mirror of
https://github.com/opencv/opencv.git
synced 2025-06-10 11:03:03 +08:00
Merge pull request #10184 from catree:solvePnP_iterative_guess_3_pts
This commit is contained in:
commit
e703c3090a
@ -563,7 +563,7 @@ Estimation" (@cite penate2013exhaustive). In this case the function also estimat
|
||||
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
|
||||
focal length.
|
||||
- **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem". In this case the
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the
|
||||
function requires exactly four object and image points.
|
||||
|
||||
The function estimates the object pose given a set of object points, their corresponding image
|
||||
@ -585,9 +585,12 @@ projections, as well as the camera matrix and the distortion coefficients.
|
||||
- The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
|
||||
unstable and sometimes give completely wrong results. If you pass one of these two
|
||||
flags, **SOLVEPNP_EPNP** method will be used instead.
|
||||
- The minimum number of points is 4. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
|
||||
- The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
|
||||
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
|
||||
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
|
||||
- With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
|
||||
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
|
||||
global solution to converge.
|
||||
*/
|
||||
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
@ -658,9 +661,9 @@ the model coordinate system to the camera coordinate system. A P3P problem has u
|
||||
@param tvecs Output translation vectors.
|
||||
@param flags Method for solving a P3P problem:
|
||||
- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
|
||||
"Complete Solution Classification for the Perspective-Three-Point Problem".
|
||||
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
|
||||
- **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem".
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
|
||||
|
||||
The function estimates the object pose given 3 object points, their corresponding image
|
||||
projections, as well as the camera matrix and the distortion coefficients.
|
||||
|
@ -61,7 +61,8 @@ bool solvePnP( InputArray _opoints, InputArray _ipoints,
|
||||
|
||||
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
|
||||
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
||||
CV_Assert( npoints >= 4 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
|
||||
CV_Assert( ( (npoints >= 4) || (npoints == 3 && flags == SOLVEPNP_ITERATIVE && useExtrinsicGuess) )
|
||||
&& npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
|
||||
|
||||
Mat rvec, tvec;
|
||||
if( flags != SOLVEPNP_ITERATIVE )
|
||||
|
@ -302,18 +302,15 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
|
||||
if (num_of_solutions != (int) rvecs.size() || num_of_solutions != (int) tvecs.size() || num_of_solutions == 0)
|
||||
return false;
|
||||
|
||||
double min_rvecDiff = DBL_MAX, min_tvecDiff = DBL_MAX;
|
||||
for (unsigned int i = 0; i < rvecs.size(); ++i) {
|
||||
bool isTestSuccess = false;
|
||||
double error = DBL_MAX;
|
||||
for (unsigned int i = 0; i < rvecs.size() && !isTestSuccess; ++i) {
|
||||
double rvecDiff = norm(rvecs[i]-trueRvec);
|
||||
min_rvecDiff = std::min(rvecDiff, min_rvecDiff);
|
||||
}
|
||||
for (unsigned int i = 0; i < tvecs.size(); ++i) {
|
||||
double tvecDiff = norm(tvecs[i]-trueTvec);
|
||||
min_tvecDiff = std::min(tvecDiff, min_tvecDiff);
|
||||
isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method];
|
||||
error = std::min(error, std::max(rvecDiff, tvecDiff));
|
||||
}
|
||||
bool isTestSuccess = min_rvecDiff < epsilon[method] && min_tvecDiff < epsilon[method];
|
||||
|
||||
double error = std::max(min_rvecDiff, min_tvecDiff);
|
||||
if (error > maxError)
|
||||
maxError = error;
|
||||
|
||||
@ -324,7 +321,7 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
|
||||
vector<Point3f> points, points_dls;
|
||||
vector<Point3f> points;
|
||||
points.resize(pointsCount);
|
||||
generate3DPointCloud(points);
|
||||
|
||||
@ -529,3 +526,68 @@ TEST(Calib3d_SolvePnP, translation)
|
||||
EXPECT_TRUE(checkRange(rvec));
|
||||
EXPECT_TRUE(checkRange(tvec));
|
||||
}
|
||||
|
||||
TEST(Calib3d_SolvePnP, iterativeInitialGuess3pts)
|
||||
{
|
||||
{
|
||||
Matx33d intrinsics(605.4, 0.0, 317.35,
|
||||
0.0, 601.2, 242.63,
|
||||
0.0, 0.0, 1.0);
|
||||
|
||||
double L = 0.1;
|
||||
vector<Point3d> p3d;
|
||||
p3d.push_back(Point3d(-L, -L, 0.0));
|
||||
p3d.push_back(Point3d(L, -L, 0.0));
|
||||
p3d.push_back(Point3d(L, L, 0.0));
|
||||
|
||||
Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
|
||||
Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
|
||||
|
||||
vector<Point2d> p2d;
|
||||
projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
|
||||
|
||||
Mat rvec_est = (Mat_<double>(3,1) << 0.2, -0.1, 0.6);
|
||||
Mat tvec_est = (Mat_<double>(3,1) << 0.05, -0.05, 1.0);
|
||||
|
||||
solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
|
||||
|
||||
std::cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
|
||||
std::cout << "rvec_est: " << rvec_est.t() << std::endl;
|
||||
std::cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
|
||||
std::cout << "tvec_est: " << tvec_est.t() << std::endl;
|
||||
|
||||
EXPECT_LE(norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
|
||||
EXPECT_LE(norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
|
||||
}
|
||||
|
||||
{
|
||||
Matx33f intrinsics(605.4f, 0.0f, 317.35f,
|
||||
0.0f, 601.2f, 242.63f,
|
||||
0.0f, 0.0f, 1.0f);
|
||||
|
||||
float L = 0.1f;
|
||||
vector<Point3f> p3d;
|
||||
p3d.push_back(Point3f(-L, -L, 0.0f));
|
||||
p3d.push_back(Point3f(L, -L, 0.0f));
|
||||
p3d.push_back(Point3f(L, L, 0.0f));
|
||||
|
||||
Mat rvec_ground_truth = (Mat_<float>(3,1) << -0.75f, 0.4f, 0.34f);
|
||||
Mat tvec_ground_truth = (Mat_<float>(3,1) << -0.15f, 0.35f, 1.58f);
|
||||
|
||||
vector<Point2f> p2d;
|
||||
projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
|
||||
|
||||
Mat rvec_est = (Mat_<float>(3,1) << -0.5f, 0.2f, 0.2f);
|
||||
Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.2f, 1.0f);
|
||||
|
||||
solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
|
||||
|
||||
std::cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
|
||||
std::cout << "rvec_est: " << rvec_est.t() << std::endl;
|
||||
std::cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
|
||||
std::cout << "tvec_est: " << tvec_est.t() << std::endl;
|
||||
|
||||
EXPECT_LE(norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
|
||||
EXPECT_LE(norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user