_id(0); + int dy = get_global_id(1); + + if (dx < dst_cols && dy < dst_rows) + { + int round_delta = (AB_SCALE >> 1); + + int X0 = rint(M[0] * dx * AB_SCALE); + int Y0 = rint(M[3] * dx * AB_SCALE); + X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; + Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; + + short sx = convert_short_sat(X0 >> AB_BITS); + short sy = convert_short_sat(Y0 >> AB_BITS); + + int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); + __global T * dst = (__global T *)(dstptr + dst_index); + + if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) + { + int src_index = mad24(sy, src_step, src_offset + sx * (int)sizeof(T)); + __global const T * src = (__global const T *)(srcptr + src_index); + dst[0] = src[0]; + } + else + dst[0] = scalar; + } +} + +#elif defined INTER_LINEAR + +__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __constant CT * M, WT scalar) +{ + int dx = get_global_id(0); + int dy = get_global_id(1); + + if (dx < dst_cols && dy < dst_rows) + { + int round_delta = AB_SCALE/INTER_TAB_SIZE/2; + + int tmp = (dx << AB_BITS); + int X0 = rint(M[0] * tmp); + int Y0 = rint(M[3] * tmp); + X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; + Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; + X0 = X0 >> (AB_BITS - INTER_BITS); + Y0 = Y0 >> (AB_BITS - INTER_BITS); + + short sx = convert_short_sat(X0 >> INTER_BITS); + short sy = convert_short_sat(Y0 >> INTER_BITS); + short ax = convert_short(X0 & (INTER_TAB_SIZE-1)); + short ay = convert_short(Y0 & (INTER_TAB_SIZE-1)); + + WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + sx * (int)sizeof(T)))) : scalar; + WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar; + WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + sx * (int)sizeof(T)))) : scalar; + WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar; + + float taby = 1.f/INTER_TAB_SIZE*ay; + float tabx = 1.f/INTER_TAB_SIZE*ax; + + int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); + __global T * dst = (__global T *)(dstptr + dst_index); + +#if depth <= 4 + int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); + int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE ); + int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); + int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE ); + + WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3; + dst[0] = convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS); +#else + float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby; + WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby; + dst[0] = convertToT(val); +#endif + } +} + +#elif defined INTER_CUBIC + +inline void interpolateCubic( float x, float* coeffs ) +{ + const float A = -0.75f; + + coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A; + coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f; + coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f; + coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; +} + +__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __constant CT * M, WT scalar) +{ + int dx = get_global_id(0); + int dy = get_global_id(1); + + if (dx < dst_cols && dy < dst_rows) + { + int round_delta = ((AB_SCALE>>INTER_BITS)>>1); + + int tmp = (dx << AB_BITS); + int X0 = rint(M[0] * tmp); + int Y0 = rint(M[3] * tmp); + X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; + Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; + X0 = X0 >> (AB_BITS - INTER_BITS); + Y0 = Y0 >> (AB_BITS - INTER_BITS); + + int sx = (short)(X0 >> INTER_BITS) - 1; + int sy = (short)(Y0 >> INTER_BITS) - 1; + int ay = (short)(Y0 & (INTER_TAB_SIZE-1)); + int ax = (short)(X0 & (INTER_TAB_SIZE-1)); + + WT v[16]; + #pragma unroll + for (int y = 0; y < 4; y++) + #pragma unroll + for (int x = 0; x < 4; x++) + v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * (int)sizeof(T)))) : scalar; + + float tab1y[4], tab1x[4]; + + float ayy = INTER_SCALE * ay; + float axx = INTER_SCALE * ax; + interpolateCubic(ayy, tab1y); + interpolateCubic(axx, tab1x); + + int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); + __global T * dst = (__global T *)(dstptr + dst_index); + + WT sum = (WT)(0); +#if depth <= 4 + int itab[16]; + + #pragma unroll + for (int i = 0; i < 16; i++) + itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE); + + #pragma unroll + for (int i = 0; i < 16; i++) + sum += v[i] * itab[i]; + dst[0] = convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ); +#else + #pragma unroll + for (int i = 0; i < 16; i++) + sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)]; + dst[0] = convertToT( sum ); +#endif + } +} + +#endif diff --git a/modules/imgproc/src/opencl/warp_perspective.cl b/modules/imgproc/src/opencl/warp_perspective.cl new file mode 100644 index 0000000000..211433e709 --- /dev/null +++ b/modules/imgproc/src/opencl/warp_perspective.cl @@ -0,0 +1,223 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. +// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// @Authors +// Zhang Ying, zhangying913@gmail.com +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors as is and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef DOUBLE_SUPPORT +#ifdef cl_amd_fp64 +#pragma OPENCL EXTENSION cl_amd_fp64:enable +#elif defined (cl_khr_fp64) +#pragma OPENCL EXTENSION cl_khr_fp64:enable +#endif +#define CT double +#else +#define CT float +#endif + +#define INTER_BITS 5 +#define INTER_TAB_SIZE (1 << INTER_BITS) +#define INTER_SCALE 1.f / INTER_TAB_SIZE +#define AB_BITS max(10, (int)INTER_BITS) +#define AB_SCALE (1 << AB_BITS) +#define INTER_REMAP_COEF_BITS 15 +#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) + +#define noconvert + +#ifdef INTER_NEAREST + +__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __constant CT * M, T scalar) +{ + int dx = get_global_id(0); + int dy = get_global_id(1); + + if (dx < dst_cols && dy < dst_rows) + { + CT X0 = M[0] * dx + M[1] * dy + M[2]; + CT Y0 = M[3] * dx + M[4] * dy + M[5]; + CT W = M[6] * dx + M[7] * dy + M[8]; + W = W != 0.0f ? 1.f / W : 0.0f; + short sx = convert_short_sat_rte(X0*W); + short sy = convert_short_sat_rte(Y0*W); + + int dst_index = mad24(dy, dst_step, dx * (int)sizeof(T) + dst_offset); + __global T * dst = (__global T *)(dstptr + dst_index); + + if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) + { + int src_index = mad24(sy, src_step, sx * (int)sizeof(T) + src_offset); + __global const T * src = (__global const T *)(srcptr + src_index); + dst[0] = src[0]; + } + else + dst[0] = scalar; + } +} + +#elif defined INTER_LINEAR + +__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __constant CT * M, WT scalar) +{ + int dx = get_global_id(0); + int dy = get_global_id(1); + + if (dx < dst_cols && dy < dst_rows) + { + CT X0 = M[0] * dx + M[1] * dy + M[2]; + CT Y0 = M[3] * dx + M[4] * dy + M[5]; + CT W = M[6] * dx + M[7] * dy + M[8]; + W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f; + int X = rint(X0 * W), Y = rint(Y0 * W); + + short sx = convert_short_sat(X >> INTER_BITS); + short sy = convert_short_sat(Y >> INTER_BITS); + short ay = (short)(Y & (INTER_TAB_SIZE - 1)); + short ax = (short)(X & (INTER_TAB_SIZE - 1)); + + WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + sx * (int)sizeof(T)))) : scalar; + WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar; + WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + sx * (int)sizeof(T)))) : scalar; + WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar; + + float taby = 1.f/INTER_TAB_SIZE*ay; + float tabx = 1.f/INTER_TAB_SIZE*ax; + + int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); + __global T * dst = (__global T *)(dstptr + dst_index); + +#if depth <= 4 + int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); + int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE ); + int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); + int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE ); + + WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3; + dst[0] = convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS); +#else + float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby; + WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby; + dst[0] = convertToT(val); +#endif + } +} + +#elif defined INTER_CUBIC + +inline void interpolateCubic( float x, float* coeffs ) +{ + const float A = -0.75f; + + coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A; + coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f; + coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f; + coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; +} + +__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, + __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, + __constant CT * M, WT scalar) +{ + int dx = get_global_id(0); + int dy = get_global_id(1); + + if (dx < dst_cols && dy < dst_rows) + { + CT X0 = M[0] * dx + M[1] * dy + M[2]; + CT Y0 = M[3] * dx + M[4] * dy + M[5]; + CT W = M[6] * dx + M[7] * dy + M[8]; + W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f; + int X = rint(X0 * W), Y = rint(Y0 * W); + + short sx = convert_short_sat(X >> INTER_BITS) - 1; + short sy = convert_short_sat(Y >> INTER_BITS) - 1; + short ay = (short)(Y & (INTER_TAB_SIZE-1)); + short ax = (short)(X & (INTER_TAB_SIZE-1)); + + WT v[16]; + #pragma unroll + for (int y = 0; y < 4; y++) + #pragma unroll + for (int x = 0; x < 4; x++) + v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ? + convertToWT(*(__global const T *)(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * (int)sizeof(T)))) : scalar; + + float tab1y[4], tab1x[4]; + + float ayy = INTER_SCALE * ay; + float axx = INTER_SCALE * ax; + interpolateCubic(ayy, tab1y); + interpolateCubic(axx, tab1x); + + int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); + __global T * dst = (__global T *)(dstptr + dst_index); + + WT sum = (WT)(0); +#if depth <= 4 + int itab[16]; + + #pragma unroll + for (int i = 0; i < 16; i++) + itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE); + + #pragma unroll + for (int i = 0; i < 16; i++) + sum += v[i] * itab[i]; + dst[0] = convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ); +#else + #pragma unroll + for (int i = 0; i < 16; i++) + sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)]; + dst[0] = convertToT( sum ); +#endif + } +} + +#endif diff --git a/modules/imgproc/test/ocl/test_warp.cpp b/modules/imgproc/test/ocl/test_warp.cpp index 6e549a4eca..2e176f4828 100644 --- a/modules/imgproc/test/ocl/test_warp.cpp +++ b/modules/imgproc/test/ocl/test_warp.cpp @@ -60,8 +60,105 @@ namespace cvtest { namespace ocl { +enum +{ + noType = -1 +}; + ///////////////////////////////////////////////////////////////////////////////////////////////// -// resize +// warpAffine & warpPerspective + +PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool) +{ + int type, interpolation; + Size dsize; + bool useRoi, mapInverse; + + TEST_DECLARE_INPUT_PARAMETER(src) + TEST_DECLARE_OUTPUT_PARAMETER(dst) + + virtual void SetUp() + { + type = GET_PARAM(0); + interpolation = GET_PARAM(1); + mapInverse = GET_PARAM(2); + useRoi = GET_PARAM(3); + + if (mapInverse) + interpolation |= WARP_INVERSE_MAP; + } + + void random_roi() + { + dsize = randomSize(1, MAX_VALUE); + + Size roiSize = randomSize(1, MAX_VALUE); + Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); + randomSubMat(src, src_roi, roiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE); + + Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); + randomSubMat(dst, dst_roi, dsize, dstBorder, type, -MAX_VALUE, MAX_VALUE); + + UMAT_UPLOAD_INPUT_PARAMETER(src) + UMAT_UPLOAD_OUTPUT_PARAMETER(dst) + } + + void Near(double threshold = 0.0) + { + EXPECT_MAT_NEAR(dst, udst, threshold); + EXPECT_MAT_NEAR(dst_roi, udst_roi, threshold); + } +}; + +/////warpAffine + +typedef WarpTestBase WarpAffine; + +OCL_TEST_P(WarpAffine, Mat) +{ + for (int j = 0; j < test_loop_times; j++) + { + random_roi(); + + Mat M = getRotationMatrix2D(Point2f(src_roi.cols / 2.0f, src_roi.rows / 2.0f), + rng.uniform(-180.f, 180.f), rng.uniform(0.4f, 2.0f)); + + OCL_OFF(cv::warpAffine(src_roi, dst_roi, M, dsize, interpolation)); + OCL_ON(cv::warpAffine(usrc_roi, udst_roi, M, dsize, interpolation)); + + Near(1.0); + } +} + +//// warpPerspective + +typedef WarpTestBase WarpPerspective; + +OCL_TEST_P(WarpPerspective, Mat) +{ + for (int j = 0; j < test_loop_times; j++) + { + random_roi(); + + float cols = static_cast(src_roi.cols), rows = static_cast(src_roi.rows); + float cols2 = cols / 2.0f, rows2 = rows / 2.0f; + Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) }; + Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)), + Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)), + Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)), + Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) }; + Mat M = getPerspectiveTransform(sp, dp); + + OCL_OFF(cv::warpPerspective(src_roi, dst_roi, M, dsize, interpolation)); + OCL_ON(cv::warpPerspective(usrc_roi, udst_roi, M, dsize, interpolation)); + + Near(1.0); + } +} + + +///////////////////////////////////////////////////////////////////////////////////////////////// +//// resize PARAM_TEST_CASE(Resize, MatType, double, double, Interpolation, bool) { @@ -125,12 +222,118 @@ OCL_TEST_P(Resize, Mat) } } +///////////////////////////////////////////////////////////////////////////////////////////////// +// remap + +PARAM_TEST_CASE(Remap, MatDepth, Channels, std::pair, Border, bool) +{ + int srcType, map1Type, map2Type; + int borderType; + bool useRoi; + + Scalar val; + + TEST_DECLARE_INPUT_PARAMETER(src) + TEST_DECLARE_INPUT_PARAMETER(map1) + TEST_DECLARE_INPUT_PARAMETER(map2) + TEST_DECLARE_OUTPUT_PARAMETER(dst) + + virtual void SetUp() + { + srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1)); + map1Type = GET_PARAM(2).first; + map2Type = GET_PARAM(2).second; + borderType = GET_PARAM(3); + useRoi = GET_PARAM(4); + } + + void random_roi() + { + val = randomScalar(-MAX_VALUE, MAX_VALUE); + Size srcROISize = randomSize(1, MAX_VALUE); + Size dstROISize = randomSize(1, MAX_VALUE); + + Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); + randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256); + + Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); + randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE); + + int mapMaxValue = MAX_VALUE << 2; + Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0); + randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue); + + Border map2Border = randomBorder(0, useRoi ? MAX_VALUE : 0); + if (map2Type != noType) + { + int mapMinValue = -mapMaxValue; + if (map2Type == CV_16UC1 || map2Type == CV_16SC1) + mapMinValue = 0, mapMaxValue = INTER_TAB_SIZE2; + randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, mapMinValue, mapMaxValue); + } + + UMAT_UPLOAD_INPUT_PARAMETER(src) + UMAT_UPLOAD_INPUT_PARAMETER(map1) + UMAT_UPLOAD_OUTPUT_PARAMETER(dst) + if (noType != map2Type) + UMAT_UPLOAD_INPUT_PARAMETER(map2) + } + + void Near(double threshold = 0.0) + { + EXPECT_MAT_NEAR(dst, udst, threshold); + EXPECT_MAT_NEAR(dst_roi, udst_roi, threshold); + } +}; + +typedef Remap Remap_INTER_NEAREST; + +OCL_TEST_P(Remap_INTER_NEAREST, Mat) +{ + for (int j = 0; j < test_loop_times; j++) + { + random_roi(); + + OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val)); + OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_NEAREST, borderType, val)); + + Near(1.0); + } +} + +typedef Remap Remap_INTER_LINEAR; + +OCL_TEST_P(Remap_INTER_LINEAR, Mat) +{ + for (int j = 0; j < test_loop_times; j++) + { + random_roi(); + + OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val)); + OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_LINEAR, borderType, val)); + + Near(2.0); + } +} + ///////////////////////////////////////////////////////////////////////////////////// -OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResize, Resize, Combine( - Values((MatType)CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), - Values(0.7, 0.4, 2.0), - Values(0.3, 0.6, 2.0), +OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine( + Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), + Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC), + Bool(), + Bool())); + +OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpPerspective, Combine( + Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), + Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC), + Bool(), + Bool())); + +OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Resize, Combine( + Values(CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, CV_32FC4), + Values(0.5, 1.5, 2.0), + Values(0.5, 1.5, 2.0), Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR), Bool())); @@ -141,6 +344,33 @@ OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResizeArea, Resize, Combine( Values((Interpolation)INTER_AREA), Bool())); +OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine( + Values(CV_8U, CV_16U, CV_32F), + Values(1, 4), + Values(std::pair((MatType)CV_32FC1, (MatType)CV_32FC1), + std::pair((MatType)CV_16SC2, (MatType)CV_16UC1), + std::pair((MatType)CV_32FC2, noType)), + Values((Border)BORDER_CONSTANT, + (Border)BORDER_REPLICATE, + (Border)BORDER_WRAP, + (Border)BORDER_REFLECT, + (Border)BORDER_REFLECT_101), + Bool())); + +OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine( + Values(CV_8U, CV_16U, CV_32F), + Values(1, 4), + Values(std::pair((MatType)CV_32FC1, (MatType)CV_32FC1), + std::pair((MatType)CV_32FC2, noType), + std::pair((MatType)CV_16SC2, (MatType)CV_16UC1), + std::pair((MatType)CV_16SC2, noType)), + Values((Border)BORDER_CONSTANT, + (Border)BORDER_REPLICATE, + (Border)BORDER_WRAP, + (Border)BORDER_REFLECT, + (Border)BORDER_REFLECT_101), + Bool())); + } } // namespace cvtest::ocl #endif // HAVE_OPENCL diff --git a/modules/ts/include/opencv2/ts/ocl_test.hpp b/modules/ts/include/opencv2/ts/ocl_test.hpp index 33520b9b28..81eae01383 100644 --- a/modules/ts/include/opencv2/ts/ocl_test.hpp +++ b/modules/ts/include/opencv2/ts/ocl_test.hpp @@ -306,6 +306,7 @@ IMPLEMENT_PARAM_CLASS(Channels, int) #define OCL_ALL_CHANNELS Values(1, 2, 3, 4) CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA) +CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_WRAP, BORDER_REFLECT, BORDER_REFLECT_101) #define OCL_INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator) \ INSTANTIATE_TEST_CASE_P(OCL_ ## prefix, test_case_name, generator)