mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
Added HoughLinesP OCL implementation
This commit is contained in:
parent
39b27a19be
commit
eaf5a163b1
@ -652,6 +652,9 @@ HoughLinesProbabilistic( Mat& image,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters)
|
||||
{
|
||||
UMat src = _src.getUMat();
|
||||
@ -660,16 +663,16 @@ static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOu
|
||||
UMat counters = _counters.getUMat();
|
||||
ocl::Device dev = ocl::Device::getDefault();
|
||||
|
||||
const int pixelsPerWI = 16;
|
||||
int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixelsPerWI - 1)/pixelsPerWI);
|
||||
ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc,
|
||||
const int pixPerWI = 16;
|
||||
int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixPerWI - 1)/pixPerWI);
|
||||
ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc,
|
||||
format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols));
|
||||
if (pointListKernel.empty())
|
||||
return false;
|
||||
|
||||
pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList),
|
||||
ocl::KernelArg::PtrWriteOnly(counters));
|
||||
|
||||
|
||||
size_t localThreads[2] = { workgroup_size, 1 };
|
||||
size_t globalThreads[2] = { workgroup_size, src.rows };
|
||||
|
||||
@ -685,12 +688,12 @@ static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_
|
||||
|
||||
float irho = (float) (1 / rho);
|
||||
int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points);
|
||||
|
||||
|
||||
ocl::Kernel fillAccumKernel;
|
||||
size_t localThreads[2];
|
||||
size_t globalThreads[2];
|
||||
|
||||
int local_memory_needed = (numrho + 2)*sizeof(int);
|
||||
size_t local_memory_needed = (numrho + 2)*sizeof(int);
|
||||
if (local_memory_needed > dev.localMemSize())
|
||||
{
|
||||
accum.setTo(Scalar::all(0));
|
||||
@ -717,7 +720,7 @@ static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_
|
||||
}
|
||||
}
|
||||
|
||||
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
||||
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
||||
double min_theta, double max_theta)
|
||||
{
|
||||
CV_Assert(_src.type() == CV_8UC1);
|
||||
@ -732,7 +735,7 @@ static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, doub
|
||||
UMat src = _src.getUMat();
|
||||
int numangle = cvRound((max_theta - min_theta) / theta);
|
||||
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
||||
|
||||
|
||||
UMat pointsList;
|
||||
UMat counters(1, 2, CV_32SC1, Scalar::all(0));
|
||||
|
||||
@ -766,7 +769,7 @@ static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, doub
|
||||
size_t globalThreads[2] = { (numrho + pixPerWI - 1)/pixPerWI, numangle };
|
||||
if (!getLinesKernel.run(2, globalThreads, NULL, false))
|
||||
return false;
|
||||
|
||||
|
||||
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax);
|
||||
if (total_lines > 0)
|
||||
_lines.assign(lines.rowRange(Range(0, total_lines)));
|
||||
@ -775,23 +778,67 @@ static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, doub
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
||||
static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
||||
double minLineLength, double maxGap)
|
||||
{
|
||||
CV_Assert(_src.type() == CV_8UC1);
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
|
||||
return false;
|
||||
UMat src = _src.getUMat();
|
||||
int numangle = cvRound(CV_PI / theta);
|
||||
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
||||
|
||||
UMat pointsList;
|
||||
UMat counters(1, 2, CV_32SC1, Scalar::all(0));
|
||||
|
||||
if (!ocl_makePointsList(src, pointsList, counters))
|
||||
return false;
|
||||
|
||||
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0);
|
||||
if (total_points <= 0)
|
||||
{
|
||||
_lines.assign(UMat(0,0,CV_32SC4));
|
||||
return true;
|
||||
}
|
||||
|
||||
UMat accum;
|
||||
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle))
|
||||
return false;
|
||||
|
||||
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc,
|
||||
format("-D GET_LINES_PROBABOLISTIC"));
|
||||
if (getLinesKernel.empty())
|
||||
return false;
|
||||
|
||||
// TODO: investigate other strategies to choose linesMax
|
||||
int linesMax = min(total_points*numangle/threshold, 4096);
|
||||
UMat lines(linesMax, 1, CV_32SC4);
|
||||
|
||||
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::ReadOnly(src),
|
||||
ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters),
|
||||
linesMax, threshold, (int) minLineLength, (int) maxGap, (float) rho, (float) theta);
|
||||
|
||||
size_t globalThreads[2] = { numrho, numangle };
|
||||
if (!getLinesKernel.run(2, globalThreads, NULL, false))
|
||||
return false;
|
||||
|
||||
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax);
|
||||
if (total_lines > 0)
|
||||
_lines.assign(lines.rowRange(Range(0, total_lines)));
|
||||
else
|
||||
_lines.assign(UMat(0,0,CV_32SC4));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif /* HAVE_OPENCL */
|
||||
|
||||
}
|
||||
|
||||
void cv::HoughLines( InputArray _image, OutputArray _lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn, double stn, double min_theta, double max_theta )
|
||||
{
|
||||
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(),
|
||||
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(),
|
||||
ocl_HoughLines(_image, _lines, rho, theta, threshold, min_theta, max_theta));
|
||||
|
||||
Mat image = _image.getMat();
|
||||
@ -810,7 +857,8 @@ void cv::HoughLinesP(InputArray _image, OutputArray _lines,
|
||||
double rho, double theta, int threshold,
|
||||
double minLineLength, double maxGap )
|
||||
{
|
||||
CV_OCL_RUN(_image.isUMat() && _lines.isUMat(), ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap));
|
||||
CV_OCL_RUN(_image.isUMat() && _lines.isUMat(),
|
||||
ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap));
|
||||
|
||||
Mat image = _image.getMat();
|
||||
std::vector<Vec4i> lines;
|
||||
|
@ -12,7 +12,7 @@ __kernel void make_point_list(__global const uchar * src_ptr, int src_step, int
|
||||
{
|
||||
int x = get_local_id(0);
|
||||
int y = get_group_id(1);
|
||||
|
||||
|
||||
__local int l_index, l_offset;
|
||||
__local int l_points[LOCAL_SIZE];
|
||||
__global const uchar * src = src_ptr + mad24(y, src_step, src_offset);
|
||||
@ -37,12 +37,12 @@ __kernel void make_point_list(__global const uchar * src_ptr, int src_step, int
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
|
||||
if (x == 0)
|
||||
l_offset = atomic_add(global_offset, l_index);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
|
||||
list += l_offset;
|
||||
for (int i=x; i < l_index; i+=GROUP_SIZE)
|
||||
{
|
||||
@ -53,8 +53,8 @@ __kernel void make_point_list(__global const uchar * src_ptr, int src_step, int
|
||||
#elif defined FILL_ACCUM_GLOBAL
|
||||
|
||||
__kernel void fill_accum_global(__global const uchar * list_ptr, int list_step, int list_offset,
|
||||
__global uchar * accum_ptr, int accum_step, int accum_offset, int accum_rows, int accum_cols,
|
||||
int total_points, float irho, float theta, int numrho, int numangle)
|
||||
__global uchar * accum_ptr, int accum_step, int accum_offset, int accum_rows, int accum_cols,
|
||||
int total_points, float irho, float theta, int numrho, int numangle)
|
||||
{
|
||||
int theta_idx = get_global_id(1);
|
||||
int count_idx = get_global_id(0);
|
||||
@ -90,7 +90,7 @@ __kernel void fill_accum_local(__global const uchar * list_ptr, int list_step, i
|
||||
{
|
||||
int theta_idx = get_group_id(1);
|
||||
int count_idx = get_local_id(0);
|
||||
|
||||
|
||||
if (theta_idx > 0 && theta_idx < numangle + 1)
|
||||
{
|
||||
float cosVal;
|
||||
@ -136,7 +136,7 @@ __kernel void fill_accum_local(__global const uchar * list_ptr, int list_step, i
|
||||
#define ACCUM(ptr) *((__global int*)(ptr))
|
||||
|
||||
__kernel void get_lines(__global uchar * accum_ptr, int accum_step, int accum_offset, int accum_rows, int accum_cols,
|
||||
__global uchar * lines_ptr, int lines_step, int lines_offset, __global int* lines_index_ptr,
|
||||
__global uchar * lines_ptr, int lines_step, int lines_offset, __global int* lines_index_ptr,
|
||||
int linesMax, int threshold, float rho, float theta)
|
||||
{
|
||||
int x0 = get_global_id(0);
|
||||
@ -148,7 +148,7 @@ __kernel void get_lines(__global uchar * accum_ptr, int accum_step, int accum_of
|
||||
__global uchar* accum = accum_ptr + mad24(y+1, accum_step, mad24(x0+1, (int) sizeof(int), accum_offset));
|
||||
__global float2* lines = (__global float2*)(lines_ptr + lines_offset);
|
||||
__global int* lines_index = lines_index_ptr + 1;
|
||||
|
||||
|
||||
for (int x=x0; x<accum_cols-2; x+=gl_size)
|
||||
{
|
||||
int curVote = ACCUM(accum);
|
||||
@ -172,4 +172,169 @@ __kernel void get_lines(__global uchar * accum_ptr, int accum_step, int accum_of
|
||||
}
|
||||
}
|
||||
|
||||
#elif GET_LINES_PROBABOLISTIC
|
||||
|
||||
#define ACCUM(ptr) *((__global int*)(ptr))
|
||||
|
||||
__kernel void get_lines(__global const uchar * accum_ptr, int accum_step, int accum_offset, int accum_rows, int accum_cols,
|
||||
__global const uchar * src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * lines_ptr, int lines_step, int lines_offset, __global int* lines_index_ptr,
|
||||
int linesMax, int threshold, int lineLength, int lineGap, float rho, float theta)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
__global uchar* accum = accum_ptr + mad24(y+1, accum_step, mad24(x+1, (int) sizeof(int), accum_offset));
|
||||
__global int4* lines = (__global int4*)(lines_ptr + lines_offset);
|
||||
__global int* lines_index = lines_index_ptr + 1;
|
||||
|
||||
int curVote = ACCUM(accum);
|
||||
|
||||
if (curVote >= threshold &&
|
||||
curVote > ACCUM(accum - accum_step - sizeof(int)) &&
|
||||
curVote > ACCUM(accum - accum_step) &&
|
||||
curVote > ACCUM(accum - accum_step + sizeof(int)) &&
|
||||
curVote > ACCUM(accum - sizeof(int)) &&
|
||||
curVote > ACCUM(accum + sizeof(int)) &&
|
||||
curVote > ACCUM(accum + accum_step - sizeof(int)) &&
|
||||
curVote > ACCUM(accum + accum_step) &&
|
||||
curVote > ACCUM(accum + accum_step + sizeof(int)))
|
||||
{
|
||||
const float radius = (x - (accum_cols - 2 - 1) * 0.5f) * rho;
|
||||
const float angle = y * theta;
|
||||
|
||||
float cosa;
|
||||
float sina = sincos(angle, &cosa);
|
||||
|
||||
float2 p0 = (float2)(cosa * radius, sina * radius);
|
||||
float2 dir = (float2)(-sina, cosa);
|
||||
|
||||
float2 pb[4] = { (float2)(-1, -1), (float2)(-1, -1), (float2)(-1, -1), (float2)(-1, -1) };
|
||||
float a;
|
||||
|
||||
if (dir.x != 0)
|
||||
{
|
||||
a = -p0.x / dir.x;
|
||||
pb[0].x = 0;
|
||||
pb[0].y = p0.y + a * dir.y;
|
||||
|
||||
a = (src_cols - 1 - p0.x) / dir.x;
|
||||
pb[1].x = src_cols - 1;
|
||||
pb[1].y = p0.y + a * dir.y;
|
||||
}
|
||||
if (dir.y != 0)
|
||||
{
|
||||
a = -p0.y / dir.y;
|
||||
pb[2].x = p0.x + a * dir.x;
|
||||
pb[2].y = 0;
|
||||
|
||||
a = (src_rows - 1 - p0.y) / dir.y;
|
||||
pb[3].x = p0.x + a * dir.x;
|
||||
pb[3].y = src_rows - 1;
|
||||
}
|
||||
|
||||
if (pb[0].x == 0 && (pb[0].y >= 0 && pb[0].y < src_rows))
|
||||
{
|
||||
p0 = pb[0];
|
||||
if (dir.x < 0)
|
||||
dir = -dir;
|
||||
}
|
||||
else if (pb[1].x == src_cols - 1 && (pb[0].y >= 0 && pb[0].y < src_rows))
|
||||
{
|
||||
p0 = pb[1];
|
||||
if (dir.x > 0)
|
||||
dir = -dir;
|
||||
}
|
||||
else if (pb[2].y == 0 && (pb[2].x >= 0 && pb[2].x < src_cols))
|
||||
{
|
||||
p0 = pb[2];
|
||||
if (dir.y < 0)
|
||||
dir = -dir;
|
||||
}
|
||||
else if (pb[3].y == src_rows - 1 && (pb[3].x >= 0 && pb[3].x < src_cols))
|
||||
{
|
||||
p0 = pb[3];
|
||||
if (dir.y > 0)
|
||||
dir = -dir;
|
||||
}
|
||||
|
||||
float2 d;
|
||||
if (fabs(dir.x) > fabs(dir.y))
|
||||
{
|
||||
d.x = dir.x > 0 ? 1 : -1;
|
||||
d.y = dir.y / fabs(dir.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
d.x = dir.x / fabs(dir.y);
|
||||
d.y = dir.y > 0 ? 1 : -1;
|
||||
}
|
||||
|
||||
float2 line_end[2];
|
||||
int gap;
|
||||
bool inLine = false;
|
||||
|
||||
float2 p1 = p0;
|
||||
if (p1.x < 0 || p1.x >= src_cols || p1.y < 0 || p1.y >= src_rows)
|
||||
return;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
if (*(src_ptr + mad24(p1.y, src_step, p1.x + src_offset)))
|
||||
{
|
||||
gap = 0;
|
||||
|
||||
if (!inLine)
|
||||
{
|
||||
line_end[0] = p1;
|
||||
line_end[1] = p1;
|
||||
inLine = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
line_end[1] = p1;
|
||||
}
|
||||
}
|
||||
else if (inLine)
|
||||
{
|
||||
if (++gap > lineGap)
|
||||
{
|
||||
bool good_line = fabs(line_end[1].x - line_end[0].x) >= lineLength ||
|
||||
fabs(line_end[1].y - line_end[0].y) >= lineLength;
|
||||
|
||||
if (good_line)
|
||||
{
|
||||
int index = atomic_inc(lines_index);
|
||||
if (index < linesMax)
|
||||
lines[index] = (int4)(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
|
||||
}
|
||||
|
||||
gap = 0;
|
||||
inLine = false;
|
||||
}
|
||||
}
|
||||
|
||||
p1 = p1 + d;
|
||||
if (p1.x < 0 || p1.x >= src_cols || p1.y < 0 || p1.y >= src_rows)
|
||||
{
|
||||
if (inLine)
|
||||
{
|
||||
bool good_line = fabs(line_end[1].x - line_end[0].x) >= lineLength ||
|
||||
fabs(line_end[1].y - line_end[0].y) >= lineLength;
|
||||
|
||||
if (good_line)
|
||||
{
|
||||
int index = atomic_inc(lines_index);
|
||||
if (index < linesMax)
|
||||
lines[index] = (int4)(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
|
||||
}
|
||||
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -15,17 +15,18 @@ namespace ocl {
|
||||
|
||||
struct Vec2fComparator
|
||||
{
|
||||
bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const
|
||||
bool operator()(const Vec2f& a, const Vec2f b) const
|
||||
{
|
||||
if(a[0] != b[0]) return a[0] < b[0];
|
||||
else return a[1] < b[1];
|
||||
}
|
||||
};
|
||||
|
||||
PARAM_TEST_CASE(HoughLinesTestBase, double, double, int)
|
||||
/////////////////////////////// HoughLines ////////////////////////////////////
|
||||
|
||||
PARAM_TEST_CASE(HoughLines, double, double, int)
|
||||
{
|
||||
double rhoStep;
|
||||
double thetaStep;
|
||||
double rhoStep, thetaStep;
|
||||
int threshold;
|
||||
|
||||
Size src_size;
|
||||
@ -50,7 +51,7 @@ PARAM_TEST_CASE(HoughLinesTestBase, double, double, int)
|
||||
line(src, Point(100, 0), Point(100, 200), Scalar::all(255), 1);
|
||||
line(src, Point(200, 0), Point(200, 200), Scalar::all(255), 1);
|
||||
line(src, Point(400, 0), Point(400, 200), Scalar::all(255), 1);
|
||||
|
||||
|
||||
src.copyTo(usrc);
|
||||
}
|
||||
|
||||
@ -65,7 +66,7 @@ PARAM_TEST_CASE(HoughLinesTestBase, double, double, int)
|
||||
virtual void Near(double eps = 0.)
|
||||
{
|
||||
EXPECT_EQ(dst.size(), udst.size());
|
||||
|
||||
|
||||
if (dst.total() > 0)
|
||||
{
|
||||
Mat lines_cpu, lines_gpu;
|
||||
@ -80,8 +81,6 @@ PARAM_TEST_CASE(HoughLinesTestBase, double, double, int)
|
||||
}
|
||||
};
|
||||
|
||||
typedef HoughLinesTestBase HoughLines;
|
||||
|
||||
OCL_TEST_P(HoughLines, RealImage)
|
||||
{
|
||||
readRealTestData();
|
||||
@ -105,10 +104,81 @@ OCL_TEST_P(HoughLines, GeneratedImage)
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////// HoughLinesP ///////////////////////////////////
|
||||
|
||||
PARAM_TEST_CASE(HoughLinesP, int, double, double)
|
||||
{
|
||||
double rhoStep, thetaStep, minLineLength, maxGap;
|
||||
int threshold;
|
||||
|
||||
Size src_size;
|
||||
Mat src, dst;
|
||||
UMat usrc, udst;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
rhoStep = 1.0;
|
||||
thetaStep = CV_PI / 180;
|
||||
threshold = GET_PARAM(0);
|
||||
minLineLength = GET_PARAM(1);
|
||||
maxGap = GET_PARAM(2);
|
||||
}
|
||||
|
||||
virtual void readRealTestData()
|
||||
{
|
||||
Mat img = readImage("shared/pic5.png", IMREAD_GRAYSCALE);
|
||||
Canny(img, src, 50, 200, 3);
|
||||
|
||||
src.copyTo(usrc);
|
||||
}
|
||||
|
||||
virtual void Near(double eps = 0.)
|
||||
{
|
||||
Mat lines_gpu = udst.getMat(ACCESS_READ);
|
||||
|
||||
if (dst.total() > 0 && lines_gpu.total() > 0)
|
||||
{
|
||||
Mat result_cpu(src.size(), CV_8UC1, Scalar::all(0));
|
||||
Mat result_gpu(src.size(), CV_8UC1, Scalar::all(0));
|
||||
|
||||
MatConstIterator_<Vec4i> it = dst.begin<Vec4i>(), end = dst.end<Vec4i>();
|
||||
for ( ; it != end; it++)
|
||||
{
|
||||
Vec4i p = *it;
|
||||
line(result_cpu, Point(p[0], p[1]), Point(p[2], p[3]), Scalar(255));
|
||||
}
|
||||
|
||||
it = lines_gpu.begin<Vec4i>(), end = lines_gpu.end<Vec4i>();
|
||||
for ( ; it != end; it++)
|
||||
{
|
||||
Vec4i p = *it;
|
||||
line(result_gpu, Point(p[0], p[1]), Point(p[2], p[3]), Scalar(255));
|
||||
}
|
||||
|
||||
EXPECT_MAT_SIMILAR(result_cpu, result_gpu, eps);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
OCL_TEST_P(HoughLinesP, RealImage)
|
||||
{
|
||||
readRealTestData();
|
||||
|
||||
OCL_OFF(cv::HoughLinesP(src, dst, rhoStep, thetaStep, threshold, minLineLength, maxGap));
|
||||
OCL_ON(cv::HoughLinesP(usrc, udst, rhoStep, thetaStep, threshold, minLineLength, maxGap));
|
||||
|
||||
Near(0.2);
|
||||
}
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLines, Combine(Values(1, 0.5), // rhoStep
|
||||
Values(CV_PI / 180.0, CV_PI / 360.0), // thetaStep
|
||||
Values(80, 150))); // threshold
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLinesP, Combine(Values(100, 150), // threshold
|
||||
Values(50, 100), // minLineLength
|
||||
Values(5, 10))); // maxLineGap
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
Loading…
Reference in New Issue
Block a user