Merge pull request #24089 from cudawarped:cuda_gpumat_fix_convertTo_copyTo_bindings

`cuda`: Fix `GpuMat::copyTo` and `GpuMat::converTo` python bindings
This commit is contained in:
Alexander Smorkalov 2023-08-09 13:25:39 +03:00 committed by GitHub
commit eccfd98b92
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 105 additions and 9 deletions

View File

@ -198,16 +198,32 @@ public:
CV_WRAP GpuMat clone() const; CV_WRAP GpuMat clone() const;
//! copies the GpuMat content to device memory (Blocking call) //! copies the GpuMat content to device memory (Blocking call)
CV_WRAP void copyTo(OutputArray dst) const; void copyTo(OutputArray dst) const;
//! bindings overload which copies the GpuMat content to device memory (Blocking call)
CV_WRAP void copyTo(CV_OUT GpuMat& dst) const {
copyTo(static_cast<OutputArray>(dst));
}
//! copies the GpuMat content to device memory (Non-Blocking call) //! copies the GpuMat content to device memory (Non-Blocking call)
CV_WRAP void copyTo(OutputArray dst, Stream& stream) const; void copyTo(OutputArray dst, Stream& stream) const;
//! bindings overload which copies the GpuMat content to device memory (Non-Blocking call)
CV_WRAP void copyTo(CV_OUT GpuMat& dst, Stream& stream) const {
copyTo(static_cast<OutputArray>(dst), stream);
}
//! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call) //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)
CV_WRAP void copyTo(OutputArray dst, InputArray mask) const; void copyTo(OutputArray dst, InputArray mask) const;
//! bindings overload which copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)
CV_WRAP void copyTo(CV_OUT GpuMat& dst, GpuMat& mask) const {
copyTo(static_cast<OutputArray>(dst), static_cast<InputArray>(mask));
}
//! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call) //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)
CV_WRAP void copyTo(OutputArray dst, InputArray mask, Stream& stream) const; void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;
//! bindings overload which copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)
CV_WRAP void copyTo(CV_OUT GpuMat& dst, GpuMat& mask, Stream& stream) const {
copyTo(static_cast<OutputArray>(dst), static_cast<InputArray>(mask), stream);
}
//! sets some of the GpuMat elements to s (Blocking call) //! sets some of the GpuMat elements to s (Blocking call)
CV_WRAP GpuMat& setTo(Scalar s); CV_WRAP GpuMat& setTo(Scalar s);
@ -222,19 +238,31 @@ public:
CV_WRAP GpuMat& setTo(Scalar s, InputArray mask, Stream& stream); CV_WRAP GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
//! converts GpuMat to another datatype (Blocking call) //! converts GpuMat to another datatype (Blocking call)
CV_WRAP void convertTo(OutputArray dst, int rtype) const; void convertTo(OutputArray dst, int rtype) const;
//! converts GpuMat to another datatype (Non-Blocking call) //! converts GpuMat to another datatype (Non-Blocking call)
CV_WRAP void convertTo(OutputArray dst, int rtype, Stream& stream) const; void convertTo(OutputArray dst, int rtype, Stream& stream) const;
//! bindings overload which converts GpuMat to another datatype (Non-Blocking call)
CV_WRAP void convertTo(CV_OUT GpuMat& dst, int rtype, Stream& stream) const {
convertTo(static_cast<OutputArray>(dst), rtype, stream);
}
//! converts GpuMat to another datatype with scaling (Blocking call) //! converts GpuMat to another datatype with scaling (Blocking call)
CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const; void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const;
//! bindings overload which converts GpuMat to another datatype with scaling(Blocking call)
CV_WRAP void convertTo(CV_OUT GpuMat& dst, int rtype, double alpha = 1.0, double beta = 0.0) const {
convertTo(static_cast<OutputArray>(dst), rtype, alpha, beta);
}
//! converts GpuMat to another datatype with scaling (Non-Blocking call) //! converts GpuMat to another datatype with scaling (Non-Blocking call)
CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const; void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const;
//! converts GpuMat to another datatype with scaling (Non-Blocking call) //! converts GpuMat to another datatype with scaling (Non-Blocking call)
CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const; void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;
//! bindings overload which converts GpuMat to another datatype with scaling (Non-Blocking call)
CV_WRAP void convertTo(CV_OUT GpuMat& dst, int rtype, double alpha, double beta, Stream& stream) const {
convertTo(static_cast<OutputArray>(dst), rtype, alpha, beta, stream);
}
CV_WRAP void assignTo(GpuMat& m, int type = -1) const; CV_WRAP void assignTo(GpuMat& m, int type = -1) const;

View File

@ -70,6 +70,74 @@ class cuda_test(NewOpenCVTests):
self.assertTrue(cuMat.step == 0) self.assertTrue(cuMat.step == 0)
self.assertTrue(cuMat.size() == (0, 0)) self.assertTrue(cuMat.size() == (0, 0))
def test_cuda_convertTo(self):
# setup
npMat_8UC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
npMat_32FC4 = npMat_8UC4.astype(np.single)
new_type = cv.CV_32FC4
# sync
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_32FC4 = cv.cuda_GpuMat(cuMat_8UC4.size(), new_type)
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, cuMat_32FC4)
self.assertTrue(cuMat_32FC4.cudaPtr() == cuMat_32FC4_out.cudaPtr())
npMat_32FC4_out = cuMat_32FC4.download()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type)
npMat_32FC4_out = cuMat_32FC4.download()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# async
stream = cv.cuda.Stream()
cuMat_32FC4 = cv.cuda_GpuMat(cuMat_8UC4.size(), new_type)
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, cuMat_32FC4)
# in/out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, 1, 0, stream, cuMat_32FC4)
self.assertTrue(cuMat_32FC4.cudaPtr() == cuMat_32FC4_out.cudaPtr())
npMat_32FC4_out = cuMat_32FC4.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, 1, 0, stream)
npMat_32FC4_out = cuMat_32FC4.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
def test_cuda_copyTo(self):
# setup
npMat_8UC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
# sync
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_8UC4_dst = cv.cuda_GpuMat(cuMat_8UC4.size(), cuMat_8UC4.type())
cuMat_8UC4_out = cuMat_8UC4.copyTo(cuMat_8UC4_dst)
self.assertTrue(cuMat_8UC4_out.cudaPtr() == cuMat_8UC4_dst.cudaPtr())
npMat_8UC4_out = cuMat_8UC4_out.download()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# out
cuMat_8UC4_out = cuMat_8UC4.copyTo()
npMat_8UC4_out = cuMat_8UC4_out.download()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# async
stream = cv.cuda.Stream()
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_8UC4_dst = cv.cuda_GpuMat(cuMat_8UC4.size(), cuMat_8UC4.type())
cuMat_8UC4_out = cuMat_8UC4.copyTo(cuMat_8UC4_dst, stream)
self.assertTrue(cuMat_8UC4_out.cudaPtr() == cuMat_8UC4_out.cudaPtr())
npMat_8UC4_out = cuMat_8UC4_dst.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# out
cuMat_8UC4_out = cuMat_8UC4.copyTo(stream)
npMat_8UC4_out = cuMat_8UC4_out.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
def test_cuda_denoising(self): def test_cuda_denoising(self):
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoising')) self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoising'))
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoisingColored')) self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoisingColored'))