added patch error calculation to gpu::PyrLKOpticalFlow

This commit is contained in:
Vladislav Vinogradov 2012-03-05 10:36:57 +00:00
parent 27ecc999cb
commit ec5bdc7de8
5 changed files with 143 additions and 38 deletions

View File

@ -1817,6 +1817,7 @@ public:
derivLambda = 0.5;
useInitialFlow = false;
minEigThreshold = 1e-4f;
getMinEigenVals = false;
}
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
@ -1830,6 +1831,7 @@ public:
double derivLambda;
bool useInitialFlow;
float minEigThreshold;
bool getMinEigenVals;
void releaseMemory()
{

View File

@ -274,9 +274,39 @@ namespace cv { namespace gpu { namespace device
}
}
__device__ void reduce(float& val1, float* smem1, int tid)
{
smem1[tid] = val1;
__syncthreads();
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
__syncthreads();
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
__syncthreads();
if (tid < 32)
{
volatile float* vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 32];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
}
}
#define SCALE (1.0f / (1 << 20))
template <int PATCH_X, int PATCH_Y, bool calcErr>
template <int PATCH_X, int PATCH_Y, bool calcErr, bool GET_MIN_EIGENVALS>
__global__ void lkSparse(const PtrStepb I, const PtrStepb J, const PtrStep<short> dIdx, const PtrStep<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
{
@ -349,7 +379,7 @@ namespace cv { namespace gpu { namespace device
float D = A11 * A22 - A12 * A12;
float minEig = (A22 + A11 - ::sqrtf((A11 - A22) * (A11 - A22) + 4.f * A12 * A12)) / (2 * c_winSize_x * c_winSize_y);
if (calcErr && tid == 0)
if (calcErr && GET_MIN_EIGENVALS && tid == 0)
err[blockIdx.x] = minEig;
if (minEig < c_minEigThreshold || D < numeric_limits<float>::epsilon())
@ -377,7 +407,7 @@ namespace cv { namespace gpu { namespace device
bool status_ = true;
for (int k = 0; k < c_iters; ++k)
{
{
if (nextPt.x < -c_winSize_x || nextPt.x >= cols || nextPt.y < -c_winSize_y || nextPt.y >= rows)
{
status_ = false;
@ -415,38 +445,76 @@ namespace cv { namespace gpu { namespace device
nextPt.y += delta.y;
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
{
nextPt.x -= delta.x * 0.5f;
nextPt.y -= delta.y * 0.5f;
break;
}
}
if (nextPt.x < -c_winSize_x || nextPt.x >= cols || nextPt.y < -c_winSize_y || nextPt.y >= rows)
status_ = false;
// TODO : Why do we compute patch error in shifted window?
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
float errval = 0.f;
if (calcErr && !GET_MIN_EIGENVALS && status_)
{
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x_cn; x += blockDim.x, ++j)
{
int diff = linearFilter(J, nextPt, x, y) - I_patch[i][j];
errval += ::fabsf((float)diff);
}
}
reduce(errval, smem1, tid);
errval /= 32 * c_winSize_x_cn * c_winSize_y;
}
if (tid == 0)
{
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
nextPts[blockIdx.x] = nextPt;
status[blockIdx.x] = status_;
nextPts[blockIdx.x] = nextPt;
if (calcErr && !GET_MIN_EIGENVALS)
err[blockIdx.x] = errval;
}
}
template <int PATCH_X, int PATCH_Y>
void lkSparse_caller(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
int level, dim3 block, cudaStream_t stream)
{
dim3 grid(ptcount);
if (err)
if (level == 0 && err)
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, true>, cudaFuncCachePreferL1) );
if (GET_MIN_EIGENVALS)
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, true, true>, cudaFuncCachePreferL1) );
lkSparse<PATCH_X, PATCH_Y, true><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
lkSparse<PATCH_X, PATCH_Y, true, true><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, true, false>, cudaFuncCachePreferL1) );
lkSparse<PATCH_X, PATCH_Y, true, false><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
}
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, false>, cudaFuncCachePreferL1) );
cudaSafeCall( cudaFuncSetCacheConfig(lkSparse<PATCH_X, PATCH_Y, false, false>, cudaFuncCachePreferL1) );
lkSparse<PATCH_X, PATCH_Y, false><<<grid, block>>>(I, J, dIdx, dIdy,
lkSparse<PATCH_X, PATCH_Y, false, false><<<grid, block>>>(I, J, dIdx, dIdy,
prevPts, nextPts, status, err, level, I.rows, I.cols);
}
@ -457,11 +525,11 @@ namespace cv { namespace gpu { namespace device
}
void lkSparse_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
@ -474,11 +542,11 @@ namespace cv { namespace gpu { namespace device
};
funcs[patch.y - 1][patch.x - 1](I, J, dIdx, dIdy,
prevPts, nextPts, status, err, ptcount,
prevPts, nextPts, status, err, GET_MIN_EIGENVALS, ptcount,
level, block, stream);
}
template <bool calcErr>
template <bool calcErr, bool GET_MIN_EIGENVALS>
__global__ void lkDense(const PtrStepb I, const PtrStepb J, const PtrStep<short> dIdx, const PtrStep<short> dIdy,
PtrStepf u, PtrStepf v, PtrStepf err, const int rows, const int cols)
{
@ -515,7 +583,7 @@ namespace cv { namespace gpu { namespace device
float D = A11 * A22 - A12 * A12;
float minEig = (A22 + A11 - ::sqrtf((A11 - A22) * (A11 - A22) + 4.f * A12 * A12)) / (2 * c_winSize_x * c_winSize_y);
if (calcErr)
if (calcErr && GET_MIN_EIGENVALS)
err(y, x) = minEig;
if (minEig < c_minEigThreshold || D < numeric_limits<float>::epsilon())
@ -565,30 +633,63 @@ namespace cv { namespace gpu { namespace device
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
break;
}
}
u(y, x) = nextPt.x - x + c_halfWin_x;
v(y, x) = nextPt.y - y + c_halfWin_y;
// TODO : Why do we compute patch error in shifted window?
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
u(y, x) = nextPt.x - x;
v(y, x) = nextPt.y - y;
if (calcErr && !GET_MIN_EIGENVALS)
{
float errval = 0.0f;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int I_val = I(y - c_halfWin_y + i, x - c_halfWin_x + j);
int diff = linearFilter(J, nextPt, j, i) - CV_DESCALE(I_val * (1 << W_BITS), W_BITS1 - 5);
errval += ::fabsf((float)diff);
}
}
errval /= 32 * c_winSize_x_cn * c_winSize_y;
err(y, x) = errval;
}
}
void lkDense_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
DevMem2Df u, DevMem2Df v, DevMem2Df* err, cudaStream_t stream)
DevMem2Df u, DevMem2Df v, DevMem2Df* err, bool GET_MIN_EIGENVALS, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(I.cols, block.x), divUp(I.rows, block.y));
if (err)
{
cudaSafeCall( cudaFuncSetCacheConfig(lkDense<true>, cudaFuncCachePreferL1) );
if (GET_MIN_EIGENVALS)
{
cudaSafeCall( cudaFuncSetCacheConfig(lkDense<true, true>, cudaFuncCachePreferL1) );
lkDense<true><<<grid, block, 0, stream>>>(I, J, dIdx, dIdy, u, v, *err, I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
lkDense<true, true><<<grid, block, 0, stream>>>(I, J, dIdx, dIdy, u, v, *err, I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(lkDense<true, false>, cudaFuncCachePreferL1) );
lkDense<true, false><<<grid, block, 0, stream>>>(I, J, dIdx, dIdy, u, v, *err, I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}
}
else
{
cudaSafeCall( cudaFuncSetCacheConfig(lkDense<false>, cudaFuncCachePreferL1) );
cudaSafeCall( cudaFuncSetCacheConfig(lkDense<false, false>, cudaFuncCachePreferL1) );
lkDense<false><<<grid, block, 0, stream>>>(I, J, dIdx, dIdy, u, v, PtrStepf(), I.rows, I.cols);
lkDense<false, false><<<grid, block, 0, stream>>>(I, J, dIdx, dIdy, u, v, PtrStepf(), I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}

View File

@ -63,11 +63,11 @@ namespace cv { namespace gpu { namespace device
cudaStream_t stream = 0);
void lkSparse_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
void lkDense_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
DevMem2Df u, DevMem2Df v, DevMem2Df* err, cudaStream_t stream = 0);
DevMem2Df u, DevMem2Df v, DevMem2Df* err, bool GET_MIN_EIGENVALS, cudaStream_t stream = 0);
}
}}}
@ -205,7 +205,7 @@ void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& next
calcSharrDeriv(prevPyr_[level], dIdx, dIdy);
lkSparse_gpu(prevPyr_[level], nextPyr_[level], dIdx, dIdy,
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, getMinEigenVals, prevPts.cols,
level, block, patch);
}
}
@ -272,7 +272,7 @@ void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextI
calcSharrDeriv(prevPyr_[level], dIdx, dIdy);
lkDense_gpu(prevPyr_[level], nextPyr_[level], dIdx, dIdy, uPyr_[level], vPyr_[level],
level == 0 && err ? &derr : 0);
level == 0 && err ? &derr : 0, getMinEigenVals);
if (level == 0)
{

View File

@ -358,7 +358,7 @@ PARAM_TEST_CASE(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool)
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold, cv::Size(21, 21), 3,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5, CV_LKFLOW_GET_MIN_EIGENVALS);
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5);
}
};
@ -410,7 +410,7 @@ TEST_P(PyrLKOpticalFlowSparse, Accuracy)
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
float errdiff = std::abs(err[i] - err_gold[i]);
if (!eq || errdiff > 1e-4)
if (!eq || errdiff > 1e-1)
++mistmatch;
}
}

View File

@ -1157,10 +1157,12 @@ TEST(PyrLKOpticalFlow)
vector<Point2f> nextPts;
vector<unsigned char> status;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, noArray());
vector<float> err;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_ON;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, noArray());
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_OFF;
gpu::PyrLKOpticalFlow d_pyrLK;
@ -1176,10 +1178,10 @@ TEST(PyrLKOpticalFlow)
gpu::GpuMat d_status;
gpu::GpuMat d_err;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status);
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
GPU_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status);
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
GPU_OFF;
}
}