mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Misc. modules/ typos (cont.)
Found via `codespell`
This commit is contained in:
parent
17233c687e
commit
e805a55a5b
@ -27,16 +27,16 @@ Explanation / Result
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp load_image
|
||||
![](images/source.jpeg)
|
||||
|
||||
-# Then if we have an image with a white background, it is good to transform it to black. This will help us to descriminate the foreground objects easier when we will apply the Distance Transform:
|
||||
-# Then if we have an image with a white background, it is good to transform it to black. This will help us to discriminate the foreground objects easier when we will apply the Distance Transform:
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp black_bg
|
||||
![](images/black_bg.jpeg)
|
||||
|
||||
-# Afterwards we will sharp our image in order to acute the edges of the foreground objects. We will apply a laplacian filter with a quite strong filter (an approximation of second derivative):
|
||||
-# Afterwards we will sharpen our image in order to acute the edges of the foreground objects. We will apply a laplacian filter with a quite strong filter (an approximation of second derivative):
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp sharp
|
||||
![](images/laplace.jpeg)
|
||||
![](images/sharp.jpeg)
|
||||
|
||||
-# Now we transfrom our new sharped source image to a grayscale and a binary one, respectively:
|
||||
-# Now we transform our new sharpened source image to a grayscale and a binary one, respectively:
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp bin
|
||||
![](images/bin.jpeg)
|
||||
|
||||
|
@ -1391,7 +1391,7 @@ icvCheckQuadGroup( CvCBQuad **quad_group, int quad_count,
|
||||
}
|
||||
}
|
||||
|
||||
// start with a corner that belongs to a quad with a signle neighbor.
|
||||
// start with a corner that belongs to a quad with a single neighbor.
|
||||
// if we do not have such, start with a corner of a quad with two neighbors.
|
||||
if( !first )
|
||||
first = first2;
|
||||
@ -2173,7 +2173,7 @@ bool cv::findCirclesGrid2( InputArray _image, Size patternSize,
|
||||
boxFinder.getAsymmetricHoles(centers);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unkown pattern type");
|
||||
CV_Error(CV_StsBadArg, "Unknown pattern type");
|
||||
}
|
||||
|
||||
if (i != 0)
|
||||
|
@ -619,7 +619,7 @@ bool CirclesGridFinder::findHoles()
|
||||
}
|
||||
|
||||
default:
|
||||
CV_Error(Error::StsBadArg, "Unkown pattern type");
|
||||
CV_Error(Error::StsBadArg, "Unknown pattern type");
|
||||
}
|
||||
return (isDetectionCorrect());
|
||||
//CV_Error( 0, "Detection is not correct" );
|
||||
|
@ -506,7 +506,7 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2,
|
||||
// Do the cheirality check.
|
||||
// Notice here a threshold dist is used to filter
|
||||
// out far away points (i.e. infinite points) since
|
||||
// there depth may vary between postive and negtive.
|
||||
// their depth may vary between positive and negtive.
|
||||
std::vector<Mat> allTriangulations(4);
|
||||
Mat Q;
|
||||
|
||||
|
@ -141,7 +141,7 @@ __kernel void stereoBM(__global const uchar * leftptr,
|
||||
__global const uchar * rightptr,
|
||||
__global uchar * dispptr, int disp_step, int disp_offset,
|
||||
int rows, int cols, // rows, cols of left and right images, not disp
|
||||
int textureTreshold, int uniquenessRatio)
|
||||
int textureThreshold, int uniquenessRatio)
|
||||
{
|
||||
int lz = get_local_id(0);
|
||||
int gx = get_global_id(1) * BLOCK_SIZE_X;
|
||||
|
@ -192,7 +192,7 @@ int p3p::solve(double R[4][3][3], double t[4][3],
|
||||
}
|
||||
|
||||
/// Given 3D distances between three points and cosines of 3 angles at the apex, calculates
|
||||
/// the lentghs of the line segments connecting projection center (P) and the three 3D points (A, B, C).
|
||||
/// the lengths of the line segments connecting projection center (P) and the three 3D points (A, B, C).
|
||||
/// Returned distances are for |PA|, |PB|, |PC| respectively.
|
||||
/// Only the solution to the main branch.
|
||||
/// Reference : X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
||||
|
@ -32,7 +32,7 @@ int solve_deg3(double a, double b, double c, double d,
|
||||
double & x0, double & x1, double & x2)
|
||||
{
|
||||
if (a == 0) {
|
||||
// Solve second order sytem
|
||||
// Solve second order system
|
||||
if (b == 0) {
|
||||
// Solve first order system
|
||||
if (c == 0)
|
||||
|
@ -443,7 +443,7 @@ static inline void sacSub8x1 (float* Hout,
|
||||
/**
|
||||
* External access to context constructor.
|
||||
*
|
||||
* @return A pointer to the context if successful; NULL if an error occured.
|
||||
* @return A pointer to the context if successful; NULL if an error occurred.
|
||||
*/
|
||||
|
||||
Ptr<RHO_HEST> rhoInit(void){
|
||||
@ -1205,7 +1205,7 @@ inline void RHO_HEST_REFC::PROSACGoToNextPhase(void){
|
||||
|
||||
/**
|
||||
* Get a sample according to PROSAC rules. Namely:
|
||||
* - If we're past the phase end interation, select randomly 4 out of the first
|
||||
* - If we're past the phase end interaction, select randomly 4 out of the first
|
||||
* phNum matches.
|
||||
* - Otherwise, select match phNum-1 and select randomly the 3 others out of
|
||||
* the first phNum-1 matches.
|
||||
@ -1742,7 +1742,7 @@ inline void RHO_HEST_REFC::updateBounds(void){
|
||||
}
|
||||
|
||||
/**
|
||||
* Ouput the best model so far to the output argument.
|
||||
* Output the best model so far to the output argument.
|
||||
*
|
||||
* Reads (direct): arg.finalH, best.H, arg.inl, best.inl, arg.N
|
||||
* Reads (callees): arg.finalH, arg.inl, arg.N
|
||||
@ -1762,7 +1762,7 @@ inline void RHO_HEST_REFC::outputModel(void){
|
||||
}
|
||||
|
||||
/**
|
||||
* Ouput a zeroed H to the output argument.
|
||||
* Output a zeroed H to the output argument.
|
||||
*
|
||||
* Reads (direct): arg.finalH, arg.inl, arg.N
|
||||
* Reads (callees): None.
|
||||
|
@ -80,7 +80,7 @@ protected:
|
||||
static const double m_pointTargetDist;
|
||||
static const int m_pointTargetNum;
|
||||
|
||||
/** image distance coresponding to working distance */
|
||||
/** image distance corresponding to working distance */
|
||||
double m_imageDistance;
|
||||
/** image tilt angle corresponding to the tilt of the object plane */
|
||||
double m_imageTiltDegree;
|
||||
@ -202,7 +202,7 @@ void cameraCalibrationTiltTest::SetUp()
|
||||
double nearFarFactorImage[2] = {
|
||||
aperture/(aperture - circleConfusion),
|
||||
aperture/(aperture + circleConfusion)};
|
||||
// on the object side - points that determin the field of
|
||||
// on the object side - points that determine the field of
|
||||
// view
|
||||
std::vector<cv::Vec3d> fovBottomTop(6);
|
||||
std::vector<cv::Vec3d>::iterator itFov = fovBottomTop.begin();
|
||||
@ -552,7 +552,7 @@ void showVec(const std::string& name, const INPUT& in, const cv::Mat& est)
|
||||
For given camera matrix and distortion coefficients
|
||||
- project point target in different positions onto the sensor
|
||||
- add pixel noise
|
||||
- estimate camera modell with noisy measurements
|
||||
- estimate camera model with noisy measurements
|
||||
- compare result with initial model parameter
|
||||
|
||||
Parameter are differently affected by the noise
|
||||
@ -623,7 +623,7 @@ TEST_F(cameraCalibrationTiltTest, calibrateCamera)
|
||||
cv::TermCriteria::COUNT+cv::TermCriteria::EPS,
|
||||
50000,
|
||||
1e-14);
|
||||
// modell coice
|
||||
// model choice
|
||||
int flag =
|
||||
cv::CALIB_FIX_ASPECT_RATIO |
|
||||
// cv::CALIB_RATIONAL_MODEL |
|
||||
|
@ -94,7 +94,7 @@ void CV_POSITTest::run( int start_from )
|
||||
const float flFocalLength = 760.f;
|
||||
const float flEpsilon = 0.5f;
|
||||
|
||||
/* Initilization */
|
||||
/* Initialization */
|
||||
criteria.type = CV_TERMCRIT_EPS|CV_TERMCRIT_ITER;
|
||||
criteria.epsilon = flEpsilon;
|
||||
criteria.max_iter = 10000;
|
||||
|
@ -41,7 +41,7 @@
|
||||
|
||||
/*
|
||||
This is a regression test for stereo matching algorithms. This test gets some quality metrics
|
||||
discribed in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms".
|
||||
described in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms".
|
||||
Daniel Scharstein, Richard Szeliski
|
||||
*/
|
||||
|
||||
|
@ -382,7 +382,7 @@ the DefaultAllocator since the stack for pool1 is full.
|
||||
@endcode
|
||||
|
||||
If a third stream is declared in the above example, allocating with #getBuffer
|
||||
within that stream will also be carried out by the DefaultAllocator becuase we've run out of
|
||||
within that stream will also be carried out by the DefaultAllocator because we've run out of
|
||||
stacks.
|
||||
|
||||
@code
|
||||
|
@ -106,7 +106,7 @@ namespace cv { namespace cuda { namespace device
|
||||
}
|
||||
|
||||
template<typename InIt, typename OutIt, class UnOp>
|
||||
static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
|
||||
static __device__ __forceinline__ void transform(InIt beg, InIt end, OutIt out, UnOp op)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
InIt t = beg + flattenedThreadId();
|
||||
@ -117,7 +117,7 @@ namespace cv { namespace cuda { namespace device
|
||||
}
|
||||
|
||||
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
|
||||
static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
|
||||
static __device__ __forceinline__ void transform(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
InIt1 t1 = beg1 + flattenedThreadId();
|
||||
|
@ -1361,7 +1361,7 @@ CvGraph;
|
||||
|
||||
/** @} */
|
||||
|
||||
/*********************************** Chain/Countour *************************************/
|
||||
/*********************************** Chain/Contour *************************************/
|
||||
|
||||
typedef struct CvChain
|
||||
{
|
||||
|
@ -108,13 +108,13 @@
|
||||
" return result;",
|
||||
"\n",
|
||||
" } catch(const cv::Exception& e) {",
|
||||
" LOGD(\"Core::n_1minMaxLoc() catched cv::Exception: %s\", e.what());",
|
||||
" LOGD(\"Core::n_1minMaxLoc() caught cv::Exception: %s\", e.what());",
|
||||
" jclass je = env->FindClass(\"org/opencv/core/CvException\");",
|
||||
" if(!je) je = env->FindClass(\"java/lang/Exception\");",
|
||||
" env->ThrowNew(je, e.what());",
|
||||
" return NULL;",
|
||||
" } catch (...) {",
|
||||
" LOGD(\"Core::n_1minMaxLoc() catched unknown exception (...)\");",
|
||||
" LOGD(\"Core::n_1minMaxLoc() caught unknown exception (...)\");",
|
||||
" jclass je = env->FindClass(\"java/lang/Exception\");",
|
||||
" env->ThrowNew(je, \"Unknown exception in JNI code {core::minMaxLoc()}\");",
|
||||
" return NULL;",
|
||||
|
@ -843,7 +843,7 @@ typename Distance::ResultType ensureSquareDistance( typename Distance::ResultTyp
|
||||
|
||||
/*
|
||||
* ...and a template to ensure the user that he will process the normal distance,
|
||||
* and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance)
|
||||
* and not squared distance, without losing processing time calling sqrt(ensureSquareDistance)
|
||||
* that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
|
||||
*/
|
||||
template <typename Distance, typename ElementType>
|
||||
|
@ -1053,7 +1053,7 @@ private:
|
||||
|
||||
|
||||
/**
|
||||
* Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
|
||||
* Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize
|
||||
* the overall variance of the clustering.
|
||||
* Params:
|
||||
* root = root node
|
||||
|
@ -555,7 +555,7 @@ QUnit.test('test_filter', function(assert) {
|
||||
cv._free(dataPtr2);
|
||||
}
|
||||
|
||||
// Arithmatic operations
|
||||
// Arithmetic operations
|
||||
{
|
||||
let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]);
|
||||
|
@ -441,8 +441,8 @@ Batch Gradient Descent and Mini-Batch Gradient Descent algorithms are used (see
|
||||
discriminative classifier (see <http://www.cs.cmu.edu/~tom/NewChapters.html> for more details).
|
||||
Logistic Regression is implemented as a C++ class in LogisticRegression.
|
||||
|
||||
In Logistic Regression, we try to optimize the training paramater \f$\theta\f$ such that the
|
||||
hypothesis \f$0 \leq h_\theta(x) \leq 1\f$ is acheived. We have \f$h_\theta(x) = g(h_\theta(x))\f$
|
||||
In Logistic Regression, we try to optimize the training parameter \f$\theta\f$ such that the
|
||||
hypothesis \f$0 \leq h_\theta(x) \leq 1\f$ is achieved. We have \f$h_\theta(x) = g(h_\theta(x))\f$
|
||||
and \f$g(z) = \frac{1}{1+e^{-z}}\f$ as the logistic or sigmoid function. The term "Logistic" in
|
||||
Logistic Regression refers to this function. For given data of a binary classification problem of
|
||||
classes 0 and 1, one can determine that the given data instance belongs to class 1 if \f$h_\theta(x)
|
||||
@ -472,7 +472,7 @@ training error and ensuring high training accuracy:
|
||||
cv::ml::LogisticRegression::BATCH "LogisticRegression::BATCH" or @ref
|
||||
cv::ml::LogisticRegression::MINI_BATCH "LogisticRegression::MINI_BATCH". If training method is
|
||||
set to @ref cv::ml::LogisticRegression::MINI_BATCH "MINI_BATCH", the size of the mini batch has
|
||||
to be to a postive integer set with @ref cv::ml::LogisticRegression::setMiniBatchSize
|
||||
to be to a positive integer set with @ref cv::ml::LogisticRegression::setMiniBatchSize
|
||||
"setMiniBatchSize".
|
||||
|
||||
A sample set of training parameters for the Logistic Regression classifier can be initialized as follows:
|
||||
|
@ -1269,7 +1269,7 @@ public:
|
||||
results for each of the sample cases. If the model is a classifier, it will return
|
||||
a Mat with samples + 1 rows, where the first row gives the class number and the
|
||||
following rows return the votes each class had for each sample.
|
||||
@param samples Array containg the samples for which votes will be calculated.
|
||||
@param samples Array containing the samples for which votes will be calculated.
|
||||
@param results Array where the result of the calculation will be written.
|
||||
@param flags Flags for defining the type of RTrees.
|
||||
*/
|
||||
@ -1658,9 +1658,9 @@ public:
|
||||
*/
|
||||
CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
|
||||
|
||||
/** @brief This function returns the trained paramters arranged across rows.
|
||||
/** @brief This function returns the trained parameters arranged across rows.
|
||||
|
||||
For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of
|
||||
For a two class classifcation problem, it returns a row matrix. It returns learnt parameters of
|
||||
the Logistic Regression as a matrix of type CV_32F.
|
||||
*/
|
||||
CV_WRAP virtual Mat get_learnt_thetas() const = 0;
|
||||
@ -1854,7 +1854,7 @@ public:
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Auxilary functions declarations *
|
||||
* Auxiliary functions declarations *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief Generates _sample_ from multivariate normal distribution
|
||||
@ -1921,7 +1921,7 @@ struct SimulatedAnnealingSolverSystem
|
||||
{
|
||||
/** Give energy value for a state of system.*/
|
||||
double energy() const;
|
||||
/** Function which change the state of system (random pertubation).*/
|
||||
/** Function which change the state of system (random perturbation).*/
|
||||
void changeState();
|
||||
/** Function to reverse to the previous state. Can be called once only after changeState(). */
|
||||
void reverseState();
|
||||
|
@ -253,7 +253,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
|
||||
}
|
||||
}
|
||||
|
||||
// inside gbt learning proccess only regression decision trees are built
|
||||
// inside gbt learning process only regression decision trees are built
|
||||
data->is_classifier = false;
|
||||
|
||||
// preproccessing sample indices
|
||||
|
@ -52,7 +52,7 @@
|
||||
The code has been derived from libsvm library (version 2.6)
|
||||
(http://www.csie.ntu.edu.tw/~cjlin/libsvm).
|
||||
|
||||
Here is the orignal copyright:
|
||||
Here is the original copyright:
|
||||
------------------------------------------------------------------------------------------
|
||||
Copyright (c) 2000-2003 Chih-Chung Chang and Chih-Jen Lin
|
||||
All rights reserved.
|
||||
@ -287,7 +287,7 @@ public:
|
||||
double d = sample[k]-another[k];
|
||||
double devisor = sample[k]+another[k];
|
||||
/// if devisor == 0, the Chi2 distance would be zero,
|
||||
// but calculation would rise an error because of deviding by zero
|
||||
// but calculation would rise an error because of dividing by zero
|
||||
if (devisor != 0)
|
||||
{
|
||||
chi2 += d*d/devisor;
|
||||
|
@ -590,7 +590,7 @@ protected:
|
||||
|
||||
if( errCaseCount > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Different prediction results before writeing and after reading (errCaseCount=%d).\n", errCaseCount );
|
||||
ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errCaseCount=%d).\n", errCaseCount );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
|
@ -91,7 +91,7 @@ protected:
|
||||
void CV_LRTest::run( int /*start_from*/ )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
// initialize varibles from the popular Iris Dataset
|
||||
// initialize variables from the popular Iris Dataset
|
||||
string dataFileName = ts->get_data_path() + "iris.data";
|
||||
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
|
||||
|
||||
@ -153,7 +153,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
||||
CV_TRACE_FUNCTION();
|
||||
int code = cvtest::TS::OK;
|
||||
|
||||
// initialize varibles from the popular Iris Dataset
|
||||
// initialize variables from the popular Iris Dataset
|
||||
string dataFileName = ts->get_data_path() + "iris.data";
|
||||
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
|
||||
|
||||
@ -205,7 +205,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
||||
comp_learnt_mats = comp_learnt_mats/255;
|
||||
|
||||
// compare difference in prediction outputs and stored inputs
|
||||
// check if there is any difference between computed learnt mat and retreived mat
|
||||
// check if there is any difference between computed learnt mat and retrieved mat
|
||||
|
||||
float errorCount = 0.0;
|
||||
errorCount += 1 - (float)countNonZero(responses1 == responses2)/responses1.rows;
|
||||
|
@ -346,7 +346,7 @@ struct DetectionROI
|
||||
{
|
||||
//! scale(size) of the bounding box
|
||||
double scale;
|
||||
//! set of requrested locations to be evaluated
|
||||
//! set of requested locations to be evaluated
|
||||
std::vector<cv::Point> locations;
|
||||
//! vector that will contain confidence values for each location
|
||||
std::vector<double> confidences;
|
||||
@ -497,11 +497,11 @@ public:
|
||||
@param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
|
||||
@param weights Vector that will contain confidence values for each detected object.
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane.
|
||||
Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
|
||||
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
|
||||
But if the free coefficient is omitted (which is allowed), you can specify it manually here.
|
||||
@param winStride Window stride. It must be a multiple of block stride.
|
||||
@param padding Padding
|
||||
@param searchLocations Vector of Point includes set of requrested locations to be evaluated.
|
||||
@param searchLocations Vector of Point includes set of requested locations to be evaluated.
|
||||
*/
|
||||
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
||||
CV_OUT std::vector<double>& weights,
|
||||
@ -513,7 +513,7 @@ public:
|
||||
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
||||
@param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane.
|
||||
Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
|
||||
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
|
||||
But if the free coefficient is omitted (which is allowed), you can specify it manually here.
|
||||
@param winStride Window stride. It must be a multiple of block stride.
|
||||
@param padding Padding
|
||||
@ -530,7 +530,7 @@ public:
|
||||
@param foundLocations Vector of rectangles where each rectangle contains the detected object.
|
||||
@param foundWeights Vector that will contain confidence values for each detected object.
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane.
|
||||
Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
|
||||
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
|
||||
But if the free coefficient is omitted (which is allowed), you can specify it manually here.
|
||||
@param winStride Window stride. It must be a multiple of block stride.
|
||||
@param padding Padding
|
||||
@ -548,7 +548,7 @@ public:
|
||||
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
||||
@param foundLocations Vector of rectangles where each rectangle contains the detected object.
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane.
|
||||
Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
|
||||
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
|
||||
But if the free coefficient is omitted (which is allowed), you can specify it manually here.
|
||||
@param winStride Window stride. It must be a multiple of block stride.
|
||||
@param padding Padding
|
||||
@ -632,7 +632,7 @@ public:
|
||||
@param foundLocations Vector of Point where each Point is detected object's top-left point.
|
||||
@param confidences confidences
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
||||
it is 0 and should be specfied in the detector coefficients (as the last free coefficient). But if
|
||||
it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
||||
the free coefficient is omitted (which is allowed), you can specify it manually here
|
||||
@param winStride winStride
|
||||
@param padding padding
|
||||
@ -646,7 +646,7 @@ public:
|
||||
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
||||
@param foundLocations Vector of rectangles where each rectangle contains the detected object.
|
||||
@param locations Vector of DetectionROI
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specfied
|
||||
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified
|
||||
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
|
||||
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
|
||||
*/
|
||||
|
@ -3608,7 +3608,7 @@ void HOGDescriptor::detectROI(const cv::Mat& img, const std::vector<cv::Point> &
|
||||
const HOGCache::BlockData& bj = blockData[j];
|
||||
Point pt = pt0 + bj.imgOffset;
|
||||
|
||||
// need to devide this into 4 parts!
|
||||
// need to divide this into 4 parts!
|
||||
const float* vec = cache.getBlock(pt, &blockHist[0]);
|
||||
#if CV_SSE2
|
||||
__m128 _vec = _mm_loadu_ps(vec);
|
||||
@ -3699,7 +3699,7 @@ void HOGDescriptor::readALTModel(String modelfile)
|
||||
CV_THROW (Exception(Error::StsError, eerr, efile, efunc, __LINE__));
|
||||
}
|
||||
if(strcmp(version_buffer,"V6.01")) {
|
||||
String eerr("version doesnot match");
|
||||
String eerr("version does not match");
|
||||
String efile(__FILE__);
|
||||
String efunc(__FUNCTION__);
|
||||
fclose(modelfl);
|
||||
@ -3715,7 +3715,7 @@ void HOGDescriptor::readALTModel(String modelfile)
|
||||
}
|
||||
if (version < 200)
|
||||
{
|
||||
String eerr("version doesnot match");
|
||||
String eerr("version does not match");
|
||||
String efile(__FILE__);
|
||||
String efunc(__FUNCTION__);
|
||||
fclose(modelfl);
|
||||
|
@ -189,7 +189,7 @@ CV_EXPORTS_W void fastNlMeansDenoisingColored( InputArray src, OutputArray dst,
|
||||
float h = 3, float hColor = 3,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
|
||||
/** @brief Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
|
||||
captured in small period of time. For example video. This version of the function is for grayscale
|
||||
images or for manual manipulation with colorspaces. For more details see
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
|
||||
@ -216,7 +216,7 @@ CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputA
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
|
||||
/** @brief Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
|
||||
captured in small period of time. For example video. This version of the function is for grayscale
|
||||
images or for manual manipulation with colorspaces. For more details see
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
|
||||
|
@ -92,7 +92,7 @@ public:
|
||||
|
||||
/** @brief Definition of the transformation
|
||||
|
||||
ocupied in the paper "Principal Warps: Thin-Plate Splines and Decomposition of Deformations", by
|
||||
occupied in the paper "Principal Warps: Thin-Plate Splines and Decomposition of Deformations", by
|
||||
F.L. Bookstein (PAMI 1989). :
|
||||
*/
|
||||
class CV_EXPORTS_W ThinPlateSplineShapeTransformer : public ShapeTransformer
|
||||
|
@ -294,8 +294,8 @@ bool EmdL1::greedySolution2()
|
||||
// move to up
|
||||
pBV = &(m_EdgesUp[r][c]);
|
||||
m_NBVEdges[nNBV++] = &(m_EdgesRight[r][c]);
|
||||
D[r+1][c] += dFlow; // auxilary matrix maintanence
|
||||
d1s[r+1] += dFlow; // auxilary matrix maintanence
|
||||
D[r+1][c] += dFlow; // auxiliary matrix maintenance
|
||||
d1s[r+1] += dFlow; // auxiliary matrix maintenance
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -304,8 +304,8 @@ bool EmdL1::greedySolution2()
|
||||
if(r<binsDim1-1)
|
||||
m_NBVEdges[nNBV++] = &(m_EdgesUp[r][c]);
|
||||
|
||||
D[r][c+1] += dFlow; // auxilary matrix maintanence
|
||||
d2s[c+1] += dFlow; // auxilary matrix maintanence
|
||||
D[r][c+1] += dFlow; // auxiliary matrix maintenance
|
||||
d2s[c+1] += dFlow; // auxiliary matrix maintenance
|
||||
}
|
||||
pBV->pParent->pChild = pBV;
|
||||
pBV->flow = fabs(dFlow);
|
||||
@ -318,7 +318,7 @@ bool EmdL1::greedySolution2()
|
||||
{
|
||||
dFlow = D[r][c];
|
||||
pBV = &(m_EdgesUp[r][c]);
|
||||
D[r+1][c] += dFlow; // auxilary matrix maintanence
|
||||
D[r+1][c] += dFlow; // auxiliary matrix maintenance
|
||||
pBV->pParent->pChild= pBV;
|
||||
pBV->flow = fabs(dFlow);
|
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
@ -402,7 +402,7 @@ bool EmdL1::greedySolution3()
|
||||
pBV = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
D[i1+1][i2][i3] += dFlow; // maintain auxilary matrix
|
||||
D[i1+1][i2][i3] += dFlow; // maintain auxiliary matrix
|
||||
d1s[i1+1] += dFlow;
|
||||
}
|
||||
else if(f2<f3)
|
||||
@ -410,7 +410,7 @@ bool EmdL1::greedySolution3()
|
||||
pBV = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
D[i1][i2+1][i3] += dFlow; // maintain auxilary matrix
|
||||
D[i1][i2+1][i3] += dFlow; // maintain auxiliary matrix
|
||||
d2s[i2+1] += dFlow;
|
||||
}
|
||||
else
|
||||
@ -418,7 +418,7 @@ bool EmdL1::greedySolution3()
|
||||
pBV = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
D[i1][i2][i3+1] += dFlow; // maintain auxilary matrix
|
||||
D[i1][i2][i3+1] += dFlow; // maintain auxiliary matrix
|
||||
d3s[i3+1] += dFlow;
|
||||
}
|
||||
|
||||
|
@ -54,7 +54,7 @@ struct cvEMDNode
|
||||
int pos[3]; // grid position
|
||||
float d; // initial value
|
||||
int u;
|
||||
// tree maintainance
|
||||
// tree maintenance
|
||||
int iLevel; // level in the tree, 0 means root
|
||||
cvPEmdNode pParent; // pointer to its parent
|
||||
cvPEmdEdge pChild;
|
||||
@ -64,7 +64,7 @@ struct cvEMDEdge
|
||||
{
|
||||
float flow; // initial value
|
||||
int iDir; // 1:outward, 0:inward
|
||||
// tree maintainance
|
||||
// tree maintenance
|
||||
cvPEmdNode pParent; // point to its parent
|
||||
cvPEmdNode pChild; // the child node
|
||||
cvPEmdEdge pNxt; // next child/edge
|
||||
@ -123,7 +123,7 @@ private:
|
||||
|
||||
private:
|
||||
int dimension;
|
||||
int binsDim1, binsDim2, binsDim3; // the hitogram contains m_n1 rows and m_n2 columns
|
||||
int binsDim1, binsDim2, binsDim3; // the histogram contains m_n1 rows and m_n2 columns
|
||||
int nNBV; // number of Non-Basic Variables (NBV)
|
||||
int nMaxIt;
|
||||
cvEMDNodeArray2D m_Nodes; // all nodes
|
||||
|
@ -235,7 +235,7 @@ void ThinPlateSplineShapeTransformerImpl::estimateTransformation(InputArray _pts
|
||||
|
||||
// Building the matrices for solving the L*(w|a)=(v|0) problem with L={[K|P];[P'|0]}
|
||||
|
||||
//Building K and P (Neede to buil L)
|
||||
//Building K and P (Needed to build L)
|
||||
Mat matK((int)matches.size(),(int)matches.size(),CV_32F);
|
||||
Mat matP((int)matches.size(),3,CV_32F);
|
||||
for (int i=0, end=(int)matches.size(); i<end; i++)
|
||||
|
@ -111,7 +111,7 @@ private:
|
||||
|
||||
/** @brief Affine transformation based estimator.
|
||||
|
||||
This estimator uses pairwise tranformations estimated by matcher to estimate
|
||||
This estimator uses pairwise transformations estimated by matcher to estimate
|
||||
final transformation for each camera.
|
||||
|
||||
@sa cv::detail::HomographyBasedEstimator
|
||||
|
@ -859,7 +859,7 @@ void AffineBestOf2NearestMatcher::match(const ImageFeatures &features1, const Im
|
||||
/* should we remove matches between too close images? */
|
||||
// matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence;
|
||||
|
||||
// extend H to represent linear tranformation in homogeneous coordinates
|
||||
// extend H to represent linear transformation in homogeneous coordinates
|
||||
matches_info.H.push_back(Mat::zeros(1, 3, CV_64F));
|
||||
matches_info.H.at<double>(2, 2) = 1;
|
||||
}
|
||||
|
@ -89,7 +89,7 @@ struct CalcRotation
|
||||
|
||||
|
||||
/**
|
||||
* @brief Functor calculating final tranformation by chaining linear transformations
|
||||
* @brief Functor calculating final transformation by chaining linear transformations
|
||||
*/
|
||||
struct CalcAffineTransform
|
||||
{
|
||||
|
@ -50,7 +50,7 @@
|
||||
@defgroup superres Super Resolution
|
||||
|
||||
The Super Resolution module contains a set of functions and classes that can be used to solve the
|
||||
problem of resolution enhancement. There are a few methods implemented, most of them are descibed in
|
||||
problem of resolution enhancement. There are a few methods implemented, most of them are described in
|
||||
the papers @cite Farsiu03 and @cite Mitzel09 .
|
||||
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user