Fixed mingw build warnings

This commit is contained in:
Andrey Kamaev 2012-06-20 17:57:26 +00:00
parent 988c405f79
commit e94e5866a1
11 changed files with 166 additions and 131 deletions

View File

@ -24,7 +24,7 @@ CvParams::CvParams() : name( "params" ) {}
void CvParams::printDefaults() const
{ cout << "--" << name << "--" << endl; }
void CvParams::printAttrs() const {}
bool CvParams::scanAttr( const String prmName, const String val ) { return false; }
bool CvParams::scanAttr( const String, const String ) { return false; }
//---------------------------- FeatureParams --------------------------------------

View File

@ -59,151 +59,151 @@ namespace cv
// To add Kalman filter
struct CV_EXPORTS CvMotionModel
{
enum {LOW_PASS_FILTER = 0, KALMAN_FILTER = 1, EM = 2};
enum {LOW_PASS_FILTER = 0, KALMAN_FILTER = 1, EM = 2};
CvMotionModel()
{
}
CvMotionModel()
{
}
float low_pass_gain; // low pass gain
float low_pass_gain; // low pass gain
};
// Mean Shift Tracker parameters for specifying use of HSV channel and CamShift parameters.
struct CV_EXPORTS CvMeanShiftTrackerParams
{
enum { H = 0, HS = 1, HSV = 2 };
CvMeanShiftTrackerParams(int tracking_type = CvMeanShiftTrackerParams::HS,
CvTermCriteria term_crit = CvTermCriteria());
enum { H = 0, HS = 1, HSV = 2 };
CvMeanShiftTrackerParams(int tracking_type = CvMeanShiftTrackerParams::HS,
CvTermCriteria term_crit = CvTermCriteria());
int tracking_type;
vector<float> h_range;
vector<float> s_range;
vector<float> v_range;
CvTermCriteria term_crit;
int tracking_type;
vector<float> h_range;
vector<float> s_range;
vector<float> v_range;
CvTermCriteria term_crit;
};
// Feature tracking parameters
struct CV_EXPORTS CvFeatureTrackerParams
{
enum { SIFT = 0, SURF = 1, OPTICAL_FLOW = 2 };
CvFeatureTrackerParams(int featureType = 0, int windowSize = 0)
{
featureType = 0;
windowSize = 0;
}
enum { SIFT = 0, SURF = 1, OPTICAL_FLOW = 2 };
CvFeatureTrackerParams(int featureType = 0, int windowSize = 0)
{
feature_type = featureType;
window_size = windowSize;
}
int feature_type; // Feature type to use
int window_size; // Window size in pixels around which to search for new window
int feature_type; // Feature type to use
int window_size; // Window size in pixels around which to search for new window
};
// Hybrid Tracking parameters for specifying weights of individual trackers and motion model.
struct CV_EXPORTS CvHybridTrackerParams
{
CvHybridTrackerParams(float ft_tracker_weight = 0.5, float ms_tracker_weight = 0.5,
CvFeatureTrackerParams ft_params = CvFeatureTrackerParams(),
CvMeanShiftTrackerParams ms_params = CvMeanShiftTrackerParams(),
CvMotionModel model = CvMotionModel());
CvHybridTrackerParams(float ft_tracker_weight = 0.5, float ms_tracker_weight = 0.5,
CvFeatureTrackerParams ft_params = CvFeatureTrackerParams(),
CvMeanShiftTrackerParams ms_params = CvMeanShiftTrackerParams(),
CvMotionModel model = CvMotionModel());
float ft_tracker_weight;
float ms_tracker_weight;
CvFeatureTrackerParams ft_params;
CvMeanShiftTrackerParams ms_params;
int motion_model;
float low_pass_gain;
float ft_tracker_weight;
float ms_tracker_weight;
CvFeatureTrackerParams ft_params;
CvMeanShiftTrackerParams ms_params;
int motion_model;
float low_pass_gain;
};
// Performs Camshift using parameters from MeanShiftTrackerParams
class CV_EXPORTS CvMeanShiftTracker
{
private:
Mat hsv, hue;
Mat backproj;
Mat mask, maskroi;
MatND hist;
Rect prev_trackwindow;
RotatedRect prev_trackbox;
Point2f prev_center;
Mat hsv, hue;
Mat backproj;
Mat mask, maskroi;
MatND hist;
Rect prev_trackwindow;
RotatedRect prev_trackbox;
Point2f prev_center;
public:
CvMeanShiftTrackerParams params;
CvMeanShiftTrackerParams params;
CvMeanShiftTracker();
explicit CvMeanShiftTracker(CvMeanShiftTrackerParams _params);
~CvMeanShiftTracker();
void newTrackingWindow(Mat image, Rect selection);
RotatedRect updateTrackingWindow(Mat image);
Mat getHistogramProjection(int type);
void setTrackingWindow(Rect _window);
Rect getTrackingWindow();
RotatedRect getTrackingEllipse();
Point2f getTrackingCenter();
CvMeanShiftTracker();
explicit CvMeanShiftTracker(CvMeanShiftTrackerParams _params);
~CvMeanShiftTracker();
void newTrackingWindow(Mat image, Rect selection);
RotatedRect updateTrackingWindow(Mat image);
Mat getHistogramProjection(int type);
void setTrackingWindow(Rect _window);
Rect getTrackingWindow();
RotatedRect getTrackingEllipse();
Point2f getTrackingCenter();
};
// Performs SIFT/SURF feature tracking using parameters from FeatureTrackerParams
class CV_EXPORTS CvFeatureTracker
{
private:
Ptr<Feature2D> dd;
Ptr<DescriptorMatcher> matcher;
vector<DMatch> matches;
Ptr<Feature2D> dd;
Ptr<DescriptorMatcher> matcher;
vector<DMatch> matches;
Mat prev_image;
Mat prev_image_bw;
Rect prev_trackwindow;
Point2d prev_center;
Mat prev_image;
Mat prev_image_bw;
Rect prev_trackwindow;
Point2d prev_center;
int ittr;
vector<Point2f> features[2];
int ittr;
vector<Point2f> features[2];
public:
Mat disp_matches;
CvFeatureTrackerParams params;
Mat disp_matches;
CvFeatureTrackerParams params;
CvFeatureTracker();
explicit CvFeatureTracker(CvFeatureTrackerParams params);
~CvFeatureTracker();
void newTrackingWindow(Mat image, Rect selection);
Rect updateTrackingWindow(Mat image);
Rect updateTrackingWindowWithSIFT(Mat image);
Rect updateTrackingWindowWithFlow(Mat image);
void setTrackingWindow(Rect _window);
Rect getTrackingWindow();
Point2f getTrackingCenter();
CvFeatureTracker();
explicit CvFeatureTracker(CvFeatureTrackerParams params);
~CvFeatureTracker();
void newTrackingWindow(Mat image, Rect selection);
Rect updateTrackingWindow(Mat image);
Rect updateTrackingWindowWithSIFT(Mat image);
Rect updateTrackingWindowWithFlow(Mat image);
void setTrackingWindow(Rect _window);
Rect getTrackingWindow();
Point2f getTrackingCenter();
};
// Performs Hybrid Tracking and combines individual trackers using EM or filters
class CV_EXPORTS CvHybridTracker
{
private:
CvMeanShiftTracker* mstracker;
CvFeatureTracker* fttracker;
CvMeanShiftTracker* mstracker;
CvFeatureTracker* fttracker;
CvMat* samples;
CvMat* labels;
CvMat* samples;
CvMat* labels;
Rect prev_window;
Point2f prev_center;
Mat prev_proj;
RotatedRect trackbox;
Rect prev_window;
Point2f prev_center;
Mat prev_proj;
RotatedRect trackbox;
int ittr;
Point2f curr_center;
int ittr;
Point2f curr_center;
inline float getL2Norm(Point2f p1, Point2f p2);
Mat getDistanceProjection(Mat image, Point2f center);
Mat getGaussianProjection(Mat image, int ksize, double sigma, Point2f center);
void updateTrackerWithEM(Mat image);
void updateTrackerWithLowPassFilter(Mat image);
inline float getL2Norm(Point2f p1, Point2f p2);
Mat getDistanceProjection(Mat image, Point2f center);
Mat getGaussianProjection(Mat image, int ksize, double sigma, Point2f center);
void updateTrackerWithEM(Mat image);
void updateTrackerWithLowPassFilter(Mat image);
public:
CvHybridTrackerParams params;
CvHybridTracker();
explicit CvHybridTracker(CvHybridTrackerParams params);
~CvHybridTracker();
CvHybridTrackerParams params;
CvHybridTracker();
explicit CvHybridTracker(CvHybridTrackerParams params);
~CvHybridTracker();
void newTracker(Mat image, Rect selection);
void updateTracker(Mat image);
Rect getTrackingWindow();
void newTracker(Mat image, Rect selection);
void updateTracker(Mat image);
Rect getTrackingWindow();
};
typedef CvMotionModel MotionModel;

View File

@ -12,6 +12,7 @@
* Adapted for FLANN by Marius Muja
*/
#include "defines.h"
#include <stdexcept>
#include <ostream>
#include <typeinfo>
@ -95,6 +96,16 @@ struct big_any_policy : typed_base_any_policy<T>
virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(*src); }
};
template<> inline void big_any_policy<flann_centers_init_t>::print(std::ostream& out, void* const* src)
{
out << int(*reinterpret_cast<flann_centers_init_t const*>(*src));
}
template<> inline void big_any_policy<flann_algorithm_t>::print(std::ostream& out, void* const* src)
{
out << int(*reinterpret_cast<flann_algorithm_t const*>(*src));
}
template<typename T>
struct choose_policy
{

View File

@ -36,7 +36,7 @@ namespace cvflann
*/
flann_distance_t flann_distance_type_ = FLANN_DIST_L2;
flann_distance_t flann_distance_type() { return flann_distance_type_; }
/**
* Set distance type to used
* \deprecated
@ -52,6 +52,6 @@ namespace cvflann
}
flann_distance_type_ = distance_type;
}
void dummyfunc() {}
}

View File

@ -1,7 +1,3 @@
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wsign-promo"
#endif
#ifndef _OPENCV_FLANN_PRECOMP_HPP_
#define _OPENCV_FLANN_PRECOMP_HPP_

View File

@ -542,8 +542,6 @@ bool JpegEncoder::write( const Mat& img, const vector<int>& params )
};
bool result = false;
fileWrapper fw;
int _channels = img.channels();
int channels = _channels > 1 ? 3 : 1;
int width = img.cols, height = img.rows;
vector<uchar> out_buf(1 << 12);
@ -580,6 +578,9 @@ bool JpegEncoder::write( const Mat& img, const vector<int>& params )
{
cinfo.image_width = width;
cinfo.image_height = height;
int _channels = img.channels();
int channels = _channels > 1 ? 3 : 1;
cinfo.input_components = channels;
cinfo.in_color_space = channels > 1 ? JCS_RGB : JCS_GRAYSCALE;

View File

@ -52,7 +52,7 @@ void nbayes_check_data( CvMLData* _data )
CV_Error( CV_StsBadArg, "missing values are not supported" );
const CvMat* var_types = _data->get_var_types();
bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL;
if( ( fabs( cvNorm( var_types, 0, CV_L1 ) -
if( ( fabs( cvNorm( var_types, 0, CV_L1 ) -
(var_types->rows + var_types->cols - 2)*CV_VAR_ORDERED - CV_VAR_CATEGORICAL ) > FLT_EPSILON ) ||
!is_classifier )
CV_Error( CV_StsBadArg, "incorrect types of predictors or responses" );
@ -89,7 +89,7 @@ float nbayes_calc_error( CvNormalBayesClassifier* nbayes, CvMLData* _data, int t
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
cvGetRow( values, &sample, si );
float r = (float)nbayes->predict( &sample, 0 );
if( pred_resp )
pred_resp[i] = r;
@ -151,7 +151,7 @@ float knearest_calc_error( CvKNearest* knearest, CvMLData* _data, int k, int typ
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( &predictors, &sample, si );
cvGetRow( &predictors, &sample, si );
float r = knearest->find_nearest( &sample, k );
if( pred_resp )
pred_resp[i] = r;
@ -166,14 +166,14 @@ float knearest_calc_error( CvKNearest* knearest, CvMLData* _data, int k, int typ
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( &predictors, &sample, si );
cvGetRow( &predictors, &sample, si );
float r = knearest->find_nearest( &sample, k );
if( pred_resp )
pred_resp[i] = r;
float d = r - response->data.fl[si*r_step];
err += d*d;
}
err = sample_count ? err / (float)sample_count : -FLT_MAX;
err = sample_count ? err / (float)sample_count : -FLT_MAX;
}
return err;
}
@ -239,7 +239,7 @@ bool svm_train_auto( CvSVM* svm, CvMLData* _data, CvSVMParams _params,
const CvMat* _responses = _data->get_responses();
const CvMat* _var_idx = _data->get_var_idx();
const CvMat* _sample_idx = _data->get_train_sample_idx();
return svm->train_auto( _train_data, _responses, _var_idx,
return svm->train_auto( _train_data, _responses, _var_idx,
_sample_idx, _params, k_fold, C_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid );
}
float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector<float> *resp )
@ -268,7 +268,7 @@ float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector<float> *resp
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
cvGetRow( values, &sample, si );
float r = svm->predict( &sample );
if( pred_resp )
pred_resp[i] = r;
@ -290,7 +290,7 @@ float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector<float> *resp
float d = r - response->data.fl[si*r_step];
err += d*d;
}
err = sample_count ? err / (float)sample_count : -FLT_MAX;
err = sample_count ? err / (float)sample_count : -FLT_MAX;
}
return err;
}
@ -395,7 +395,7 @@ float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map<int, int>& cls_map, i
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( &predictors, &sample, si );
cvGetRow( &predictors, &sample, si );
ann->predict( &sample, &_output );
CvPoint best_cls = {0,0};
cvMinMaxLoc( &_output, 0, 0, 0, &best_cls, 0 );
@ -417,7 +417,7 @@ int str_to_boost_type( string& str )
if ( !str.compare("DISCRETE") )
return CvBoost::DISCRETE;
if ( !str.compare("REAL") )
return CvBoost::REAL;
return CvBoost::REAL;
if ( !str.compare("LOGIT") )
return CvBoost::LOGIT;
if ( !str.compare("GENTLE") )
@ -480,7 +480,7 @@ CV_MLBaseTest::~CV_MLBaseTest()
validationFS.release();
if( nbayes )
delete nbayes;
if( knearest )
if( knearest )
delete knearest;
if( svm )
delete svm;
@ -519,15 +519,14 @@ int CV_MLBaseTest::read_params( CvFileStorage* _fs )
return cvtest::TS::OK;;
}
void CV_MLBaseTest::run( int start_from )
void CV_MLBaseTest::run( int )
{
string filename = ts->get_data_path();
filename += get_validation_filename();
validationFS.open( filename, FileStorage::READ );
read_params( *validationFS );
int code = cvtest::TS::OK;
start_from = 0;
for (int i = 0; i < test_case_count; i++)
{
int temp_code = run_test_case( i );
@ -594,7 +593,7 @@ string& CV_MLBaseTest::get_validation_filename()
int CV_MLBaseTest::train( int testCaseIdx )
{
bool is_trained = false;
FileNode modelParamsNode =
FileNode modelParamsNode =
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"];
if( !modelName.compare(CV_NBAYES) )
@ -651,7 +650,7 @@ int CV_MLBaseTest::train( int testCaseIdx )
modelParamsNode["max_categories"] >> MAX_CATEGORIES;
modelParamsNode["cv_folds"] >> CV_FOLDS;
modelParamsNode["is_pruned"] >> IS_PRUNED;
is_trained = dtree->train( &data,
is_trained = dtree->train( &data,
CvDTreeParams(MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE,
MAX_CATEGORIES, CV_FOLDS, false, IS_PRUNED, 0 )) != 0;
}
@ -683,7 +682,7 @@ int CV_MLBaseTest::train( int testCaseIdx )
modelParamsNode["is_pruned"] >> IS_PRUNED;
modelParamsNode["nactive_vars"] >> NACTIVE_VARS;
modelParamsNode["max_trees_num"] >> MAX_TREES_NUM;
is_trained = rtrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY,
is_trained = rtrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY,
USE_SURROGATE, MAX_CATEGORIES, 0, true, // (calc_var_importance == true) <=> RF processes variable importance
NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0;
}
@ -713,7 +712,7 @@ int CV_MLBaseTest::train( int testCaseIdx )
return cvtest::TS::OK;
}
float CV_MLBaseTest::get_error( int testCaseIdx, int type, vector<float> *resp )
float CV_MLBaseTest::get_error( int /*testCaseIdx*/, int type, vector<float> *resp )
{
float err = 0;
if( !modelName.compare(CV_NBAYES) )
@ -721,8 +720,8 @@ float CV_MLBaseTest::get_error( int testCaseIdx, int type, vector<float> *resp )
else if( !modelName.compare(CV_KNEAREST) )
{
assert( 0 );
testCaseIdx = 0;
/*int k = 2;
/*testCaseIdx = 0;
int k = 2;
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"]["k"] >> k;
err = knearest->calc_error( &data, k, type, resp );*/
}

View File

@ -181,7 +181,7 @@ public:
datastart = data = (uchar*)PyArray_DATA(o);
}
void deallocate(int* refcount, uchar* datastart, uchar* data)
void deallocate(int* refcount, uchar*, uchar*)
{
PyEnsureGIL gil;
if( !refcount )
@ -349,6 +349,7 @@ static PyObject* pyopencv_from(bool value)
static bool pyopencv_to(PyObject* obj, bool& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
int _val = PyObject_IsTrue(obj);
@ -365,6 +366,7 @@ static PyObject* pyopencv_from(size_t value)
static bool pyopencv_to(PyObject* obj, size_t& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
value = (int)PyLong_AsUnsignedLong(obj);
@ -376,8 +378,19 @@ static PyObject* pyopencv_from(int value)
return PyInt_FromLong(value);
}
static PyObject* pyopencv_from(cvflann_flann_algorithm_t value)
{
return PyInt_FromLong(int(value));
}
static PyObject* pyopencv_from(cvflann_flann_distance_t value)
{
return PyInt_FromLong(int(value));
}
static bool pyopencv_to(PyObject* obj, int& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
value = (int)PyInt_AsLong(obj);
@ -391,6 +404,7 @@ static PyObject* pyopencv_from(uchar value)
static bool pyopencv_to(PyObject* obj, uchar& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
int ivalue = (int)PyInt_AsLong(obj);
@ -405,6 +419,7 @@ static PyObject* pyopencv_from(double value)
static bool pyopencv_to(PyObject* obj, double& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyInt_CheckExact(obj))
@ -421,6 +436,7 @@ static PyObject* pyopencv_from(float value)
static bool pyopencv_to(PyObject* obj, float& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyInt_CheckExact(obj))
@ -442,6 +458,7 @@ static PyObject* pyopencv_from(const string& value)
static bool pyopencv_to(PyObject* obj, string& value, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
char* str = PyString_AsString(obj);
@ -453,6 +470,7 @@ static bool pyopencv_to(PyObject* obj, string& value, const char* name = "<unkno
static inline bool pyopencv_to(PyObject* obj, Size& sz, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ii", &sz.width, &sz.height) > 0;
@ -465,6 +483,7 @@ static inline PyObject* pyopencv_from(const Size& sz)
static inline bool pyopencv_to(PyObject* obj, Rect& r, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
@ -477,6 +496,7 @@ static inline PyObject* pyopencv_from(const Rect& r)
static inline bool pyopencv_to(PyObject* obj, Range& r, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
@ -494,6 +514,7 @@ static inline PyObject* pyopencv_from(const Range& r)
static inline bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
@ -511,6 +532,7 @@ static inline PyObject* pyopencv_from(const CvSlice& r)
static inline bool pyopencv_to(PyObject* obj, Point& p, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyComplex_CheckExact(obj))
@ -525,6 +547,7 @@ static inline bool pyopencv_to(PyObject* obj, Point& p, const char* name = "<unk
static inline bool pyopencv_to(PyObject* obj, Point2f& p, const char* name = "<unknown>")
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyComplex_CheckExact(obj))
@ -549,6 +572,7 @@ static inline PyObject* pyopencv_from(const Point2f& p)
static inline bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name = "<unknown>")
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
@ -792,6 +816,7 @@ template<> struct pyopencvVecConverter<string>
static inline bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name="<unknown>")
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
@ -804,6 +829,7 @@ static inline PyObject* pyopencv_from(const CvTermCriteria& src)
static inline bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name="<unknown>")
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
@ -816,6 +842,7 @@ static inline PyObject* pyopencv_from(const TermCriteria& src)
static inline bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name="<unknown>")
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;
@ -847,6 +874,7 @@ static inline PyObject* pyopencv_from(const CvDTreeNode* node)
static bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const char *name="<unknown>")
{
(void)name;
bool ok = false;
PyObject* keys = PyObject_CallMethod(o,(char*)"keys",0);
PyObject* values = PyObject_CallMethod(o,(char*)"values",0);
@ -927,7 +955,7 @@ static void OnMouse(int event, int x, int y, int flags, void* param)
PyGILState_Release(gstate);
}
static PyObject *pycvSetMouseCallback(PyObject *self, PyObject *args, PyObject *kw)
static PyObject *pycvSetMouseCallback(PyObject*, PyObject *args, PyObject *kw)
{
const char *keywords[] = { "window_name", "on_mouse", "param", NULL };
char* name;
@ -961,7 +989,7 @@ static void OnChange(int pos, void *param)
PyGILState_Release(gstate);
}
static PyObject *pycvCreateTrackbar(PyObject *self, PyObject *args)
static PyObject *pycvCreateTrackbar(PyObject*, PyObject *args)
{
PyObject *on_change;
char* trackbar_name;
@ -983,6 +1011,11 @@ static PyObject *pycvCreateTrackbar(PyObject *self, PyObject *args)
#define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wunused-parameter"
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
#include "pyopencv_generated_types.h"
#include "pyopencv_generated_funcs.h"

View File

@ -1,9 +1,4 @@
#include "perf_precomp.hpp"
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wsign-promo"
#endif
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/internal.hpp"
#include "opencv2/flann/flann.hpp"

View File

@ -18,7 +18,7 @@ using namespace cv;
#if !defined(HAVE_CUDA)
int main( int argc, const char** argv )
int main( int, const char** )
{
cout << "Please compile the library with CUDA support" << endl;
return -1;

View File

@ -20,7 +20,7 @@
#endif
#if !defined(HAVE_CUDA)
int main( int argc, const char** argv )
int main( int, const char** )
{
std::cout << "Please compile the library with CUDA support" << std::endl;
return -1;