mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #2786 from ElenaGvozdeva:ocl_matchTemplate
This commit is contained in:
commit
ea1b14ee95
@ -29,9 +29,13 @@
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
|
||||
#define DATA_SIZE ((int)sizeof(type))
|
||||
#define ELEM_TYPE elem_type
|
||||
#define ELEM_SIZE ((int)sizeof(elem_type))
|
||||
#if cn != 3
|
||||
#define loadpix(addr) *(__global const T *)(addr)
|
||||
#define TSIZE (int)sizeof(T)
|
||||
#else
|
||||
#define loadpix(addr) vload3(0, (__global const T1 *)(addr))
|
||||
#define TSIZE ((int)sizeof(T1)*3)
|
||||
#endif
|
||||
|
||||
#define SQSUMS_PTR(ox, oy) mad24(y + oy, src_sqsums_step, mad24(x + ox, cn, src_sqsums_offset))
|
||||
#define SUMS_PTR(ox, oy) mad24(y + oy, src_sums_step, mad24(x + ox, cn, src_sums_offset))
|
||||
@ -70,14 +74,6 @@ inline float normAcc_SQDIFF(float num, float denum)
|
||||
#error "cn should be 1-4"
|
||||
#endif
|
||||
|
||||
#if cn != 3
|
||||
#define loadpix(addr) *(__global const T *)(addr)
|
||||
#define TSIZE (int)sizeof(T)
|
||||
#else
|
||||
#define loadpix(addr) vload3(0, (__global const T1 *)(addr))
|
||||
#define TSIZE ((int)sizeof(T1)*3)
|
||||
#endif
|
||||
|
||||
#ifdef CALC_SUM
|
||||
|
||||
__kernel void calcSum(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
@ -123,37 +119,102 @@ __kernel void calcSum(__global const uchar * srcptr, int src_step, int src_offse
|
||||
dst[0] = convertToDT(localmem[0]);
|
||||
}
|
||||
|
||||
#elif defined FIRST_CHANNEL
|
||||
|
||||
__kernel void extractFirstChannel( const __global uchar* img, int img_step, int img_offset,
|
||||
__global uchar* res, int res_step, int res_offset, int rows, int cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1)*PIX_PER_WI_Y;
|
||||
|
||||
if(x < cols )
|
||||
{
|
||||
#pragma unroll
|
||||
for (int cy=0; cy < PIX_PER_WI_Y && y < rows; ++cy, ++y)
|
||||
{
|
||||
T1 image = *(__global const T1*)(img + mad24(y, img_step, mad24(x, (int)sizeof(T1)*cn, img_offset)));;
|
||||
int res_idx = mad24(y, res_step, mad24(x, (int)sizeof(float), res_offset));
|
||||
*(__global float *)(res + res_idx) = image;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined CCORR
|
||||
|
||||
#if cn==3
|
||||
#if cn==1 && PIX_PER_WI_X==4
|
||||
|
||||
__kernel void matchTemplate_Naive_CCORR(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
__global const uchar * templateptr, int template_step, int template_offset, int template_rows, int template_cols,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int x0 = get_global_id(0)*PIX_PER_WI_X;
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
if (y < dst_rows)
|
||||
{
|
||||
WT sum = (WT)(0);
|
||||
|
||||
for (int i = 0; i < template_rows; ++i)
|
||||
if (x0 + PIX_PER_WI_X <= dst_cols)
|
||||
{
|
||||
for (int j = 0; j < template_cols; ++j)
|
||||
WT sum = (WT)(0);
|
||||
|
||||
int ind = mad24(y, src_step, mad24(x0, (int)sizeof(T1), src_offset));
|
||||
__global const T1 * template = (__global const T1*)(templateptr + template_offset);
|
||||
|
||||
for (int i = 0; i < template_rows; ++i)
|
||||
{
|
||||
T src = vload3(0, (__global const T1 *)(srcptr + mad24(y+i, src_step, mad24(x+j, (int)sizeof(T1)*cn, src_offset))));
|
||||
T template = vload3(0, (__global const T1 *)(templateptr + mad24(i, template_step, mad24(j, (int)sizeof(T1)*cn, template_offset))));
|
||||
for (int j = 0; j < template_cols; ++j)
|
||||
{
|
||||
T temp = (T)(template[j]);
|
||||
T src = *(__global const T*)(srcptr + ind + j*(int)sizeof(T1));
|
||||
#if wdepth == 4
|
||||
sum = mad24(convertToWT(src), convertToWT(template), sum);
|
||||
sum = mad24(convertToWT(src), convertToWT(temp), sum);
|
||||
#else
|
||||
sum = mad(convertToWT(src), convertToWT(template), sum);
|
||||
sum = mad(convertToWT(src), convertToWT(temp), sum);
|
||||
#endif
|
||||
}
|
||||
ind += src_step;
|
||||
template = (__global const T1 *)((__global const uchar *)template + template_step);
|
||||
}
|
||||
|
||||
T temp = (T)(template[0]);
|
||||
int dst_idx = mad24(y, dst_step, mad24(x0, (int)sizeof(float), dst_offset));
|
||||
*(__global float4 *)(dst + dst_idx) = convert_float4(sum);
|
||||
}
|
||||
else
|
||||
{
|
||||
WT1 sum [PIX_PER_WI_X];
|
||||
#pragma unroll
|
||||
for (int i=0; i < PIX_PER_WI_X; i++) sum[i] = 0;
|
||||
|
||||
__global const T1 * src = (__global const T1 *)(srcptr + mad24(y, src_step, mad24(x0, (int)sizeof(T1), src_offset)));
|
||||
__global const T1 * template = (__global const T1 *)(templateptr + template_offset);
|
||||
|
||||
for (int i = 0; i < template_rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < template_cols; ++j)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int cx=0, x = x0; cx < PIX_PER_WI_X && x < dst_cols; ++cx, ++x)
|
||||
{
|
||||
|
||||
#if wdepth == 4
|
||||
sum[cx] = mad24(convertToWT1(src[j+cx]), convertToWT1(template[j]), sum[cx]);
|
||||
#else
|
||||
sum[cx] = mad(convertToWT1(src[j+cx]), convertToWT1(template[j]), sum[cx]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
src = (__global const T1 *)((__global const uchar *)src + src_step);
|
||||
template = (__global const T1 *)((__global const uchar *)template + template_step);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int cx=0; cx < PIX_PER_WI_X && x0 < dst_cols; ++cx, ++x0)
|
||||
{
|
||||
int dst_idx = mad24(y, dst_step, mad24(x0, (int)sizeof(float), dst_offset));
|
||||
*(__global float *)(dst + dst_idx) = convertToDT(sum[cx]);
|
||||
}
|
||||
}
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
*(__global float *)(dst + dst_idx) = convertToDT(sum);
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,20 +231,18 @@ __kernel void matchTemplate_Naive_CCORR(__global const uchar * srcptr, int src_s
|
||||
{
|
||||
WT sum = (WT)(0);
|
||||
|
||||
__global const T * src = (__global const T *)(srcptr + mad24(y, src_step, mad24(x, (int)sizeof(T), src_offset)));
|
||||
__global const T * template = (__global const T *)(templateptr + template_offset);
|
||||
|
||||
for (int i = 0; i < template_rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < template_cols; ++j)
|
||||
{
|
||||
T src = loadpix(srcptr + mad24(y+i, src_step, mad24(x+j, TSIZE, src_offset)));
|
||||
T template = loadpix(templateptr + mad24(i, template_step, mad24(j, TSIZE, template_offset)));
|
||||
#if wdepth == 4
|
||||
sum = mad24(convertToWT(src[j]), convertToWT(template[j]), sum);
|
||||
sum = mad24(convertToWT(src), convertToWT(template), sum);
|
||||
#else
|
||||
sum = mad(convertToWT(src[j]), convertToWT(template[j]), sum);
|
||||
sum = mad(convertToWT(src), convertToWT(template), sum);
|
||||
#endif
|
||||
|
||||
src = (__global const T *)((__global const uchar *)src + src_step);
|
||||
template = (__global const T *)((__global const uchar *)template + template_step);
|
||||
}
|
||||
}
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
@ -218,8 +277,6 @@ __kernel void matchTemplate_CCORR_NORMED(__global const uchar * src_sqsums, int
|
||||
|
||||
#elif defined SQDIFF
|
||||
|
||||
#if cn==3
|
||||
|
||||
__kernel void matchTemplate_Naive_SQDIFF(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
__global const uchar * templateptr, int template_step, int template_offset, int template_rows, int template_cols,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
|
||||
@ -235,8 +292,8 @@ __kernel void matchTemplate_Naive_SQDIFF(__global const uchar * srcptr, int src_
|
||||
{
|
||||
for (int j = 0; j < template_cols; ++j)
|
||||
{
|
||||
T src = vload3(0, (__global const T1 *)(srcptr + mad24(y+i, src_step, mad24(x+j, (int)sizeof(T1)*cn, src_offset))));
|
||||
T template = vload3(0, (__global const T1 *)(templateptr + mad24(i, template_step, mad24(j, (int)sizeof(T1)*cn, template_offset))));
|
||||
T src = loadpix(srcptr + mad24(y+i, src_step, mad24(x+j, TSIZE, src_offset)));
|
||||
T template = loadpix(templateptr + mad24(i, template_step, mad24(j, TSIZE, template_offset)));
|
||||
|
||||
value = convertToWT(src) - convertToWT(template);
|
||||
#if wdepth == 4
|
||||
@ -252,45 +309,32 @@ __kernel void matchTemplate_Naive_SQDIFF(__global const uchar * srcptr, int src_
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
#elif defined SQDIFF_PREPARED
|
||||
|
||||
__kernel void matchTemplate_Naive_SQDIFF(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
__global const uchar * templateptr, int template_step, int template_offset, int template_rows, int template_cols,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
|
||||
__kernel void matchTemplate_Prepared_SQDIFF(__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int template_rows, int template_cols, __global const float * template_sqsum)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
__global const T * src = (__global const T *)(srcptr + mad24(y, src_step, mad24(x, (int)sizeof(T), src_offset)));
|
||||
__global const T * template = (__global const T *)(templateptr + template_offset);
|
||||
src_sqsums_step /= sizeof(float);
|
||||
src_sqsums_offset /= sizeof(float);
|
||||
|
||||
WT sum = (WT)(0), value;
|
||||
|
||||
for (int i = 0; i < template_rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < template_cols; ++j)
|
||||
{
|
||||
value = convertToWT(src[j]) - convertToWT(template[j]);
|
||||
#if wdepth == 4
|
||||
sum = mad24(value, value, sum);
|
||||
#else
|
||||
sum = mad(value, value, sum);
|
||||
#endif
|
||||
}
|
||||
|
||||
src = (__global const T *)((__global const uchar *)src + src_step);
|
||||
template = (__global const T *)((__global const uchar *)template + template_step);
|
||||
}
|
||||
__global const float * sqsum = (__global const float *)(src_sqsums);
|
||||
float image_sqsum_ = (float)(
|
||||
(sqsum[SQSUMS_PTR(template_cols, template_rows)] - sqsum[SQSUMS_PTR(template_cols, 0)]) -
|
||||
(sqsum[SQSUMS_PTR(0, template_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
|
||||
float template_sqsum_value = template_sqsum[0];
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
*(__global float *)(dst + dst_idx) = convertToDT(sum);
|
||||
__global float * dstult = (__global float *)(dst + dst_idx);
|
||||
*dstult = image_sqsum_ - 2.0f * dstult[0] + template_sqsum_value;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif defined SQDIFF_NORMED
|
||||
|
||||
__kernel void matchTemplate_SQDIFF_NORMED(__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
|
||||
@ -330,42 +374,18 @@ __kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
__global const T* sum = (__global const T*)(src_sums + mad24(y, src_sums_step, mad24(x, (int)sizeof(T), src_sums_offset)));
|
||||
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
float image_sum_ = (float)((sum[SUMS_PTR(template_cols, template_rows)] - sum[SUMS_PTR(template_cols, 0)])-
|
||||
(sum[SUMS_PTR(0, template_rows)] - sum[SUMS_PTR(0, 0)])) * template_sum;
|
||||
int step = src_sums_step/(int)sizeof(T);
|
||||
|
||||
T image_sum = (T)(0), value;
|
||||
|
||||
value = (T)(sum[mad24(template_rows, step, template_cols)] - sum[mad24(template_rows, step, 0)] - sum[template_cols] + sum[0]);
|
||||
|
||||
image_sum = mad(value, template_sum , image_sum);
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst + dst_idx);
|
||||
*dstult -= image_sum_;
|
||||
}
|
||||
}
|
||||
|
||||
#elif cn == 2
|
||||
|
||||
__kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int template_rows, int template_cols, float template_sum_0, float template_sum_1)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
|
||||
float image_sum_ = template_sum_0 * (float)((sum[SUMS_PTR(template_cols, template_rows)] - sum[SUMS_PTR(template_cols, 0)]) -(sum[SUMS_PTR(0, template_rows)] - sum[SUMS_PTR(0, 0)]));
|
||||
image_sum_ += template_sum_1 * (float)((sum[SUMS_PTR(template_cols, template_rows)+1] - sum[SUMS_PTR(template_cols, 0)+1])-(sum[SUMS_PTR(0, template_rows)+1] - sum[SUMS_PTR(0, 0)+1]));
|
||||
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
*dstult -= image_sum_;
|
||||
*(__global float *)(dst + dst_idx) -= convertToDT(image_sum);
|
||||
}
|
||||
}
|
||||
|
||||
@ -373,62 +393,61 @@ __kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int
|
||||
|
||||
__kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int template_rows, int template_cols, float template_sum_0, float template_sum_1, float template_sum_2)
|
||||
int template_rows, int template_cols, float4 template_sum)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
T image_sum = (T)(0), value, temp_sum;
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
temp_sum.x = template_sum.x;
|
||||
temp_sum.y = template_sum.y;
|
||||
temp_sum.z = template_sum.z;
|
||||
|
||||
int c_r = SUMS_PTR(template_cols, template_rows);
|
||||
int c_o = SUMS_PTR(template_cols, 0);
|
||||
int o_r = SUMS_PTR(0,template_rows);
|
||||
int oo = SUMS_PTR(0, 0);
|
||||
value = vload3(0, (__global const T1 *)(src_sums + SUMS(template_cols, template_rows)));
|
||||
value -= vload3(0, (__global const T1 *)(src_sums + SUMS(0, template_rows)));
|
||||
value -= vload3(0, (__global const T1 *)(src_sums + SUMS(template_cols, 0)));
|
||||
value += vload3(0, (__global const T1 *)(src_sums + SUMS(0, 0)));
|
||||
|
||||
float image_sum_ = template_sum_0 * (float)((sum[c_r] - sum[c_o]) -(sum[o_r] - sum[oo]));
|
||||
image_sum_ += template_sum_1 * (float)((sum[c_r+1] - sum[c_o+1])-(sum[o_r+1] - sum[oo+1]));
|
||||
image_sum_ += template_sum_2 * (float)((sum[c_r+2] - sum[c_o+2])-(sum[o_r+2] - sum[oo+2]));
|
||||
image_sum = mad(value, temp_sum , 0);
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
*dstult -= image_sum_;
|
||||
*(__global float *)(dst + dst_idx) -= convertToDT(image_sum);
|
||||
}
|
||||
}
|
||||
|
||||
#elif cn == 4
|
||||
#elif (cn==2 || cn==4)
|
||||
|
||||
__kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int template_rows, int template_cols, float template_sum_0, float template_sum_1, float template_sum_2, float template_sum_3)
|
||||
int template_rows, int template_cols, float4 template_sum)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
__global const T* sum = (__global const T*)(src_sums + mad24(y, src_sums_step, mad24(x, (int)sizeof(T), src_sums_offset)));
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
int step = src_sums_step/(int)sizeof(T);
|
||||
|
||||
int c_r = SUMS_PTR(template_cols, template_rows);
|
||||
int c_o = SUMS_PTR(template_cols, 0);
|
||||
int o_r = SUMS_PTR(0,template_rows);
|
||||
int oo = SUMS_PTR(0, 0);
|
||||
T image_sum = (T)(0), value, temp_sum;
|
||||
|
||||
float image_sum_ = template_sum_0 * (float)((sum[c_r] - sum[c_o]) -(sum[o_r] - sum[oo]));
|
||||
image_sum_ += template_sum_1 * (float)((sum[c_r+1] - sum[c_o+1])-(sum[o_r+1] - sum[oo+1]));
|
||||
image_sum_ += template_sum_2 * (float)((sum[c_r+2] - sum[c_o+2])-(sum[o_r+2] - sum[oo+2]));
|
||||
image_sum_ += template_sum_3 * (float)((sum[c_r+3] - sum[c_o+3])-(sum[o_r+3] - sum[oo+3]));
|
||||
#if cn==2
|
||||
temp_sum.x = template_sum.x;
|
||||
temp_sum.y = template_sum.y;
|
||||
#else
|
||||
temp_sum = template_sum;
|
||||
#endif
|
||||
|
||||
value = (sum[mad24(template_rows, step, template_cols)] - sum[mad24(template_rows, step, 0)] - sum[template_cols] + sum[0]);
|
||||
|
||||
image_sum = mad(value, temp_sum , image_sum);
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
*dstult -= image_sum_;
|
||||
*(__global float *)(dst + dst_idx) -= convertToDT(image_sum);
|
||||
}
|
||||
}
|
||||
|
||||
@ -448,62 +467,24 @@ __kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int s
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sqsums_step /= sizeof(float);
|
||||
src_sqsums_offset /= sizeof(float);
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
__global float * sqsum = (__global float*)(src_sqsums);
|
||||
|
||||
float image_sum_ = (float)((sum[SUMS_PTR(t_cols, t_rows)] - sum[SUMS_PTR(t_cols, 0)]) -
|
||||
(sum[SUMS_PTR(0, t_rows)] - sum[SUMS_PTR(0, 0)]));
|
||||
|
||||
float image_sqsum_ = (float)((sqsum[SQSUMS_PTR(t_cols, t_rows)] - sqsum[SQSUMS_PTR(t_cols, 0)]) -
|
||||
(sqsum[SQSUMS_PTR(0, t_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
*dstult = normAcc((*dstult) - image_sum_ * template_sum,
|
||||
sqrt(template_sqsum * (image_sqsum_ - weight * image_sum_ * image_sum_)));
|
||||
}
|
||||
}
|
||||
|
||||
#elif cn == 2
|
||||
|
||||
__kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
|
||||
__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int t_rows, int t_cols, float weight, float template_sum_0, float template_sum_1, float template_sqsum)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
float sum_[2];
|
||||
float sqsum_[2];
|
||||
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sqsums_step /= sizeof(float);
|
||||
src_sqsums_offset /= sizeof(float);
|
||||
int step = src_sums_step/(int)sizeof(T);
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
__global float * sqsum = (__global float*)(src_sqsums);
|
||||
__global const T* sum = (__global const T*)(src_sums + mad24(y, src_sums_step, mad24(x, (int)sizeof(T), src_sums_offset)));
|
||||
__global const T* sqsum = (__global const T*)(src_sqsums + mad24(y, src_sqsums_step, mad24(x, (int)sizeof(T), src_sqsums_offset)));
|
||||
|
||||
sum_[0] = (float)((sum[SUMS_PTR(t_cols, t_rows)] - sum[SUMS_PTR(t_cols, 0)])-(sum[SUMS_PTR(0, t_rows)] - sum[SUMS_PTR(0, 0)]));
|
||||
sum_[1] = (float)((sum[SUMS_PTR(t_cols, t_rows)+1] - sum[SUMS_PTR(t_cols, 0)+1])-(sum[SUMS_PTR(0, t_rows)+1] - sum[SUMS_PTR(0, 0)+1]));
|
||||
T value_sum = sum[mad24(t_rows, step, t_cols)] - sum[mad24(t_rows, step, 0)] - sum[t_cols] + sum[0];
|
||||
T value_sqsum = sqsum[mad24(t_rows, step, t_cols)] - sqsum[mad24(t_rows, step, 0)] - sqsum[t_cols] + sqsum[0];
|
||||
|
||||
sqsum_[0] = (float)((sqsum[SQSUMS_PTR(t_cols, t_rows)] - sqsum[SQSUMS_PTR(t_cols, 0)])-(sqsum[SQSUMS_PTR(0, t_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
|
||||
sqsum_[1] = (float)((sqsum[SQSUMS_PTR(t_cols, t_rows)+1] - sqsum[SQSUMS_PTR(t_cols, 0)+1])-(sqsum[SQSUMS_PTR(0, t_rows)+1] - sqsum[SQSUMS_PTR(0, 0)+1]));
|
||||
float num = convertToDT(mad(value_sum, template_sum, 0));
|
||||
|
||||
float num = sum_[0]*template_sum_0 + sum_[1]*template_sum_1;
|
||||
|
||||
float denum = sqrt( template_sqsum * (sqsum_[0] - weight * sum_[0]* sum_[0] +
|
||||
sqsum_[1] - weight * sum_[1]* sum_[1]));
|
||||
value_sqsum -= weight * value_sum * value_sum;
|
||||
float denum = sqrt(mad(template_sqsum, convertToDT(value_sqsum), 0));
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
@ -516,49 +497,35 @@ __kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int s
|
||||
__kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
|
||||
__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int t_rows, int t_cols, float weight, float template_sum_0, float template_sum_1, float template_sum_2,
|
||||
float template_sqsum)
|
||||
int t_rows, int t_cols, float weight, float4 template_sum, float template_sqsum)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
float sum_[3];
|
||||
float sqsum_[3];
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sqsums_step /= sizeof(float);
|
||||
src_sqsums_offset /= sizeof(float);
|
||||
int step = src_sums_step/(int)sizeof(T);
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
__global float * sqsum = (__global float*)(src_sqsums);
|
||||
T temp_sum, value_sum, value_sqsum;
|
||||
|
||||
int c_r = SUMS_PTR(t_cols, t_rows);
|
||||
int c_o = SUMS_PTR(t_cols, 0);
|
||||
int o_r = SUMS_PTR(0, t_rows);
|
||||
int o_o = SUMS_PTR(0, 0);
|
||||
temp_sum.x = template_sum.x;
|
||||
temp_sum.y = template_sum.y;
|
||||
temp_sum.z = template_sum.z;
|
||||
|
||||
sum_[0] = (float)((sum[c_r] - sum[c_o]) -(sum[o_r] - sum[o_o ]));
|
||||
sum_[1] = (float)((sum[c_r+1] - sum[c_o+1])-(sum[o_r+1] - sum[o_o +1]));
|
||||
sum_[2] = (float)((sum[c_r+2] - sum[c_o+2])-(sum[o_r+2] - sum[o_o +2]));
|
||||
value_sum = vload3(0, (__global const T1 *)(src_sums + SUMS(t_cols, t_rows)));
|
||||
value_sum -= vload3(0, (__global const T1 *)(src_sums + SUMS(0, t_rows)));
|
||||
value_sum -= vload3(0, (__global const T1 *)(src_sums + SUMS(t_cols, 0)));
|
||||
value_sum += vload3(0, (__global const T1 *)(src_sums + SUMS(0, 0)));
|
||||
|
||||
c_r = SQSUMS_PTR(t_cols, t_rows);
|
||||
c_o = SQSUMS_PTR(t_cols, 0);
|
||||
o_r = SQSUMS_PTR(0, t_rows);
|
||||
o_o = SQSUMS_PTR(0, 0);
|
||||
value_sqsum = vload3(0, (__global const T1 *)(src_sqsums + SQ_SUMS(t_cols, t_rows)));
|
||||
value_sqsum -= vload3(0, (__global const T1 *)(src_sqsums + SQ_SUMS(0, t_rows)));
|
||||
value_sqsum -= vload3(0, (__global const T1 *)(src_sqsums + SQ_SUMS(t_cols, 0)));
|
||||
value_sqsum += vload3(0, (__global const T1 *)(src_sqsums + SQ_SUMS(0, 0)));
|
||||
|
||||
sqsum_[0] = (float)((sqsum[c_r] - sqsum[c_o]) -(sqsum[o_r] - sqsum[o_o]));
|
||||
sqsum_[1] = (float)((sqsum[c_r+1] - sqsum[c_o+1])-(sqsum[o_r+1] - sqsum[o_o+1]));
|
||||
sqsum_[2] = (float)((sqsum[c_r+2] - sqsum[c_o+2])-(sqsum[o_r+2] - sqsum[o_o+2]));
|
||||
float num = convertToDT(mad(value_sum, temp_sum, 0));
|
||||
|
||||
float num = sum_[0]*template_sum_0 + sum_[1]*template_sum_1 + sum_[2]*template_sum_2;
|
||||
|
||||
float denum = sqrt( template_sqsum * (
|
||||
sqsum_[0] - weight * sum_[0]* sum_[0] +
|
||||
sqsum_[1] - weight * sum_[1]* sum_[1] +
|
||||
sqsum_[2] - weight * sum_[2]* sum_[2] ));
|
||||
value_sqsum -= weight * value_sum * value_sum;
|
||||
float denum = sqrt(mad(template_sqsum, convertToDT(value_sqsum), 0));
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
@ -566,58 +533,39 @@ __kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int s
|
||||
}
|
||||
}
|
||||
|
||||
#elif cn == 4
|
||||
#elif (cn==2 || cn==4)
|
||||
|
||||
__kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
|
||||
__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
int t_rows, int t_cols, float weight,
|
||||
float template_sum_0, float template_sum_1, float template_sum_2, float template_sum_3,
|
||||
float template_sqsum)
|
||||
int t_rows, int t_cols, float weight, float4 template_sum, float template_sqsum)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
float sum_[4];
|
||||
float sqsum_[4];
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
src_sums_offset /= ELEM_SIZE;
|
||||
src_sums_step /= ELEM_SIZE;
|
||||
src_sqsums_step /= sizeof(float);
|
||||
src_sqsums_offset /= sizeof(float);
|
||||
int step = src_sums_step/(int)sizeof(T);
|
||||
|
||||
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
|
||||
__global float * sqsum = (__global float*)(src_sqsums);
|
||||
T temp_sum;
|
||||
|
||||
int c_r = SUMS_PTR(t_cols, t_rows);
|
||||
int c_o = SUMS_PTR(t_cols, 0);
|
||||
int o_r = SUMS_PTR(0, t_rows);
|
||||
int o_o = SUMS_PTR(0, 0);
|
||||
__global const T* sum = (__global const T*)(src_sums + mad24(y, src_sums_step, mad24(x, (int)sizeof(T), src_sums_offset)));
|
||||
__global const T* sqsum = (__global const T*)(src_sqsums + mad24(y, src_sqsums_step, mad24(x, (int)sizeof(T), src_sqsums_offset)));
|
||||
|
||||
sum_[0] = (float)((sum[c_r] - sum[c_o]) -(sum[o_r] - sum[o_o ]));
|
||||
sum_[1] = (float)((sum[c_r+1] - sum[c_o+1])-(sum[o_r+1] - sum[o_o +1]));
|
||||
sum_[2] = (float)((sum[c_r+2] - sum[c_o+2])-(sum[o_r+2] - sum[o_o +2]));
|
||||
sum_[3] = (float)((sum[c_r+3] - sum[c_o+3])-(sum[o_r+3] - sum[o_o +3]));
|
||||
T value_sum = sum[mad24(t_rows, step, t_cols)] - sum[mad24(t_rows, step, 0)] - sum[t_cols] + sum[0];
|
||||
T value_sqsum = sqsum[mad24(t_rows, step, t_cols)] - sqsum[mad24(t_rows, step, 0)] - sqsum[t_cols] + sqsum[0];
|
||||
|
||||
c_r = SQSUMS_PTR(t_cols, t_rows);
|
||||
c_o = SQSUMS_PTR(t_cols, 0);
|
||||
o_r = SQSUMS_PTR(0, t_rows);
|
||||
o_o = SQSUMS_PTR(0, 0);
|
||||
#if cn==2
|
||||
temp_sum.x = template_sum.x;
|
||||
temp_sum.y = template_sum.y;
|
||||
#else
|
||||
temp_sum = template_sum;
|
||||
#endif
|
||||
|
||||
sqsum_[0] = (float)((sqsum[c_r] - sqsum[c_o]) -(sqsum[o_r] - sqsum[o_o]));
|
||||
sqsum_[1] = (float)((sqsum[c_r+1] - sqsum[c_o+1])-(sqsum[o_r+1] - sqsum[o_o+1]));
|
||||
sqsum_[2] = (float)((sqsum[c_r+2] - sqsum[c_o+2])-(sqsum[o_r+2] - sqsum[o_o+2]));
|
||||
sqsum_[3] = (float)((sqsum[c_r+3] - sqsum[c_o+3])-(sqsum[o_r+3] - sqsum[o_o+3]));
|
||||
float num = convertToDT(mad(value_sum, temp_sum, 0));
|
||||
|
||||
float num = sum_[0]*template_sum_0 + sum_[1]*template_sum_1 + sum_[2]*template_sum_2 + sum_[3]*template_sum_3;
|
||||
|
||||
float denum = sqrt( template_sqsum * (
|
||||
sqsum_[0] - weight * sum_[0]* sum_[0] +
|
||||
sqsum_[1] - weight * sum_[1]* sum_[1] +
|
||||
sqsum_[2] - weight * sum_[2]* sum_[2] +
|
||||
sqsum_[3] - weight * sum_[3]* sum_[3] ));
|
||||
value_sqsum -= weight * value_sum * value_sum;
|
||||
float denum = sqrt(mad(template_sqsum, convertToDT(value_sqsum), 0));
|
||||
|
||||
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
|
||||
__global float * dstult = (__global float *)(dst+dst_idx);
|
||||
|
@ -56,6 +56,26 @@ enum
|
||||
SUM_1 = 0, SUM_2 = 1
|
||||
};
|
||||
|
||||
static bool extractFirstChannel_32F(InputArray _image, OutputArray _result, int cn)
|
||||
{
|
||||
int depth = _image.depth();
|
||||
|
||||
ocl::Device dev = ocl::Device::getDefault();
|
||||
int pxPerWIy = (dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU)) ? 4 : 1;
|
||||
|
||||
ocl::Kernel k("extractFirstChannel", ocl::imgproc::match_template_oclsrc, format("-D FIRST_CHANNEL -D T1=%s -D cn=%d -D PIX_PER_WI_Y=%d",
|
||||
ocl::typeToStr(depth), cn, pxPerWIy));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat image = _image.getUMat();
|
||||
UMat result = _result.getUMat();
|
||||
|
||||
|
||||
size_t globalsize[2] = {result.cols, (result.rows+pxPerWIy-1)/pxPerWIy};
|
||||
return k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::WriteOnly(result)).run( 2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
static bool sumTemplate(InputArray _src, UMat & result)
|
||||
{
|
||||
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
@ -88,15 +108,181 @@ static bool sumTemplate(InputArray _src, UMat & result)
|
||||
return k.run(1, &globalsize, &wgs, false);
|
||||
}
|
||||
|
||||
static bool useNaive(Size size)
|
||||
{
|
||||
if (!ocl::Device::getDefault().isIntel())
|
||||
return true;
|
||||
|
||||
int dft_size = 18;
|
||||
return size.height < dft_size && size.width < dft_size;
|
||||
|
||||
}
|
||||
|
||||
struct ConvolveBuf
|
||||
{
|
||||
Size result_size;
|
||||
Size block_size;
|
||||
Size user_block_size;
|
||||
Size dft_size;
|
||||
|
||||
UMat image_spect, templ_spect, result_spect;
|
||||
UMat image_block, templ_block, result_data;
|
||||
|
||||
void create(Size image_size, Size templ_size);
|
||||
static Size estimateBlockSize(Size result_size);
|
||||
};
|
||||
|
||||
void ConvolveBuf::create(Size image_size, Size templ_size)
|
||||
{
|
||||
result_size = Size(image_size.width - templ_size.width + 1,
|
||||
image_size.height - templ_size.height + 1);
|
||||
|
||||
block_size = user_block_size;
|
||||
if (user_block_size.width == 0 || user_block_size.height == 0)
|
||||
block_size = estimateBlockSize(result_size);
|
||||
|
||||
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
|
||||
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
|
||||
|
||||
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
|
||||
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
|
||||
|
||||
// To avoid wasting time doing small DFTs
|
||||
dft_size.width = std::max(dft_size.width, 512);
|
||||
dft_size.height = std::max(dft_size.height, 512);
|
||||
|
||||
image_block.create(dft_size, CV_32F);
|
||||
templ_block.create(dft_size, CV_32F);
|
||||
result_data.create(dft_size, CV_32F);
|
||||
|
||||
image_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
||||
templ_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
||||
result_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
||||
|
||||
// Use maximum result matrix block size for the estimated DFT block size
|
||||
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
|
||||
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
|
||||
}
|
||||
|
||||
Size ConvolveBuf::estimateBlockSize(Size result_size)
|
||||
{
|
||||
int width = (result_size.width + 2) / 3;
|
||||
int height = (result_size.height + 2) / 3;
|
||||
width = std::min(width, result_size.width);
|
||||
height = std::min(height, result_size.height);
|
||||
return Size(width, height);
|
||||
}
|
||||
|
||||
static bool convolve_dft(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
ConvolveBuf buf;
|
||||
CV_Assert(_image.type() == CV_32F);
|
||||
CV_Assert(_templ.type() == CV_32F);
|
||||
|
||||
buf.create(_image.size(), _templ.size());
|
||||
_result.create(buf.result_size, CV_32F);
|
||||
|
||||
UMat image = _image.getUMat();
|
||||
UMat templ = _templ.getUMat();
|
||||
|
||||
UMat result = _result.getUMat();
|
||||
|
||||
Size& block_size = buf.block_size;
|
||||
Size& dft_size = buf.dft_size;
|
||||
|
||||
UMat& image_block = buf.image_block;
|
||||
UMat& templ_block = buf.templ_block;
|
||||
UMat& result_data = buf.result_data;
|
||||
|
||||
UMat& image_spect = buf.image_spect;
|
||||
UMat& templ_spect = buf.templ_spect;
|
||||
UMat& result_spect = buf.result_spect;
|
||||
|
||||
UMat templ_roi = templ;
|
||||
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
||||
templ_block.cols - templ_roi.cols, BORDER_ISOLATED);
|
||||
|
||||
dft(templ_block, templ_spect, 0);
|
||||
|
||||
// Process all blocks of the result matrix
|
||||
for (int y = 0; y < result.rows; y += block_size.height)
|
||||
{
|
||||
for (int x = 0; x < result.cols; x += block_size.width)
|
||||
{
|
||||
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
||||
std::min(y + dft_size.height, image.rows) - y);
|
||||
Rect roi0(x, y, image_roi_size.width, image_roi_size.height);
|
||||
|
||||
UMat image_roi(image, roi0);
|
||||
|
||||
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
||||
0, image_block.cols - image_roi.cols, BORDER_ISOLATED);
|
||||
|
||||
dft(image_block, image_spect, 0);
|
||||
|
||||
mulSpectrums(image_spect, templ_spect, result_spect, 0, true);
|
||||
|
||||
dft(result_spect, result_data, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
|
||||
|
||||
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
||||
std::min(y + block_size.height, result.rows) - y);
|
||||
|
||||
Rect roi1(x, y, result_roi_size.width, result_roi_size.height);
|
||||
Rect roi2(0, 0, result_roi_size.width, result_roi_size.height);
|
||||
|
||||
UMat result_roi(result, roi1);
|
||||
UMat result_block(result_data, roi2);
|
||||
|
||||
result_block.copyTo(result_roi);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool convolve_32F(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
_result.create(_image.rows() - _templ.rows() + 1, _image.cols() - _templ.cols() + 1, CV_32F);
|
||||
|
||||
if (_image.channels() == 1)
|
||||
return(convolve_dft(_image, _templ, _result));
|
||||
else
|
||||
{
|
||||
UMat image = _image.getUMat();
|
||||
UMat templ = _templ.getUMat();
|
||||
UMat result_(image.rows-templ.rows+1,(image.cols-templ.cols+1)*image.channels(), CV_32F);
|
||||
bool ok = convolve_dft(image.reshape(1), templ.reshape(1), result_);
|
||||
if (ok==false)
|
||||
return false;
|
||||
UMat result = _result.getUMat();
|
||||
return (extractFirstChannel_32F(result_, _result, _image.channels()));
|
||||
}
|
||||
}
|
||||
|
||||
static bool matchTemplateNaive_CCORR(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
int wdepth = std::max(depth, CV_32S), wtype = CV_MAKE_TYPE(wdepth, cn);
|
||||
int wdepth = CV_32F, wtype = CV_MAKE_TYPE(wdepth, cn);
|
||||
|
||||
ocl::Device dev = ocl::Device::getDefault();
|
||||
int pxPerWIx = (cn==1 && dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU)) ? 4 : 1;
|
||||
int rated_cn = cn;
|
||||
int wtype1 = wtype;
|
||||
|
||||
if (pxPerWIx!=1)
|
||||
{
|
||||
rated_cn = pxPerWIx;
|
||||
type = CV_MAKE_TYPE(depth, rated_cn);
|
||||
wtype1 = CV_MAKE_TYPE(wdepth, rated_cn);
|
||||
}
|
||||
|
||||
char cvt[40];
|
||||
char cvt1[40];
|
||||
const char* convertToWT1 = ocl::convertTypeStr(depth, wdepth, cn, cvt);
|
||||
const char* convertToWT = ocl::convertTypeStr(depth, wdepth, rated_cn, cvt1);
|
||||
|
||||
ocl::Kernel k("matchTemplate_Naive_CCORR", ocl::imgproc::match_template_oclsrc,
|
||||
format("-D CCORR -D T=%s -D T1=%s -D WT=%s -D convertToWT=%s -D cn=%d -D wdepth=%d", ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype),
|
||||
ocl::convertTypeStr(depth, wdepth, cn, cvt), cn, wdepth));
|
||||
format("-D CCORR -D T=%s -D T1=%s -D WT=%s -D WT1=%s -D convertToWT=%s -D convertToWT1=%s -D cn=%d -D wdepth=%d -D PIX_PER_WI_X=%d", ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype1), ocl::typeToStr(wtype),
|
||||
convertToWT, convertToWT1, cn, wdepth, pxPerWIx));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
@ -107,10 +293,33 @@ static bool matchTemplateNaive_CCORR(InputArray _image, InputArray _templ, Outpu
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
|
||||
ocl::KernelArg::WriteOnly(result));
|
||||
|
||||
size_t globalsize[2] = { result.cols, result.rows };
|
||||
size_t globalsize[2] = { (result.cols+pxPerWIx-1)/pxPerWIx, result.rows};
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
|
||||
static bool matchTemplate_CCORR(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
if (useNaive(_templ.size()))
|
||||
return( matchTemplateNaive_CCORR(_image, _templ, _result));
|
||||
else
|
||||
{
|
||||
if(_image.depth() == CV_8U)
|
||||
{
|
||||
UMat imagef, templf;
|
||||
UMat image = _image.getUMat();
|
||||
UMat templ = _templ.getUMat();
|
||||
image.convertTo(imagef, CV_32F);
|
||||
templ.convertTo(templf, CV_32F);
|
||||
return(convolve_32F(imagef, templf, _result));
|
||||
}
|
||||
else
|
||||
{
|
||||
return(convolve_32F(_image, _templ, _result));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool matchTemplate_CCORR_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
@ -145,7 +354,7 @@ static bool matchTemplate_CCORR_NORMED(InputArray _image, InputArray _templ, Out
|
||||
static bool matchTemplateNaive_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
int wdepth = std::max(depth, CV_32S), wtype = CV_MAKE_TYPE(wdepth, cn);
|
||||
int wdepth = CV_32F, wtype = CV_MAKE_TYPE(wdepth, cn);
|
||||
|
||||
char cvt[40];
|
||||
ocl::Kernel k("matchTemplate_Naive_SQDIFF", ocl::imgproc::match_template_oclsrc,
|
||||
@ -165,6 +374,41 @@ static bool matchTemplateNaive_SQDIFF(InputArray _image, InputArray _templ, Outp
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
if (useNaive(_templ.size()))
|
||||
return( matchTemplateNaive_SQDIFF(_image, _templ, _result));
|
||||
else
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
|
||||
int type = _image.type(), cn = CV_MAT_CN(type);
|
||||
|
||||
ocl::Kernel k("matchTemplate_Prepared_SQDIFF", ocl::imgproc::match_template_oclsrc,
|
||||
format("-D SQDIFF_PREPARED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat image = _image.getUMat(), templ = _templ.getUMat();
|
||||
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
||||
UMat result = _result.getUMat();
|
||||
|
||||
UMat image_sums, image_sqsums;
|
||||
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
|
||||
|
||||
UMat templ_sqsum;
|
||||
if (!sumTemplate(_templ, templ_sqsum))
|
||||
return false;
|
||||
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
|
||||
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
|
||||
|
||||
size_t globalsize[2] = { result.cols, result.rows };
|
||||
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
}
|
||||
}
|
||||
|
||||
static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
@ -202,47 +446,31 @@ static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArr
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
|
||||
UMat image_sums, temp;
|
||||
integral(_image, temp);
|
||||
|
||||
if (temp.depth() == CV_64F)
|
||||
temp.convertTo(image_sums, CV_32F);
|
||||
else
|
||||
image_sums = temp;
|
||||
integral(_image, image_sums, CV_32F);
|
||||
|
||||
int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
|
||||
ocl::Kernel k("matchTemplate_Prepared_CCOEFF", ocl::imgproc::match_template_oclsrc,
|
||||
format("-D CCOEFF -D T=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
|
||||
format("-D CCOEFF -D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat templ = _templ.getUMat();
|
||||
Size size = _image.size(), tsize = templ.size();
|
||||
_result.create(size.height - templ.rows + 1, size.width - templ.cols + 1, CV_32F);
|
||||
UMat templ = _templ.getUMat();
|
||||
UMat result = _result.getUMat();
|
||||
Size tsize = templ.size();
|
||||
|
||||
if (cn == 1)
|
||||
if (cn==1)
|
||||
{
|
||||
float templ_sum = static_cast<float>(sum(_templ)[0]) / tsize.area();
|
||||
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result),
|
||||
templ.rows, templ.cols, templ_sum);
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, templ_sum);
|
||||
}
|
||||
else
|
||||
{
|
||||
Vec4f templ_sum = Vec4f::all(0);
|
||||
templ_sum = sum(templ) / tsize.area();
|
||||
|
||||
if (cn == 2)
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
|
||||
templ_sum[0], templ_sum[1]);
|
||||
else if (cn==3)
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
|
||||
templ_sum[0], templ_sum[1], templ_sum[2]);
|
||||
else
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
|
||||
templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3]);
|
||||
}
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, templ_sum); }
|
||||
|
||||
size_t globalsize[2] = { result.cols, result.rows };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
@ -258,7 +486,7 @@ static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, Ou
|
||||
int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
|
||||
ocl::Kernel k("matchTemplate_CCOEFF_NORMED", ocl::imgproc::match_template_oclsrc,
|
||||
format("-D CCOEFF_NORMED -D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
|
||||
format("-D CCOEFF_NORMED -D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
@ -308,19 +536,9 @@ static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, Ou
|
||||
return true;
|
||||
}
|
||||
|
||||
if (cn == 2)
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
|
||||
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
|
||||
templ_sum[0], templ_sum[1], templ_sqsum_sum);
|
||||
else if (cn == 3)
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
|
||||
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
|
||||
templ_sum[0], templ_sum[1], templ_sum[2], templ_sqsum_sum);
|
||||
else
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
|
||||
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
|
||||
templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3], templ_sqsum_sum);
|
||||
}
|
||||
templ_sum, templ_sqsum_sum); }
|
||||
|
||||
size_t globalsize[2] = { result.cols, result.rows };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
@ -339,7 +557,7 @@ static bool ocl_matchTemplate( InputArray _img, InputArray _templ, OutputArray _
|
||||
|
||||
static const Caller callers[] =
|
||||
{
|
||||
matchTemplateNaive_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplateNaive_CCORR,
|
||||
matchTemplate_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplate_CCORR,
|
||||
matchTemplate_CCORR_NORMED, matchTemplate_CCOEFF, matchTemplate_CCOEFF_NORMED
|
||||
};
|
||||
const Caller caller = callers[method];
|
||||
|
Loading…
Reference in New Issue
Block a user