mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
used new device layer for cv::gpu::mulSpectrums
This commit is contained in:
parent
3f62e78592
commit
e820c5c65f
@ -292,95 +292,6 @@ void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// mulSpectrums
|
||||
|
||||
#ifdef HAVE_CUFFT
|
||||
|
||||
namespace cv { namespace cuda { namespace device
|
||||
{
|
||||
void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream);
|
||||
|
||||
void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
#endif
|
||||
|
||||
void cv::cuda::mulSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst, int flags, bool conjB, Stream& stream)
|
||||
{
|
||||
#ifndef HAVE_CUFFT
|
||||
(void) _src1;
|
||||
(void) _src2;
|
||||
(void) _dst;
|
||||
(void) flags;
|
||||
(void) conjB;
|
||||
(void) stream;
|
||||
throw_no_cuda();
|
||||
#else
|
||||
(void) flags;
|
||||
|
||||
typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, PtrStepSz<cufftComplex>, cudaStream_t stream);
|
||||
static Caller callers[] = { device::mulSpectrums, device::mulSpectrums_CONJ };
|
||||
|
||||
GpuMat src1 = _src1.getGpuMat();
|
||||
GpuMat src2 = _src2.getGpuMat();
|
||||
|
||||
CV_Assert( src1.type() == src2.type() && src1.type() == CV_32FC2 );
|
||||
CV_Assert( src1.size() == src2.size() );
|
||||
|
||||
_dst.create(src1.size(), CV_32FC2);
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
Caller caller = callers[(int)conjB];
|
||||
caller(src1, src2, dst, StreamAccessor::getStream(stream));
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// mulAndScaleSpectrums
|
||||
|
||||
#ifdef HAVE_CUFFT
|
||||
|
||||
namespace cv { namespace cuda { namespace device
|
||||
{
|
||||
void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream);
|
||||
|
||||
void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
#endif
|
||||
|
||||
void cv::cuda::mulAndScaleSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst, int flags, float scale, bool conjB, Stream& stream)
|
||||
{
|
||||
#ifndef HAVE_CUFFT
|
||||
(void) _src1;
|
||||
(void) _src2;
|
||||
(void) _dst;
|
||||
(void) flags;
|
||||
(void) scale;
|
||||
(void) conjB;
|
||||
(void) stream;
|
||||
throw_no_cuda();
|
||||
#else
|
||||
(void)flags;
|
||||
|
||||
typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, float scale, PtrStepSz<cufftComplex>, cudaStream_t stream);
|
||||
static Caller callers[] = { device::mulAndScaleSpectrums, device::mulAndScaleSpectrums_CONJ };
|
||||
|
||||
GpuMat src1 = _src1.getGpuMat();
|
||||
GpuMat src2 = _src2.getGpuMat();
|
||||
|
||||
CV_Assert( src1.type() == src2.type() && src1.type() == CV_32FC2);
|
||||
CV_Assert( src1.size() == src2.size() );
|
||||
|
||||
_dst.create(src1.size(), CV_32FC2);
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
Caller caller = callers[(int)conjB];
|
||||
caller(src1, src2, scale, dst, StreamAccessor::getStream(stream));
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// dft
|
||||
|
||||
|
@ -40,132 +40,126 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
|
||||
#include "cvconfig.h"
|
||||
#ifndef HAVE_OPENCV_CUDEV
|
||||
|
||||
#ifdef HAVE_CUFFT
|
||||
#error "opencv_cudev is required"
|
||||
|
||||
#include <cufft.h>
|
||||
#else
|
||||
|
||||
#include "opencv2/core/cuda/common.hpp"
|
||||
#include "opencv2/cudaarithm.hpp"
|
||||
#include "opencv2/cudev.hpp"
|
||||
|
||||
namespace cv { namespace cuda { namespace device
|
||||
using namespace cv::cudev;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// mulSpectrums
|
||||
|
||||
namespace
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// mulSpectrums
|
||||
|
||||
__global__ void mulSpectrumsKernel(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c)
|
||||
__device__ __forceinline__ float real(const float2& val)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
return val.x;
|
||||
}
|
||||
|
||||
if (x < c.cols && y < c.rows)
|
||||
__device__ __forceinline__ float imag(const float2& val)
|
||||
{
|
||||
return val.y;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ float2 cmul(const float2& a, const float2& b)
|
||||
{
|
||||
return make_float2((real(a) * real(b)) - (imag(a) * imag(b)),
|
||||
(real(a) * imag(b)) + (imag(a) * real(b)));
|
||||
}
|
||||
|
||||
__device__ __forceinline__ float2 conj(const float2& a)
|
||||
{
|
||||
return make_float2(real(a), -imag(a));
|
||||
}
|
||||
|
||||
struct comlex_mul : binary_function<float2, float2, float2>
|
||||
{
|
||||
__device__ __forceinline__ float2 operator ()(const float2& a, const float2& b) const
|
||||
{
|
||||
c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
|
||||
return cmul(a, b);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream)
|
||||
struct comlex_mul_conj : binary_function<float2, float2, float2>
|
||||
{
|
||||
dim3 threads(256);
|
||||
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
|
||||
|
||||
mulSpectrumsKernel<<<grid, threads, 0, stream>>>(a, b, c);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// mulSpectrums_CONJ
|
||||
|
||||
__global__ void mulSpectrumsKernel_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < c.cols && y < c.rows)
|
||||
__device__ __forceinline__ float2 operator ()(const float2& a, const float2& b) const
|
||||
{
|
||||
c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
|
||||
return cmul(a, conj(b));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream)
|
||||
struct comlex_mul_scale : binary_function<float2, float2, float2>
|
||||
{
|
||||
dim3 threads(256);
|
||||
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
|
||||
float scale;
|
||||
|
||||
mulSpectrumsKernel_CONJ<<<grid, threads, 0, stream>>>(a, b, c);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// mulAndScaleSpectrums
|
||||
|
||||
__global__ void mulAndScaleSpectrumsKernel(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < c.cols && y < c.rows)
|
||||
__device__ __forceinline__ float2 operator ()(const float2& a, const float2& b) const
|
||||
{
|
||||
cufftComplex v = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
|
||||
c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
|
||||
return scale * cmul(a, b);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream)
|
||||
struct comlex_mul_conj_scale : binary_function<float2, float2, float2>
|
||||
{
|
||||
dim3 threads(256);
|
||||
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
|
||||
float scale;
|
||||
|
||||
mulAndScaleSpectrumsKernel<<<grid, threads, 0, stream>>>(a, b, scale, c);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// mulAndScaleSpectrums_CONJ
|
||||
|
||||
__global__ void mulAndScaleSpectrumsKernel_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < c.cols && y < c.rows)
|
||||
__device__ __forceinline__ float2 operator ()(const float2& a, const float2& b) const
|
||||
{
|
||||
cufftComplex v = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
|
||||
c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
|
||||
return scale * cmul(a, conj(b));
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void cv::cuda::mulSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst, int flags, bool conjB, Stream& stream)
|
||||
{
|
||||
(void) flags;
|
||||
|
||||
void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream)
|
||||
GpuMat src1 = _src1.getGpuMat();
|
||||
GpuMat src2 = _src2.getGpuMat();
|
||||
|
||||
CV_Assert( src1.type() == src2.type() && src1.type() == CV_32FC2 );
|
||||
CV_Assert( src1.size() == src2.size() );
|
||||
|
||||
_dst.create(src1.size(), CV_32FC2);
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
if (conjB)
|
||||
gridTransformBinary(globPtr<float2>(src1), globPtr<float2>(src2), globPtr<float2>(dst), comlex_mul_conj(), stream);
|
||||
else
|
||||
gridTransformBinary(globPtr<float2>(src1), globPtr<float2>(src2), globPtr<float2>(dst), comlex_mul(), stream);
|
||||
}
|
||||
|
||||
void cv::cuda::mulAndScaleSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst, int flags, float scale, bool conjB, Stream& stream)
|
||||
{
|
||||
(void) flags;
|
||||
|
||||
GpuMat src1 = _src1.getGpuMat();
|
||||
GpuMat src2 = _src2.getGpuMat();
|
||||
|
||||
CV_Assert( src1.type() == src2.type() && src1.type() == CV_32FC2);
|
||||
CV_Assert( src1.size() == src2.size() );
|
||||
|
||||
_dst.create(src1.size(), CV_32FC2);
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
if (conjB)
|
||||
{
|
||||
dim3 threads(256);
|
||||
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
|
||||
|
||||
mulAndScaleSpectrumsKernel_CONJ<<<grid, threads, 0, stream>>>(a, b, scale, c);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
comlex_mul_conj_scale op;
|
||||
op.scale = scale;
|
||||
gridTransformBinary(globPtr<float2>(src1), globPtr<float2>(src2), globPtr<float2>(dst), op, stream);
|
||||
}
|
||||
}}} // namespace cv { namespace cuda { namespace cudev
|
||||
else
|
||||
{
|
||||
comlex_mul_scale op;
|
||||
op.scale = scale;
|
||||
gridTransformBinary(globPtr<float2>(src1), globPtr<float2>(src2), globPtr<float2>(dst), op, stream);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // HAVE_CUFFT
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user