mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 00:20:59 +08:00
Merge pull request #26387 from sturkmen72:js-imgproc
Add some functions to OpenCV JS API
This commit is contained in:
commit
ebf3c400d2
@ -2,82 +2,105 @@
|
||||
"whitelist":
|
||||
{
|
||||
"": [
|
||||
"Canny",
|
||||
"GaussianBlur",
|
||||
"Laplacian",
|
||||
"HoughLines",
|
||||
"HoughLinesP",
|
||||
"HoughCircles",
|
||||
"Scharr",
|
||||
"Sobel",
|
||||
"adaptiveThreshold",
|
||||
"applyColorMap",
|
||||
"approxPolyDP",
|
||||
"approxPolyN",
|
||||
"arcLength",
|
||||
"arrowedLine",
|
||||
"bilateralFilter",
|
||||
"blendLinear",
|
||||
"blur",
|
||||
"boundingRect",
|
||||
"boxFilter",
|
||||
"calcBackProject",
|
||||
"calcHist",
|
||||
"Canny",
|
||||
"circle",
|
||||
"clipLine",
|
||||
"compareHist",
|
||||
"connectedComponents",
|
||||
"connectedComponentsWithStats",
|
||||
"contourArea",
|
||||
"convertMaps",
|
||||
"convexHull",
|
||||
"convexityDefects",
|
||||
"cornerHarris",
|
||||
"cornerMinEigenVal",
|
||||
"createCLAHE",
|
||||
"createHanningWindow",
|
||||
"createLineSegmentDetector",
|
||||
"cvtColor",
|
||||
"demosaicing",
|
||||
"dilate",
|
||||
"distanceTransform",
|
||||
"distanceTransformWithLabels",
|
||||
"divSpectrums",
|
||||
"drawContours",
|
||||
"drawMarker",
|
||||
"ellipse",
|
||||
"ellipse2Poly",
|
||||
"equalizeHist",
|
||||
"erode",
|
||||
"fillConvexPoly",
|
||||
"fillPoly",
|
||||
"filter2D",
|
||||
"findContours",
|
||||
"findContoursLinkRuns",
|
||||
"fitEllipse",
|
||||
"fitEllipseAMS",
|
||||
"fitEllipseDirect",
|
||||
"fitLine",
|
||||
"floodFill",
|
||||
"GaussianBlur",
|
||||
"getAffineTransform",
|
||||
"getFontScaleFromHeight",
|
||||
"getPerspectiveTransform",
|
||||
"getRectSubPix",
|
||||
"getRotationMatrix2D",
|
||||
"getStructuringElement",
|
||||
"goodFeaturesToTrack",
|
||||
"grabCut",
|
||||
"HoughCircles",
|
||||
"HoughLines",
|
||||
"HoughLinesP",
|
||||
"HuMoments",
|
||||
"integral",
|
||||
"integral2",
|
||||
"intersectConvexConvex",
|
||||
"invertAffineTransform",
|
||||
"isContourConvex",
|
||||
"Laplacian",
|
||||
"line",
|
||||
"matchShapes",
|
||||
"matchTemplate",
|
||||
"medianBlur",
|
||||
"minAreaRect",
|
||||
"minEnclosingCircle",
|
||||
"minEnclosingTriangle",
|
||||
"moments",
|
||||
"morphologyEx",
|
||||
"pointPolygonTest",
|
||||
"polylines",
|
||||
"preCornerDetect",
|
||||
"putText",
|
||||
"pyrDown",
|
||||
"pyrUp",
|
||||
"rectangle",
|
||||
"remap",
|
||||
"resize",
|
||||
"rotatedRectangleIntersection",
|
||||
"Scharr",
|
||||
"sepFilter2D",
|
||||
"Sobel",
|
||||
"spatialGradient",
|
||||
"sqrBoxFilter",
|
||||
"stackBlur",
|
||||
"threshold",
|
||||
"warpAffine",
|
||||
"warpPerspective",
|
||||
"warpPolar",
|
||||
"watershed",
|
||||
"fillPoly",
|
||||
"fillConvexPoly",
|
||||
"polylines"
|
||||
"watershed"
|
||||
],
|
||||
"CLAHE": ["apply", "collectGarbage", "getClipLimit", "getTilesGridSize", "setClipLimit", "setTilesGridSize"],
|
||||
"segmentation_IntelligentScissorsMB": [
|
||||
|
@ -378,7 +378,6 @@ namespace binding_utils
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
void Tracker_init_wrapper(cv::Tracker& arg0, const cv::Mat& arg1, const Rect& arg2)
|
||||
{
|
||||
return arg0.init(arg1, arg2);
|
||||
@ -619,10 +618,6 @@ EMSCRIPTEN_BINDINGS(binding_utils)
|
||||
.field("size", &cv::RotatedRect::size)
|
||||
.field("angle", &cv::RotatedRect::angle);
|
||||
|
||||
function("rotatedRectPoints", select_overload<emscripten::val(const cv::RotatedRect&)>(&binding_utils::rotatedRectPoints));
|
||||
function("rotatedRectBoundingRect", select_overload<Rect(const cv::RotatedRect&)>(&binding_utils::rotatedRectBoundingRect));
|
||||
function("rotatedRectBoundingRect2f", select_overload<Rect2f(const cv::RotatedRect&)>(&binding_utils::rotatedRectBoundingRect2f));
|
||||
|
||||
emscripten::value_object<cv::KeyPoint>("KeyPoint")
|
||||
.field("angle", &cv::KeyPoint::angle)
|
||||
.field("class_id", &cv::KeyPoint::class_id)
|
||||
@ -649,10 +644,25 @@ EMSCRIPTEN_BINDINGS(binding_utils)
|
||||
.field("minLoc", &binding_utils::MinMaxLoc::minLoc)
|
||||
.field("maxLoc", &binding_utils::MinMaxLoc::maxLoc);
|
||||
|
||||
emscripten::value_object<cv::Exception>("Exception")
|
||||
.field("code", &cv::Exception::code)
|
||||
.field("msg", &binding_utils::getExceptionMsg, &binding_utils::setExceptionMsg);
|
||||
|
||||
emscripten::value_object<binding_utils::Circle>("Circle")
|
||||
.field("center", &binding_utils::Circle::center)
|
||||
.field("radius", &binding_utils::Circle::radius);
|
||||
|
||||
function("boxPoints", select_overload<emscripten::val(const cv::RotatedRect&)>(&binding_utils::rotatedRectPoints));
|
||||
function("rotatedRectPoints", select_overload<emscripten::val(const cv::RotatedRect&)>(&binding_utils::rotatedRectPoints));
|
||||
function("rotatedRectBoundingRect", select_overload<Rect(const cv::RotatedRect&)>(&binding_utils::rotatedRectBoundingRect));
|
||||
function("rotatedRectBoundingRect2f", select_overload<Rect2f(const cv::RotatedRect&)>(&binding_utils::rotatedRectBoundingRect2f));
|
||||
function("exceptionFromPtr", &binding_utils::exceptionFromPtr, allow_raw_pointers());
|
||||
function("minMaxLoc", select_overload<binding_utils::MinMaxLoc(const cv::Mat&, const cv::Mat&)>(&binding_utils::minMaxLoc));
|
||||
function("minMaxLoc", select_overload<binding_utils::MinMaxLoc(const cv::Mat&)>(&binding_utils::minMaxLoc_1));
|
||||
function("CV_MAT_DEPTH", &binding_utils::cvMatDepth);
|
||||
function("getBuildInformation", &binding_utils::getBuildInformation);
|
||||
|
||||
#ifdef HAVE_OPENCV_IMGPROC
|
||||
emscripten::value_object<cv::Moments >("Moments")
|
||||
.field("m00", &cv::Moments::m00)
|
||||
.field("m10", &cv::Moments::m10)
|
||||
@ -679,49 +689,24 @@ EMSCRIPTEN_BINDINGS(binding_utils)
|
||||
.field("nu12", &cv::Moments::nu12)
|
||||
.field("nu03", &cv::Moments::nu03);
|
||||
|
||||
emscripten::value_object<cv::Exception>("Exception")
|
||||
.field("code", &cv::Exception::code)
|
||||
.field("msg", &binding_utils::getExceptionMsg, &binding_utils::setExceptionMsg);
|
||||
|
||||
function("exceptionFromPtr", &binding_utils::exceptionFromPtr, allow_raw_pointers());
|
||||
|
||||
#ifdef HAVE_OPENCV_IMGPROC
|
||||
function("minEnclosingCircle", select_overload<binding_utils::Circle(const cv::Mat&)>(&binding_utils::minEnclosingCircle));
|
||||
|
||||
function("floodFill", select_overload<int(cv::Mat&, cv::Mat&, Point, Scalar, emscripten::val, Scalar, Scalar, int)>(&binding_utils::floodFill_wrapper));
|
||||
|
||||
function("floodFill", select_overload<int(cv::Mat&, cv::Mat&, Point, Scalar, emscripten::val, Scalar, Scalar)>(&binding_utils::floodFill_wrapper_1));
|
||||
|
||||
function("floodFill", select_overload<int(cv::Mat&, cv::Mat&, Point, Scalar, emscripten::val, Scalar)>(&binding_utils::floodFill_wrapper_2));
|
||||
|
||||
function("floodFill", select_overload<int(cv::Mat&, cv::Mat&, Point, Scalar, emscripten::val)>(&binding_utils::floodFill_wrapper_3));
|
||||
|
||||
function("floodFill", select_overload<int(cv::Mat&, cv::Mat&, Point, Scalar)>(&binding_utils::floodFill_wrapper_4));
|
||||
#endif
|
||||
|
||||
function("minMaxLoc", select_overload<binding_utils::MinMaxLoc(const cv::Mat&, const cv::Mat&)>(&binding_utils::minMaxLoc));
|
||||
|
||||
function("minMaxLoc", select_overload<binding_utils::MinMaxLoc(const cv::Mat&)>(&binding_utils::minMaxLoc_1));
|
||||
|
||||
#ifdef HAVE_OPENCV_IMGPROC
|
||||
function("morphologyDefaultBorderValue", &cv::morphologyDefaultBorderValue);
|
||||
#endif
|
||||
|
||||
function("CV_MAT_DEPTH", &binding_utils::cvMatDepth);
|
||||
|
||||
#ifdef HAVE_OPENCV_VIDEO
|
||||
function("CamShift", select_overload<emscripten::val(const cv::Mat&, Rect&, TermCriteria)>(&binding_utils::CamShiftWrapper));
|
||||
|
||||
function("meanShift", select_overload<emscripten::val(const cv::Mat&, Rect&, TermCriteria)>(&binding_utils::meanShiftWrapper));
|
||||
|
||||
emscripten::class_<cv::Tracker >("Tracker")
|
||||
.function("init", select_overload<void(cv::Tracker&,const cv::Mat&,const Rect&)>(&binding_utils::Tracker_init_wrapper), pure_virtual())
|
||||
.function("update", select_overload<emscripten::val(cv::Tracker&,const cv::Mat&)>(&binding_utils::Tracker_update_wrapper), pure_virtual());
|
||||
|
||||
#endif
|
||||
|
||||
function("getBuildInformation", &binding_utils::getBuildInformation);
|
||||
|
||||
#ifdef HAVE_PTHREADS_PF
|
||||
function("parallel_pthreads_set_threads_num", &cv::parallel_pthreads_set_threads_num);
|
||||
function("parallel_pthreads_get_threads_num", &cv::parallel_pthreads_get_threads_num);
|
||||
|
@ -4,8 +4,380 @@
|
||||
|
||||
QUnit.module('Core', {});
|
||||
|
||||
QUnit.test('test_operations_on_arrays', function(assert) {
|
||||
// Transpose
|
||||
{
|
||||
let mat1 = cv.Mat.eye(9, 7, cv.CV_8UC3);
|
||||
let mat2 = new cv.Mat();
|
||||
|
||||
cv.transpose(mat1, mat2);
|
||||
|
||||
// Verify result.
|
||||
let size = mat2.size();
|
||||
assert.equal(mat2.channels(), 3);
|
||||
assert.equal(size.height, 7);
|
||||
assert.equal(size.width, 9);
|
||||
}
|
||||
|
||||
// Concat
|
||||
{
|
||||
let mat = cv.Mat.ones({height: 10, width: 5}, cv.CV_8UC3);
|
||||
let mat2 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3);
|
||||
let mat3 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3);
|
||||
|
||||
let out = new cv.Mat();
|
||||
let input = new cv.MatVector();
|
||||
input.push_back(mat);
|
||||
input.push_back(mat2);
|
||||
input.push_back(mat3);
|
||||
|
||||
cv.vconcat(input, out);
|
||||
|
||||
// Verify result.
|
||||
let size = out.size();
|
||||
assert.equal(out.channels(), 3);
|
||||
assert.equal(size.height, 30);
|
||||
assert.equal(size.width, 5);
|
||||
assert.equal(out.elemSize1(), 1);
|
||||
|
||||
cv.hconcat(input, out);
|
||||
|
||||
// Verify result.
|
||||
size = out.size();
|
||||
assert.equal(out.channels(), 3);
|
||||
assert.equal(size.height, 10);
|
||||
assert.equal(size.width, 15);
|
||||
assert.equal(out.elemSize1(), 1);
|
||||
|
||||
input.delete();
|
||||
out.delete();
|
||||
}
|
||||
|
||||
// Min, Max
|
||||
{
|
||||
let data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9]);
|
||||
let data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0]);
|
||||
|
||||
let expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0]);
|
||||
let expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9]);
|
||||
|
||||
let dataPtr = cv._malloc(3*3*1);
|
||||
let dataPtr2 = cv._malloc(3*3*1);
|
||||
|
||||
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
|
||||
dataHeap.set(new Uint8Array(data1.buffer));
|
||||
|
||||
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
|
||||
dataHeap2.set(new Uint8Array(data2.buffer));
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
|
||||
let mat3 = new cv.Mat();
|
||||
|
||||
cv.min(mat1, mat2, mat3);
|
||||
|
||||
// Verify result.
|
||||
let size = mat2.size();
|
||||
assert.equal(mat2.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedMin);
|
||||
|
||||
cv.max(mat1, mat2, mat3);
|
||||
|
||||
// Verify result.
|
||||
size = mat2.size();
|
||||
assert.equal(mat2.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedMax);
|
||||
|
||||
cv._free(dataPtr);
|
||||
cv._free(dataPtr2);
|
||||
}
|
||||
|
||||
// Bitwise operations
|
||||
{
|
||||
let data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]);
|
||||
let data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]);
|
||||
|
||||
let expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]);
|
||||
let expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]);
|
||||
let expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]);
|
||||
|
||||
let expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]);
|
||||
|
||||
let dataPtr = cv._malloc(3*3*1);
|
||||
let dataPtr2 = cv._malloc(3*3*1);
|
||||
|
||||
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
|
||||
dataHeap.set(new Uint8Array(data1.buffer));
|
||||
|
||||
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
|
||||
dataHeap2.set(new Uint8Array(data2.buffer));
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
|
||||
let mat3 = new cv.Mat();
|
||||
let none = new cv.Mat();
|
||||
|
||||
cv.bitwise_not(mat1, mat3, none);
|
||||
|
||||
// Verify result.
|
||||
let size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedNot);
|
||||
|
||||
cv.bitwise_and(mat1, mat2, mat3, none);
|
||||
|
||||
// Verify result.
|
||||
size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedAnd);
|
||||
|
||||
cv.bitwise_or(mat1, mat2, mat3, none);
|
||||
|
||||
// Verify result.
|
||||
size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedOr);
|
||||
|
||||
cv.bitwise_xor(mat1, mat2, mat3, none);
|
||||
|
||||
// Verify result.
|
||||
size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedXor);
|
||||
|
||||
cv._free(dataPtr);
|
||||
cv._free(dataPtr2);
|
||||
}
|
||||
|
||||
// Arithmetic operations
|
||||
{
|
||||
let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]);
|
||||
let data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0]);
|
||||
|
||||
// |data1 - data2|
|
||||
let expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
let expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24]);
|
||||
|
||||
const alpha = 4;
|
||||
const beta = -1;
|
||||
const gamma = 3;
|
||||
// 4*data1 - data2 + 3
|
||||
let expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19]);
|
||||
|
||||
let dataPtr = cv._malloc(3*3*1);
|
||||
let dataPtr2 = cv._malloc(3*3*1);
|
||||
let dataPtr3 = cv._malloc(3*3*1);
|
||||
|
||||
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
|
||||
dataHeap.set(new Uint8Array(data1.buffer));
|
||||
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
|
||||
dataHeap2.set(new Uint8Array(data2.buffer));
|
||||
let dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3*3*1);
|
||||
dataHeap3.set(new Uint8Array(data3.buffer));
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
|
||||
let mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0);
|
||||
|
||||
let dst = new cv.Mat();
|
||||
let none = new cv.Mat();
|
||||
|
||||
cv.absdiff(mat1, mat2, dst);
|
||||
|
||||
// Verify result.
|
||||
let size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(dst.data, expectedAbsDiff);
|
||||
|
||||
cv.add(mat1, mat2, dst, none, -1);
|
||||
|
||||
// Verify result.
|
||||
size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
assert.deepEqual(dst.data, expectedAdd);
|
||||
|
||||
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1);
|
||||
|
||||
// Verify result.
|
||||
size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
assert.deepEqual(dst.data, expectedWeightedAdd);
|
||||
|
||||
// default parameter
|
||||
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst);
|
||||
|
||||
// Verify result.
|
||||
size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(dst.data, expectedWeightedAdd);
|
||||
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
mat3.delete();
|
||||
dst.delete();
|
||||
none.delete();
|
||||
}
|
||||
|
||||
// Invert
|
||||
{
|
||||
let inv1 = new cv.Mat();
|
||||
let inv2 = new cv.Mat();
|
||||
let inv3 = new cv.Mat();
|
||||
let inv4 = new cv.Mat();
|
||||
|
||||
let data1 = new Float32Array([1, 0, 0,
|
||||
0, 1, 0,
|
||||
0, 0, 1]);
|
||||
let data2 = new Float32Array([0, 0, 0,
|
||||
0, 5, 0,
|
||||
0, 0, 0]);
|
||||
let data3 = new Float32Array([1, 1, 1, 0,
|
||||
0, 3, 1, 2,
|
||||
2, 3, 1, 0,
|
||||
1, 0, 2, 1]);
|
||||
let data4 = new Float32Array([1, 4, 5,
|
||||
4, 2, 2,
|
||||
5, 2, 2]);
|
||||
|
||||
let expected1 = new Float32Array([1, 0, 0,
|
||||
0, 1, 0,
|
||||
0, 0, 1]);
|
||||
// Inverse does not exist!
|
||||
let expected3 = new Float32Array([-3, -1/2, 3/2, 1,
|
||||
1, 1/4, -1/4, -1/2,
|
||||
3, 1/4, -5/4, -1/2,
|
||||
-3, 0, 1, 1]);
|
||||
let expected4 = new Float32Array([0, -1, 1,
|
||||
-1, 23/2, -9,
|
||||
1, -9, 7]);
|
||||
|
||||
let dataPtr1 = cv._malloc(3*3*4);
|
||||
let dataPtr2 = cv._malloc(3*3*4);
|
||||
let dataPtr3 = cv._malloc(4*4*4);
|
||||
let dataPtr4 = cv._malloc(3*3*4);
|
||||
|
||||
let dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3*3);
|
||||
dataHeap.set(new Float32Array(data1.buffer));
|
||||
let dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3*3);
|
||||
dataHeap2.set(new Float32Array(data2.buffer));
|
||||
let dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4*4);
|
||||
dataHeap3.set(new Float32Array(data3.buffer));
|
||||
let dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3*3);
|
||||
dataHeap4.set(new Float32Array(data4.buffer));
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0);
|
||||
let mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0);
|
||||
let mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0);
|
||||
|
||||
QUnit.assert.deepEqualWithTolerance = function( value, expected, tolerance ) {
|
||||
for (let i = 0; i < value.length; i= i+1) {
|
||||
this.pushResult( {
|
||||
result: Math.abs(value[i]-expected[i]) < tolerance,
|
||||
actual: value[i],
|
||||
expected: expected[i],
|
||||
} );
|
||||
}
|
||||
};
|
||||
|
||||
cv.invert(mat1, inv1, 0);
|
||||
|
||||
// Verify result.
|
||||
let size = inv1.size();
|
||||
assert.equal(inv1.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001);
|
||||
|
||||
cv.invert(mat2, inv2, 0);
|
||||
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
|
||||
|
||||
cv.invert(mat3, inv3, 0);
|
||||
|
||||
// Verify result.
|
||||
size = inv3.size();
|
||||
assert.equal(inv3.channels(), 1);
|
||||
assert.equal(size.height, 4);
|
||||
assert.equal(size.width, 4);
|
||||
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
|
||||
|
||||
cv.invert(mat3, inv3, 1);
|
||||
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
|
||||
|
||||
cv.invert(mat4, inv4, 2);
|
||||
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001);
|
||||
|
||||
cv.invert(mat4, inv4, 3);
|
||||
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001);
|
||||
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
mat3.delete();
|
||||
mat4.delete();
|
||||
inv1.delete();
|
||||
inv2.delete();
|
||||
inv3.delete();
|
||||
inv4.delete();
|
||||
}
|
||||
|
||||
//Rotate
|
||||
{
|
||||
let dst = new cv.Mat();
|
||||
let src = cv.matFromArray(3, 2, cv.CV_8U, [1,2,3,4,5,6]);
|
||||
|
||||
cv.rotate(src, dst, cv.ROTATE_90_CLOCKWISE);
|
||||
|
||||
let size = dst.size();
|
||||
assert.equal(size.height, 2, "ROTATE_HEIGHT");
|
||||
assert.equal(size.width, 3, "ROTATE_WIGTH");
|
||||
|
||||
let expected = new Uint8Array([5,3,1,6,4,2]);
|
||||
|
||||
assert.deepEqual(dst.data, expected);
|
||||
|
||||
dst.delete();
|
||||
src.delete();
|
||||
}
|
||||
});
|
||||
|
||||
QUnit.test('test_LUT', function(assert) {
|
||||
// test LUT
|
||||
{
|
||||
let src = cv.matFromArray(3, 3, cv.CV_8UC1, [255, 128, 0, 0, 128, 255, 1, 2, 254]);
|
||||
let lutTable = [];
|
||||
@ -18,7 +390,7 @@ QUnit.test('test_LUT', function(assert) {
|
||||
|
||||
cv.LUT(src, lut, dst);
|
||||
|
||||
//console.log(dst.data);
|
||||
// Verify result.
|
||||
assert.equal(dst.ucharAt(0), 0);
|
||||
assert.equal(dst.ucharAt(1), 127);
|
||||
assert.equal(dst.ucharAt(2), 255);
|
||||
|
@ -70,6 +70,54 @@
|
||||
|
||||
QUnit.module('Image Processing', {});
|
||||
|
||||
QUnit.test('applyColorMap', function(assert) {
|
||||
{
|
||||
let src = cv.matFromArray(2, 1, cv.CV_8U, [50,100]);
|
||||
cv.applyColorMap(src, src, cv.COLORMAP_BONE);
|
||||
|
||||
// Verify result.
|
||||
let expected = new Uint8Array([60,44,44,119,89,87]);
|
||||
|
||||
assert.deepEqual(src.data, expected);
|
||||
src.delete();
|
||||
}
|
||||
});
|
||||
|
||||
QUnit.test('blendLinear', function(assert) {
|
||||
{
|
||||
let src1 = cv.matFromArray(2, 1, cv.CV_8U, [50,100]);
|
||||
let src2 = cv.matFromArray(2, 1, cv.CV_8U, [200,20]);
|
||||
let weights1 = cv.matFromArray(2, 1, cv.CV_32F, [0.4,0.5]);
|
||||
let weights2 = cv.matFromArray(2, 1, cv.CV_32F, [0.6,0.5]);
|
||||
let dst = new cv.Mat();
|
||||
cv.blendLinear(src1, src2, weights1, weights2, dst);
|
||||
|
||||
// Verify result.
|
||||
let expected = new Uint8Array([140,60]);
|
||||
|
||||
assert.deepEqual(dst.data, expected);
|
||||
src1.delete();
|
||||
src2.delete();
|
||||
weights1.delete();
|
||||
weights2.delete();
|
||||
dst.delete();
|
||||
}
|
||||
});
|
||||
|
||||
QUnit.test('createHanningWindow', function(assert) {
|
||||
{
|
||||
let dst = new cv.Mat();
|
||||
cv.createHanningWindow(dst, new cv.Size(5, 3), cv.CV_32F);
|
||||
|
||||
// Verify result.
|
||||
let expected = cv.matFromArray(3, 5, cv.CV_32F, [0.,0.,0.,0.,0.,0.,0.70710677,1.,0.70710677,0.,0.,0.,0.,0.,0.]);
|
||||
|
||||
assert.deepEqual(dst.data, expected.data);
|
||||
dst.delete();
|
||||
expected.delete();
|
||||
}
|
||||
});
|
||||
|
||||
QUnit.test('test_imgProc', function(assert) {
|
||||
// calcHist
|
||||
{
|
||||
@ -127,6 +175,7 @@ QUnit.test('test_imgProc', function(assert) {
|
||||
dest.delete();
|
||||
source.delete();
|
||||
}
|
||||
|
||||
// equalizeHist
|
||||
{
|
||||
let source = new cv.Mat(10, 10, cv.CV_8UC1);
|
||||
@ -196,7 +245,9 @@ QUnit.test('test_imgProc', function(assert) {
|
||||
expected_img.delete();
|
||||
compare_result.delete();
|
||||
}
|
||||
});
|
||||
|
||||
QUnit.test('Drawing Functions', function(assert) {
|
||||
// fillPoly
|
||||
{
|
||||
let img_width = 6;
|
||||
@ -359,6 +410,7 @@ QUnit.test('test_shape', function(assert) {
|
||||
});
|
||||
|
||||
QUnit.test('test_min_enclosing', function(assert) {
|
||||
// minEnclosingCircle
|
||||
{
|
||||
let points = new cv.Mat(4, 1, cv.CV_32FC2);
|
||||
|
||||
@ -378,6 +430,31 @@ QUnit.test('test_min_enclosing', function(assert) {
|
||||
|
||||
points.delete();
|
||||
}
|
||||
|
||||
// minEnclosingTriangle
|
||||
{
|
||||
let dst = cv.Mat.zeros(80, 80, cv.CV_8U);
|
||||
let contours = new cv.MatVector();
|
||||
let hierarchy = new cv.Mat();
|
||||
let triangle = new cv.Mat();
|
||||
|
||||
cv.drawMarker(dst, new cv.Point(40, 40), new cv.Scalar(255));
|
||||
cv.findContoursLinkRuns(dst,contours,hierarchy);
|
||||
cv.minEnclosingTriangle(contours.get(0),triangle);
|
||||
|
||||
// Verify result.
|
||||
const triangleData = triangle.data32F;
|
||||
assert.deepEqual(triangleData[0], triangleData[4]);
|
||||
assert.deepEqual(triangleData[1], 20);
|
||||
assert.deepEqual(triangleData[2], 30);
|
||||
assert.deepEqual(triangleData[3], 40);
|
||||
assert.deepEqual(triangleData[5], 60);
|
||||
|
||||
dst.delete();
|
||||
contours.delete();
|
||||
hierarchy.delete();
|
||||
triangle.delete();
|
||||
}
|
||||
});
|
||||
|
||||
QUnit.test('test_filter', function(assert) {
|
||||
@ -427,6 +504,58 @@ QUnit.test('test_filter', function(assert) {
|
||||
assert.equal(mat2.channels(), 1);
|
||||
assert.equal(size.height, 7);
|
||||
assert.equal(size.width, 7);
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
}
|
||||
|
||||
// spatialGradient
|
||||
{
|
||||
let src = cv.matFromArray(4, 4, cv.CV_8U, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
|
||||
let dx = new cv.Mat();
|
||||
let dy = new cv.Mat();
|
||||
cv.spatialGradient(src, dx, dy);
|
||||
|
||||
// Verify result.
|
||||
let expected_dx = new cv.Mat();
|
||||
let expected_dy = new cv.Mat();
|
||||
cv.Sobel(src, expected_dx, cv.CV_16SC1, 1, 0, 3);
|
||||
cv.Sobel(src, expected_dy, cv.CV_16SC1, 0, 1, 3);
|
||||
|
||||
assert.deepEqual(dx.data, expected_dx.data);
|
||||
assert.deepEqual(dy.data, expected_dy.data);
|
||||
|
||||
src.delete();
|
||||
dx.delete();
|
||||
dy.delete();
|
||||
expected_dx.delete();
|
||||
expected_dy.delete();
|
||||
}
|
||||
|
||||
// sqrBoxFilter
|
||||
{
|
||||
let src = cv.matFromArray(2, 3, cv.CV_8U, [1,2,1,1,2,1]);
|
||||
let dst = new cv.Mat();
|
||||
cv.sqrBoxFilter(src, dst, cv.CV_32F, new cv.Size(3, 3));
|
||||
|
||||
// Verify result.
|
||||
let expected = cv.matFromArray(2, 3, cv.CV_32F,[3.0,2.0,3.0,3.0,2.0,3.0]);
|
||||
|
||||
assert.deepEqual(dst.data, expected.data);
|
||||
src.delete();
|
||||
dst.delete();
|
||||
expected.delete();
|
||||
}
|
||||
|
||||
// stackBlur
|
||||
{
|
||||
let src = cv.matFromArray(2, 3, cv.CV_8U, [10,25,30,45,50,60]);
|
||||
cv.stackBlur(src, src, new cv.Size(3, 3));
|
||||
|
||||
// Verify result.
|
||||
let expected = new Uint8Array([22,29,36,38,43,50]);
|
||||
|
||||
assert.deepEqual(src.data, expected);
|
||||
src.delete();
|
||||
}
|
||||
|
||||
// medianBlur
|
||||
@ -438,23 +567,12 @@ QUnit.test('test_filter', function(assert) {
|
||||
|
||||
// Verify result.
|
||||
let size = mat2.size();
|
||||
|
||||
assert.equal(mat2.channels(), 3);
|
||||
assert.equal(size.height, 9);
|
||||
assert.equal(size.width, 9);
|
||||
}
|
||||
|
||||
// Transpose
|
||||
{
|
||||
let mat1 = cv.Mat.eye(9, 9, cv.CV_8UC3);
|
||||
let mat2 = new cv.Mat();
|
||||
|
||||
cv.transpose(mat1, mat2);
|
||||
|
||||
// Verify result.
|
||||
let size = mat2.size();
|
||||
assert.equal(mat2.channels(), 3);
|
||||
assert.equal(size.height, 9);
|
||||
assert.equal(size.width, 9);
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
}
|
||||
|
||||
// bilateralFilter
|
||||
@ -481,8 +599,9 @@ QUnit.test('test_filter', function(assert) {
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
}
|
||||
});
|
||||
|
||||
// Watershed
|
||||
QUnit.test('test_watershed', function(assert) {
|
||||
{
|
||||
let mat = cv.Mat.ones(11, 11, cv.CV_8UC3);
|
||||
let out = new cv.Mat(11, 11, cv.CV_32SC1);
|
||||
@ -499,44 +618,9 @@ QUnit.test('test_filter', function(assert) {
|
||||
mat.delete();
|
||||
out.delete();
|
||||
}
|
||||
});
|
||||
|
||||
// Concat
|
||||
{
|
||||
let mat = cv.Mat.ones({height: 10, width: 5}, cv.CV_8UC3);
|
||||
let mat2 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3);
|
||||
let mat3 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3);
|
||||
|
||||
|
||||
let out = new cv.Mat();
|
||||
let input = new cv.MatVector();
|
||||
input.push_back(mat);
|
||||
input.push_back(mat2);
|
||||
input.push_back(mat3);
|
||||
|
||||
cv.vconcat(input, out);
|
||||
|
||||
// Verify result.
|
||||
let size = out.size();
|
||||
assert.equal(out.channels(), 3);
|
||||
assert.equal(size.height, 30);
|
||||
assert.equal(size.width, 5);
|
||||
assert.equal(out.elemSize1(), 1);
|
||||
|
||||
cv.hconcat(input, out);
|
||||
|
||||
// Verify result.
|
||||
size = out.size();
|
||||
assert.equal(out.channels(), 3);
|
||||
assert.equal(size.height, 10);
|
||||
assert.equal(size.width, 15);
|
||||
assert.equal(out.elemSize1(), 1);
|
||||
|
||||
input.delete();
|
||||
out.delete();
|
||||
}
|
||||
|
||||
|
||||
// distanceTransform letiants
|
||||
QUnit.test('test_distanceTransform', function(assert) {
|
||||
{
|
||||
let mat = cv.Mat.ones(11, 11, cv.CV_8UC1);
|
||||
let out = new cv.Mat(11, 11, cv.CV_32FC1);
|
||||
@ -551,7 +635,6 @@ QUnit.test('test_filter', function(assert) {
|
||||
assert.equal(size.width, 11);
|
||||
assert.equal(out.elemSize1(), 4);
|
||||
|
||||
|
||||
cv.distanceTransformWithLabels(mat, out, labels, cv.DIST_L2, maskSize,
|
||||
cv.DIST_LABEL_CCOMP);
|
||||
|
||||
@ -572,200 +655,9 @@ QUnit.test('test_filter', function(assert) {
|
||||
out.delete();
|
||||
labels.delete();
|
||||
}
|
||||
});
|
||||
|
||||
// Min, Max
|
||||
{
|
||||
let data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9]);
|
||||
let data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0]);
|
||||
|
||||
let expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0]);
|
||||
let expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9]);
|
||||
|
||||
let dataPtr = cv._malloc(3*3*1);
|
||||
let dataPtr2 = cv._malloc(3*3*1);
|
||||
|
||||
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
|
||||
dataHeap.set(new Uint8Array(data1.buffer));
|
||||
|
||||
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
|
||||
dataHeap2.set(new Uint8Array(data2.buffer));
|
||||
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
|
||||
|
||||
let mat3 = new cv.Mat();
|
||||
|
||||
cv.min(mat1, mat2, mat3);
|
||||
// Verify result.
|
||||
let size = mat2.size();
|
||||
assert.equal(mat2.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedMin);
|
||||
|
||||
|
||||
cv.max(mat1, mat2, mat3);
|
||||
// Verify result.
|
||||
size = mat2.size();
|
||||
assert.equal(mat2.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedMax);
|
||||
|
||||
cv._free(dataPtr);
|
||||
cv._free(dataPtr2);
|
||||
}
|
||||
|
||||
// Bitwise operations
|
||||
{
|
||||
let data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]);
|
||||
let data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]);
|
||||
|
||||
let expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]);
|
||||
let expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]);
|
||||
let expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]);
|
||||
|
||||
let expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]);
|
||||
|
||||
let dataPtr = cv._malloc(3*3*1);
|
||||
let dataPtr2 = cv._malloc(3*3*1);
|
||||
|
||||
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
|
||||
dataHeap.set(new Uint8Array(data1.buffer));
|
||||
|
||||
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
|
||||
dataHeap2.set(new Uint8Array(data2.buffer));
|
||||
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
|
||||
|
||||
let mat3 = new cv.Mat();
|
||||
let none = new cv.Mat();
|
||||
|
||||
cv.bitwise_not(mat1, mat3, none);
|
||||
// Verify result.
|
||||
let size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedNot);
|
||||
|
||||
cv.bitwise_and(mat1, mat2, mat3, none);
|
||||
// Verify result.
|
||||
size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedAnd);
|
||||
|
||||
|
||||
cv.bitwise_or(mat1, mat2, mat3, none);
|
||||
// Verify result.
|
||||
size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedOr);
|
||||
|
||||
cv.bitwise_xor(mat1, mat2, mat3, none);
|
||||
// Verify result.
|
||||
size = mat3.size();
|
||||
assert.equal(mat3.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(mat3.data, expectedXor);
|
||||
|
||||
cv._free(dataPtr);
|
||||
cv._free(dataPtr2);
|
||||
}
|
||||
|
||||
// Arithmetic operations
|
||||
{
|
||||
let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]);
|
||||
let data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0]);
|
||||
|
||||
// |data1 - data2|
|
||||
let expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
|
||||
let expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24]);
|
||||
|
||||
const alpha = 4;
|
||||
const beta = -1;
|
||||
const gamma = 3;
|
||||
// 4*data1 - data2 + 3
|
||||
let expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19]);
|
||||
|
||||
let dataPtr = cv._malloc(3*3*1);
|
||||
let dataPtr2 = cv._malloc(3*3*1);
|
||||
let dataPtr3 = cv._malloc(3*3*1);
|
||||
|
||||
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
|
||||
dataHeap.set(new Uint8Array(data1.buffer));
|
||||
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
|
||||
dataHeap2.set(new Uint8Array(data2.buffer));
|
||||
let dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3*3*1);
|
||||
dataHeap3.set(new Uint8Array(data3.buffer));
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
|
||||
let mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0);
|
||||
|
||||
let dst = new cv.Mat();
|
||||
let none = new cv.Mat();
|
||||
|
||||
cv.absdiff(mat1, mat2, dst);
|
||||
// Verify result.
|
||||
let size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(dst.data, expectedAbsDiff);
|
||||
|
||||
cv.add(mat1, mat2, dst, none, -1);
|
||||
// Verify result.
|
||||
size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(dst.data, expectedAdd);
|
||||
|
||||
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1);
|
||||
// Verify result.
|
||||
size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(dst.data, expectedWeightedAdd);
|
||||
|
||||
// default parameter
|
||||
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst);
|
||||
// Verify result.
|
||||
size = dst.size();
|
||||
assert.equal(dst.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
|
||||
assert.deepEqual(dst.data, expectedWeightedAdd);
|
||||
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
mat3.delete();
|
||||
dst.delete();
|
||||
none.delete();
|
||||
}
|
||||
|
||||
// Integral letiants
|
||||
QUnit.test('test_integral', function(assert) {
|
||||
{
|
||||
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3);
|
||||
let sum = new cv.Mat();
|
||||
@ -797,162 +689,55 @@ QUnit.test('test_filter', function(assert) {
|
||||
sqSum.delete();
|
||||
title.delete();
|
||||
}
|
||||
});
|
||||
|
||||
// Mean, meanSTDev
|
||||
QUnit.test('test_rotatedRectangleIntersection', function(assert) {
|
||||
{
|
||||
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3);
|
||||
let sum = new cv.Mat();
|
||||
let sqSum = new cv.Mat();
|
||||
let title = new cv.Mat();
|
||||
let dst = cv.Mat.zeros(80, 80, cv.CV_8U);
|
||||
let contours = new cv.MatVector();
|
||||
let hierarchy = new cv.Mat();
|
||||
let intersectionPoints = new cv.Mat();
|
||||
|
||||
cv.integral(mat, sum, -1);
|
||||
cv.drawMarker(dst, new cv.Point(40, 40), new cv.Scalar(255));
|
||||
cv.findContoursLinkRuns(dst,contours,hierarchy);
|
||||
let rr1 = cv.minAreaRect(contours.get(0));
|
||||
let rr2 = cv.minAreaRect(contours.get(0));
|
||||
let rr3 = new cv.RotatedRect({x: 40, y: 40}, {height: 10, width: 20}, 45);
|
||||
|
||||
let intersectionType = cv.rotatedRectangleIntersection(rr1, rr2, intersectionPoints);
|
||||
|
||||
// Verify result.
|
||||
let size = sum.size();
|
||||
assert.equal(sum.channels(), 3);
|
||||
assert.equal(size.height, 100+1);
|
||||
assert.equal(size.width, 100+1);
|
||||
assert.deepEqual(intersectionType, cv.INTERSECT_FULL);
|
||||
intersectionPoints.convertTo(intersectionPoints, cv.CV_32S);
|
||||
let intersectionPointsData = intersectionPoints.data32S;
|
||||
assert.deepEqual(intersectionPointsData[0], 30);
|
||||
assert.deepEqual(intersectionPointsData[1], 40);
|
||||
assert.deepEqual(intersectionPointsData[2], 40);
|
||||
assert.deepEqual(intersectionPointsData[3], 30);
|
||||
assert.deepEqual(intersectionPointsData[4], 50);
|
||||
assert.deepEqual(intersectionPointsData[5], 40);
|
||||
assert.deepEqual(intersectionPointsData[6], 40);
|
||||
assert.deepEqual(intersectionPointsData[7], 50);
|
||||
|
||||
intersectionType = cv.rotatedRectangleIntersection(rr1, rr3, intersectionPoints);
|
||||
|
||||
cv.integral2(mat, sum, sqSum, -1, -1);
|
||||
// Verify result.
|
||||
size = sum.size();
|
||||
assert.equal(sum.channels(), 3);
|
||||
assert.equal(size.height, 100+1);
|
||||
assert.equal(size.width, 100+1);
|
||||
|
||||
size = sqSum.size();
|
||||
assert.equal(sqSum.channels(), 3);
|
||||
assert.equal(size.height, 100+1);
|
||||
assert.equal(size.width, 100+1);
|
||||
|
||||
mat.delete();
|
||||
sum.delete();
|
||||
sqSum.delete();
|
||||
title.delete();
|
||||
}
|
||||
|
||||
// Invert
|
||||
{
|
||||
let inv1 = new cv.Mat();
|
||||
let inv2 = new cv.Mat();
|
||||
let inv3 = new cv.Mat();
|
||||
let inv4 = new cv.Mat();
|
||||
|
||||
|
||||
let data1 = new Float32Array([1, 0, 0,
|
||||
0, 1, 0,
|
||||
0, 0, 1]);
|
||||
let data2 = new Float32Array([0, 0, 0,
|
||||
0, 5, 0,
|
||||
0, 0, 0]);
|
||||
let data3 = new Float32Array([1, 1, 1, 0,
|
||||
0, 3, 1, 2,
|
||||
2, 3, 1, 0,
|
||||
1, 0, 2, 1]);
|
||||
let data4 = new Float32Array([1, 4, 5,
|
||||
4, 2, 2,
|
||||
5, 2, 2]);
|
||||
|
||||
let expected1 = new Float32Array([1, 0, 0,
|
||||
0, 1, 0,
|
||||
0, 0, 1]);
|
||||
// Inverse does not exist!
|
||||
let expected3 = new Float32Array([-3, -1/2, 3/2, 1,
|
||||
1, 1/4, -1/4, -1/2,
|
||||
3, 1/4, -5/4, -1/2,
|
||||
-3, 0, 1, 1]);
|
||||
let expected4 = new Float32Array([0, -1, 1,
|
||||
-1, 23/2, -9,
|
||||
1, -9, 7]);
|
||||
|
||||
let dataPtr1 = cv._malloc(3*3*4);
|
||||
let dataPtr2 = cv._malloc(3*3*4);
|
||||
let dataPtr3 = cv._malloc(4*4*4);
|
||||
let dataPtr4 = cv._malloc(3*3*4);
|
||||
|
||||
let dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3*3);
|
||||
dataHeap.set(new Float32Array(data1.buffer));
|
||||
let dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3*3);
|
||||
dataHeap2.set(new Float32Array(data2.buffer));
|
||||
let dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4*4);
|
||||
dataHeap3.set(new Float32Array(data3.buffer));
|
||||
let dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3*3);
|
||||
dataHeap4.set(new Float32Array(data4.buffer));
|
||||
|
||||
let mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0);
|
||||
let mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0);
|
||||
let mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0);
|
||||
let mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0);
|
||||
|
||||
QUnit.assert.deepEqualWithTolerance = function( value, expected, tolerance ) {
|
||||
for (let i = 0; i < value.length; i= i+1) {
|
||||
this.pushResult( {
|
||||
result: Math.abs(value[i]-expected[i]) < tolerance,
|
||||
actual: value[i],
|
||||
expected: expected[i],
|
||||
} );
|
||||
}
|
||||
};
|
||||
|
||||
cv.invert(mat1, inv1, 0);
|
||||
// Verify result.
|
||||
let size = inv1.size();
|
||||
assert.equal(inv1.channels(), 1);
|
||||
assert.equal(size.height, 3);
|
||||
assert.equal(size.width, 3);
|
||||
assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001);
|
||||
|
||||
|
||||
cv.invert(mat2, inv2, 0);
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
|
||||
|
||||
cv.invert(mat3, inv3, 0);
|
||||
// Verify result.
|
||||
size = inv3.size();
|
||||
assert.equal(inv3.channels(), 1);
|
||||
assert.equal(size.height, 4);
|
||||
assert.equal(size.width, 4);
|
||||
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
|
||||
|
||||
cv.invert(mat3, inv3, 1);
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
|
||||
|
||||
cv.invert(mat4, inv4, 2);
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001);
|
||||
|
||||
cv.invert(mat4, inv4, 3);
|
||||
// Verify result.
|
||||
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001);
|
||||
|
||||
mat1.delete();
|
||||
mat2.delete();
|
||||
mat3.delete();
|
||||
mat4.delete();
|
||||
inv1.delete();
|
||||
inv2.delete();
|
||||
inv3.delete();
|
||||
inv4.delete();
|
||||
}
|
||||
//Rotate
|
||||
{
|
||||
let dst = new cv.Mat();
|
||||
let src = cv.matFromArray(3, 2, cv.CV_8U, [1,2,3,4,5,6]);
|
||||
|
||||
cv.rotate(src, dst, cv.ROTATE_90_CLOCKWISE);
|
||||
|
||||
let size = dst.size();
|
||||
assert.equal(size.height, 2, "ROTATE_HEIGHT");
|
||||
assert.equal(size.width, 3, "ROTATE_WIGTH");
|
||||
|
||||
let expected = new Uint8Array([5,3,1,6,4,2]);
|
||||
|
||||
assert.deepEqual(dst.data, expected);
|
||||
assert.deepEqual(intersectionType, cv.INTERSECT_PARTIAL);
|
||||
intersectionPoints.convertTo(intersectionPoints, cv.CV_32S);
|
||||
intersectionPointsData = intersectionPoints.data32S;
|
||||
assert.deepEqual(intersectionPointsData[0], 39);
|
||||
assert.deepEqual(intersectionPointsData[1], 31);
|
||||
assert.deepEqual(intersectionPointsData[2], 49);
|
||||
assert.deepEqual(intersectionPointsData[3], 41);
|
||||
assert.deepEqual(intersectionPointsData[4], 41);
|
||||
assert.deepEqual(intersectionPointsData[5], 49);
|
||||
assert.deepEqual(intersectionPointsData[6], 31);
|
||||
assert.deepEqual(intersectionPointsData[7], 39);
|
||||
|
||||
dst.delete();
|
||||
src.delete();
|
||||
contours.delete();
|
||||
hierarchy.delete();
|
||||
intersectionPoints.delete();
|
||||
}
|
||||
});
|
||||
|
||||
@ -973,7 +758,6 @@ QUnit.test('warpPolar', function(assert) {
|
||||
]);
|
||||
});
|
||||
|
||||
|
||||
QUnit.test('IntelligentScissorsMB', function(assert) {
|
||||
const lines = new cv.Mat(50, 100, cv.CV_8U, new cv.Scalar(0));
|
||||
lines.row(10).setTo(new cv.Scalar(255));
|
||||
|
@ -245,5 +245,8 @@ QUnit.test('test_rotated_rect', function(assert) {
|
||||
|
||||
assert.equal(points[0].x, cv.RotatedRect.boundingRect2f(rect).x);
|
||||
assert.equal(points[1].y, cv.RotatedRect.boundingRect2f(rect).y);
|
||||
|
||||
let points1 = cv.boxPoints(rect);
|
||||
assert.deepEqual(points, points1);
|
||||
}
|
||||
});
|
||||
|
@ -16,84 +16,105 @@ core = {
|
||||
|
||||
imgproc = {
|
||||
'': [
|
||||
'Canny',
|
||||
'GaussianBlur',
|
||||
'Laplacian',
|
||||
'HoughLines',
|
||||
'HoughLinesP',
|
||||
'HoughCircles',
|
||||
'Scharr',
|
||||
'Sobel',
|
||||
'adaptiveThreshold',
|
||||
'applyColorMap',
|
||||
'approxPolyDP',
|
||||
'approxPolyN',
|
||||
'arcLength',
|
||||
'arrowedLine',
|
||||
'bilateralFilter',
|
||||
'blendLinear',
|
||||
'blur',
|
||||
'boundingRect',
|
||||
'boxFilter',
|
||||
'calcBackProject',
|
||||
'calcHist',
|
||||
'Canny',
|
||||
'circle',
|
||||
'clipLine',
|
||||
'compareHist',
|
||||
'connectedComponents',
|
||||
'connectedComponentsWithStats',
|
||||
'contourArea',
|
||||
'convertMaps',
|
||||
'convexHull',
|
||||
'convexityDefects',
|
||||
'cornerHarris',
|
||||
'cornerMinEigenVal',
|
||||
'createCLAHE',
|
||||
'createHanningWindow',
|
||||
'createLineSegmentDetector',
|
||||
'cvtColor',
|
||||
'demosaicing',
|
||||
'dilate',
|
||||
'distanceTransform',
|
||||
'distanceTransformWithLabels',
|
||||
'divSpectrums',
|
||||
'drawContours',
|
||||
'drawMarker',
|
||||
'ellipse',
|
||||
'ellipse2Poly',
|
||||
'equalizeHist',
|
||||
'erode',
|
||||
'fillConvexPoly',
|
||||
'fillPoly',
|
||||
'filter2D',
|
||||
'findContours',
|
||||
'findContoursLinkRuns',
|
||||
'fitEllipse',
|
||||
'fitEllipseAMS',
|
||||
'fitEllipseDirect',
|
||||
'fitLine',
|
||||
'floodFill',
|
||||
'GaussianBlur',
|
||||
'getAffineTransform',
|
||||
'getFontScaleFromHeight',
|
||||
'getPerspectiveTransform',
|
||||
'getRectSubPix',
|
||||
'getRotationMatrix2D',
|
||||
'getStructuringElement',
|
||||
'goodFeaturesToTrack',
|
||||
'grabCut',
|
||||
#'initUndistortRectifyMap', # 4.x: moved to calib3d
|
||||
'HoughLines',
|
||||
'HoughLinesP',
|
||||
'HoughCircles',
|
||||
'HuMoments',
|
||||
'integral',
|
||||
'integral2',
|
||||
'intersectConvexConvex',
|
||||
'invertAffineTransform',
|
||||
'isContourConvex',
|
||||
'Laplacian',
|
||||
'line',
|
||||
'matchShapes',
|
||||
'matchTemplate',
|
||||
'medianBlur',
|
||||
'minAreaRect',
|
||||
'minEnclosingCircle',
|
||||
'minEnclosingTriangle',
|
||||
'moments',
|
||||
'morphologyEx',
|
||||
'pointPolygonTest',
|
||||
'polylines',
|
||||
'preCornerDetect',
|
||||
'putText',
|
||||
'pyrDown',
|
||||
'pyrUp',
|
||||
'rectangle',
|
||||
'remap',
|
||||
'resize',
|
||||
'rotatedRectangleIntersection',
|
||||
'Scharr',
|
||||
'sepFilter2D',
|
||||
'Sobel',
|
||||
'spatialGradient',
|
||||
'sqrBoxFilter',
|
||||
'stackBlur',
|
||||
'threshold',
|
||||
#'undistort', # 4.x: moved to calib3d
|
||||
'warpAffine',
|
||||
'warpPerspective',
|
||||
'warpPolar',
|
||||
'watershed',
|
||||
'fillPoly',
|
||||
'fillConvexPoly',
|
||||
'polylines',
|
||||
],
|
||||
'CLAHE': ['apply', 'collectGarbage', 'getClipLimit', 'getTilesGridSize', 'setClipLimit', 'setTilesGridSize'],
|
||||
'segmentation_IntelligentScissorsMB': [
|
||||
|
Loading…
Reference in New Issue
Block a user