mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
lk_homography.py sample added
This commit is contained in:
parent
47d68f6967
commit
e61f4c4a4b
112
samples/python2/lk_homography.py
Normal file
112
samples/python2/lk_homography.py
Normal file
@ -0,0 +1,112 @@
|
||||
'''
|
||||
Lucas-Kanade homography tracker
|
||||
===============================
|
||||
|
||||
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
|
||||
for track initialization and back-tracking for match verification
|
||||
between frames. Finds homography between reference and current views.
|
||||
|
||||
Usage
|
||||
-----
|
||||
lk_homography.py [<video_source>]
|
||||
|
||||
|
||||
Keys
|
||||
----
|
||||
ESC - exit
|
||||
SPACE - start tracking
|
||||
r - toggle RANSAC
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import video
|
||||
from common import draw_str
|
||||
|
||||
lk_params = dict( winSize = (19, 19),
|
||||
maxLevel = 2,
|
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03),
|
||||
derivLambda = 0.0 )
|
||||
|
||||
feature_params = dict( maxCorners = 1000,
|
||||
qualityLevel = 0.01,
|
||||
minDistance = 8,
|
||||
blockSize = 19 )
|
||||
|
||||
def checkedTrace(img0, img1, p0, back_threshold = 1.0):
|
||||
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
status = d < back_threshold
|
||||
return p1, status
|
||||
|
||||
green = (0, 255, 0)
|
||||
red = (0, 0, 255)
|
||||
|
||||
class App:
|
||||
def __init__(self, video_src):
|
||||
self.cam = video.create_capture(video_src)
|
||||
self.p0 = None
|
||||
self.use_ransac = True
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
ret, frame = self.cam.read()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
vis = frame.copy()
|
||||
if self.p0 is not None:
|
||||
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
|
||||
|
||||
self.p1 = p2[trace_status].copy()
|
||||
self.p0 = self.p0[trace_status].copy()
|
||||
self.gray1 = frame_gray
|
||||
|
||||
if len(self.p0) < 4:
|
||||
self.p0 = None
|
||||
continue
|
||||
H, status = cv2.findHomography(self.p0, self.p1, (0, cv2.RANSAC)[self.use_ransac], 10.0)
|
||||
h, w = frame.shape[:2]
|
||||
overlay = cv2.warpPerspective(self.frame0, H, (w, h))
|
||||
vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0)
|
||||
|
||||
for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
|
||||
if good:
|
||||
cv2.line(vis, (x0, y0), (x1, y1), (0, 128, 0))
|
||||
cv2.circle(vis, (x1, y1), 2, (red, green)[good], -1)
|
||||
draw_str(vis, (20, 20), 'track count: %d' % len(self.p1))
|
||||
if self.use_ransac:
|
||||
draw_str(vis, (20, 40), 'RANSAC')
|
||||
else:
|
||||
p = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
if p is not None:
|
||||
for x, y in p[:,0]:
|
||||
cv2.circle(vis, (x, y), 2, green, -1)
|
||||
draw_str(vis, (20, 20), 'feature count: %d' % len(p))
|
||||
|
||||
cv2.imshow('lk_homography', vis)
|
||||
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == 27:
|
||||
break
|
||||
if ch == ord(' '):
|
||||
self.frame0 = frame.copy()
|
||||
self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
if self.p0 is not None:
|
||||
self.p1 = self.p0
|
||||
self.gray0 = frame_gray
|
||||
self.gray1 = frame_gray
|
||||
if ch == ord('r'):
|
||||
self.use_ransac = not self.use_ransac
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
|
||||
print __doc__
|
||||
App(video_src).run()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user