Completed all forward transforms.

This commit is contained in:
Alexander Karsakov 2014-07-15 18:25:46 +04:00
parent e5a3ab3cb9
commit ed07241f89
5 changed files with 276 additions and 101 deletions

View File

@ -292,7 +292,7 @@ OCL_PERF_TEST_P(MagnitudeFixture, Magnitude, ::testing::Combine(
typedef Size_MatType TransposeFixture;
OCL_PERF_TEST_P(TransposeFixture, Transpose, ::testing::Combine(
OCL_TEST_SIZES, OCL_TEST_TYPES_134))
OCL_TEST_SIZES, Values(CV_8UC1, CV_32FC1, CV_8UC2, CV_32FC2, CV_8UC4, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);

View File

@ -54,21 +54,40 @@ namespace ocl {
///////////// dft ////////////////////////
typedef tuple<Size, int> DftParams;
enum OCL_FFT_TYPE
{
R2R = 0, // real to real (CCS)
C2R = 1, // complex to real
R2C = 2, // real to complex
C2C = 3 // complex to complex
};
typedef tuple<OCL_FFT_TYPE, Size, int> DftParams;
typedef TestBaseWithParam<DftParams> DftFixture;
OCL_PERF_TEST_P(DftFixture, Dft, ::testing::Combine(Values(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3, Size(1024, 1024), Size(1024, 2048), Size(512, 512), Size(2048, 2048)),
OCL_PERF_TEST_P(DftFixture, Dft, ::testing::Combine(Values(C2C, R2R, C2R, R2C),
Values(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3, Size(1024, 1024), Size(512, 512), Size(2048, 2048)),
Values((int)DFT_ROWS, (int) 0/*, (int)DFT_SCALE, (int)DFT_INVERSE,
(int)DFT_INVERSE | DFT_SCALE, (int)DFT_ROWS | DFT_INVERSE*/)))
{
const DftParams params = GetParam();
const Size srcSize = get<0>(params);
const int flags = get<1>(params);
const int dft_type = get<0>(params);
const Size srcSize = get<1>(params);
int flags = get<2>(params);
int in_cn, out_cn;
switch (dft_type)
{
case R2R: flags |= cv::DFT_REAL_OUTPUT; in_cn = 1; out_cn = 1; break;
case C2R: flags |= cv::DFT_REAL_OUTPUT; in_cn = 2; out_cn = 2; break;
case R2C: flags |= cv::DFT_COMPLEX_OUTPUT; in_cn = 1; out_cn = 2; break;
case C2C: flags |= cv::DFT_COMPLEX_OUTPUT; in_cn = 2; out_cn = 2; break;
}
UMat src(srcSize, CV_32FC2), dst(srcSize, CV_32FC2);
UMat src(srcSize, CV_MAKE_TYPE(CV_32F, in_cn)), dst(srcSize, CV_MAKE_TYPE(CV_32F, out_cn));
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::dft(src, dst, flags | DFT_COMPLEX_OUTPUT);
OCL_TEST_CYCLE() cv::dft(src, dst, flags);
SANITY_CHECK(dst, 1e-3);
}

View File

@ -2034,7 +2034,7 @@ namespace cv
#ifdef HAVE_OPENCL
static std::vector<int> ocl_getRadixes(int cols, int& min_radix)
static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
{
int factors[34];
int nf = DFTFactorize( cols, factors );
@ -2042,9 +2042,6 @@ static std::vector<int> ocl_getRadixes(int cols, int& min_radix)
int n = 1;
int factor_index = 0;
// choose radix order
std::vector<int> radixes;
// 2^n transforms
if ( (factors[factor_index] & 1) == 0 )
{
@ -2057,7 +2054,10 @@ static std::vector<int> ocl_getRadixes(int cols, int& min_radix)
radix = 4;
radixes.push_back(radix);
min_radix = min(min_radix, radix);
if (radix == 2 && cols % 4 == 0)
min_radix = min(min_radix, 2*radix);
else
min_radix = min(min_radix, radix);
n *= radix;
}
factor_index++;
@ -2067,7 +2067,10 @@ static std::vector<int> ocl_getRadixes(int cols, int& min_radix)
for( ; factor_index < nf; factor_index++ )
{
radixes.push_back(factors[factor_index]);
min_radix = min(min_radix, factors[factor_index]);
if (factors[factor_index] == 3 && cols % 6 == 0)
min_radix = min(min_radix, 2*factors[factor_index]);
else
min_radix = min(min_radix, factors[factor_index]);
}
return radixes;
}
@ -2084,8 +2087,16 @@ struct OCL_FftPlan
OCL_FftPlan(int _size, int _flags): dft_size(_size), flags(_flags)
{
int min_radix = INT_MAX;
std::vector<int> radixes = ocl_getRadixes(dft_size, min_radix);
thread_count = dft_size / min_radix;
std::vector<int> radixes, blocks;
ocl_getRadixes(dft_size, radixes, blocks, min_radix);
thread_count = (dft_size + min_radix-1) / min_radix;
printf("cols: %d - ", dft_size);
for (int i=0; i<radixes.size(); i++)
{
printf("%d ", radixes[i]);
}
printf("min radix - %d\n", min_radix);
// generate string with radix calls
String radix_processing;
@ -2093,7 +2104,10 @@ struct OCL_FftPlan
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
radix_processing += format("fft_radix%d(smem,twiddles+%d,x,%d,%d);", radix, twiddle_size, n, dft_size/radix);
if ((radix == 2 && dft_size % 4 == 0) || (radix == 3 && dft_size % 6 == 0))
radix_processing += format("fft_radix%d_B2(smem,twiddles+%d,ind,%d,%d);", radix, twiddle_size, n, dft_size/radix);
else
radix_processing += format("fft_radix%d(smem,twiddles+%d,ind,%d,%d);", radix, twiddle_size, n, dft_size/radix);
twiddle_size += (radix-1)*n;
n *= radix;
}
@ -2126,20 +2140,39 @@ struct OCL_FftPlan
dft_size, dft_size/thread_count, radix_processing.c_str());
}
bool enqueueTransform(InputArray _src, OutputArray _dst, int nonzero_rows) const
bool enqueueTransform(InputArray _src, OutputArray _dst, int dft_size, int flags, bool rows = true) const
{
UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
UMat dst = _dst.getUMat();
size_t globalsize[2] = { thread_count, nonzero_rows };
size_t localsize[2] = { thread_count, 1 };
size_t globalsize[2];
size_t localsize[2];
String kernel_name;
ocl::Kernel k("fft_multi_radix", ocl::core::fft_oclsrc, buildOptions);
if (rows)
{
globalsize[0] = thread_count; globalsize[1] = dft_size;
localsize[0] = thread_count; localsize[1] = 1;
kernel_name = "fft_multi_radix_rows";
}
else
{
globalsize[0] = dft_size; globalsize[1] = thread_count;
localsize[0] = 1; localsize[1] = thread_count;
kernel_name = "fft_multi_radix_cols";
}
String options = buildOptions;
if (src.channels() == 1)
options += " -D REAL_INPUT";
if (dst.channels() == 1)
options += " -D CCS_OUTPUT";
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), ocl::KernelArg::PtrReadOnly(twiddles), thread_count, nonzero_rows);
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(twiddles), thread_count, dft_size);
return k.run(2, globalsize, localsize, false);
}
};
@ -2231,16 +2264,16 @@ static bool ocl_packToCCS(InputArray _src, OutputArray _dst, int flags)
return true;
}
static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows, int flags)
static bool ocl_dft_C2C_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), flags);
return plan->enqueueTransform(_src, _dst, nonzero_rows);
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, true);
}
static bool ocl_dft_C2C_cols(InputArray _src, OutputArray _dst, int flags)
{
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), flags);
return plan->enqueueTransform(_src, _dst, _src.cols(), flags, false);
}
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
@ -2262,7 +2295,10 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
int real_input = cn == 1 ? 1 : 0;
int real_output = (flags & DFT_REAL_OUTPUT) != 0;
bool inv = (flags & DFT_INVERSE) != 0 ? 1 : 0;
bool is1d = (flags & DFT_ROWS) != 0 || src.rows == 1;
if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
nonzero_rows = _src.rows();
bool is1d = (flags & DFT_ROWS) != 0 || nonzero_rows == 1;
// if output format is not specified
if (complex_output + real_output == 0)
@ -2276,6 +2312,19 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
}
}
// Forward Complex to CCS not supported
if (complex_input && real_output && !inv)
{
real_output = 0;
complex_output = 1;
}
// Inverse CCS to Complex not supported
if (real_input && complex_output && inv)
{
complex_output = 0;
real_output = 1;
}
UMat input, output;
if (complex_input)
{
@ -2285,12 +2334,7 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
{
if (!inv)
{
// in case real input convert it to complex
input.create(src.size(), CV_MAKE_TYPE(depth, 2));
std::vector<UMat> planes;
planes.push_back(src);
planes.push_back(UMat::zeros(src.size(), CV_32F));
merge(planes, input);
input = src;
}
else
{
@ -2298,31 +2342,34 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
}
}
UMat dst = _dst.getUMat();
if (complex_output)
{
if (real_input && is1d && !inv)
output.create(src.size(), CV_32FC2);
else
output = dst;
{
_dst.create(src.size(), CV_32FC2);
output = _dst.getUMat();
}
} else
{
output.create(src.size(), CV_32FC2);
// CCS
if (is1d)
{
_dst.create(src.size(), CV_32FC1);
output = _dst.getUMat();
}
else
output.create(src.size(), CV_32FC2);
}
if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
nonzero_rows = _src.rows();
if (!ocl_dft_C2C_row(input, output, nonzero_rows, flags))
if (!ocl_dft_C2C_rows(input, output, nonzero_rows, flags))
return false;
if ((flags & DFT_ROWS) == 0 && nonzero_rows > 1)
if (!is1d)
{
transpose(output, output);
if (!ocl_dft_C2C_row(output, output, output.rows, flags))
if (!ocl_dft_C2C_cols(output, output, flags))
return false;
transpose(output, output);
}
if (complex_output)
@ -2335,12 +2382,18 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
else
{
if (!inv)
ocl_packToCCS(output, _dst, flags);
{
if (!is1d)
ocl_packToCCS(output, _dst, flags);
else
_dst.assign(output);
}
else
{
// copy real part to dst
}
}
//printf("OCL!\n");
return true;
}

View File

@ -1,25 +1,13 @@
__constant float PI = 3.14159265f;
__constant float SQRT_2 = 0.707106781188f;
__constant float sin_120 = 0.866025403784f;
__constant float fft5_2 = 0.559016994374f;
__constant float fft5_3 = -0.951056516295f;
__constant float fft5_4 = -1.538841768587f;
__constant float fft5_5 = 0.363271264002f;
#define SQRT_2 0.707106781188f
#define sin_120 0.866025403784f
#define fft5_2 0.559016994374f
#define fft5_3 -0.951056516295f
#define fft5_4 -1.538841768587f
#define fft5_5 0.363271264002f
__attribute__((always_inline))
float2 mul_float2(float2 a, float2 b){
float2 res;
res.x = a.x * b.x - a.y * b.y;
res.y = a.x * b.y + a.y * b.x;
return res;
}
__attribute__((always_inline))
float2 sincos_float2(float alpha) {
float cs, sn;
sn = sincos(alpha, &cs); // sincos
return (float2)(cs, sn);
float2 mul_float2(float2 a, float2 b) {
return (float2)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x));
}
__attribute__((always_inline))
@ -52,6 +40,38 @@ void fft_radix2(__local float2* smem, __constant const float2* twiddles, const i
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
const int k1 = x & (block_size - 1);
const int x2 = x + (t+1)/2;
const int k2 = x2 & (block_size - 1);
float2 a0, a1, a2, a3;
if (x < (t+1)/2)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k1],smem[x+t]);
a2 = smem[x2];
a3 = mul_float2(twiddles[k2],smem[x2+t]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < (t+1)/2)
{
int dst_ind = (x << 1) - k1;
smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = a0 - a1;
dst_ind = (x2 << 1) - k2;
smem[dst_ind] = a2 + a3;
smem[dst_ind+block_size] = a2 - a3;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix4(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
@ -158,13 +178,6 @@ void fft_radix3(__local float2* smem, __constant const float2* twiddles, const i
if (x < t)
{
//const int twiddle_block = block_size / 3;
//const float theta = -PI * k * 2 / (3 * block_size);
//float2 tw = sincos_float2(theta);
//printf("radix3 %d (%f,%f)(%f,%f)\n", k, tw.x, tw.y, twiddles[k].x, twiddles[k].y);
//tw = sincos_float2(2*theta);
//printf("radix3- %d %d (%f,%f)(%f,%f)\n", k, twiddle_block, tw.x, tw.y, twiddles[k+block_size].x, twiddles[k+block_size].y);
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x+t]);
a2 = mul_float2(twiddles[k+block_size], smem[x+2*t]);
@ -177,7 +190,7 @@ void fft_radix3(__local float2* smem, __constant const float2* twiddles, const i
const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle((float2)sin_120*(a1 - a2));
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
@ -188,6 +201,53 @@ void fft_radix3(__local float2* smem, __constant const float2* twiddles, const i
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3_B2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
const int x2 = x + (t+1)/2;
const int k2 = x2 % block_size;
float2 a0, a1, a2, a3, a4, a5;
if (x < (t+1)/2)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x+t]);
a2 = mul_float2(twiddles[k+block_size], smem[x+2*t]);
a3 = smem[x2];
a4 = mul_float2(twiddles[k2], smem[x2+t]);
a5 = mul_float2(twiddles[k2+block_size], smem[x2+2*t]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < (t+1)/2)
{
int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2;
dst_ind = ((x2 - k2) * 3) + k2;
b1 = a4 + a5;
a5 = twiddle(sin_120*(a4 - a5));
b0 = a3 - (float2)(0.5f)*b1;
smem[dst_ind] = a3 + b1;
smem[dst_ind + block_size] = b0 + a5;
smem[dst_ind + 2*block_size] = b0 - a5;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix5(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
@ -196,8 +256,6 @@ void fft_radix5(__local float2* smem, __constant const float2* twiddles, const i
if (x < t)
{
int tw_ind = block_size / 5;
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x + t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
@ -223,8 +281,8 @@ void fft_radix5(__local float2* smem, __constant const float2* twiddles, const i
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b1 = (float2)fft5_2 * (b1 - a4);
a4 = (float2)fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
@ -243,9 +301,9 @@ void fft_radix5(__local float2* smem, __constant const float2* twiddles, const i
barrier(CLK_LOCAL_MEM_FENCE);
}
__kernel void fft_multi_radix(__global const uchar* src_ptr, int src_step, int src_offset,
__global uchar* dst_ptr, int dst_step, int dst_offset,
__constant float2 * twiddles_ptr, const int t, const int nz)
__kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant float2 * twiddles_ptr, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
@ -253,14 +311,60 @@ __kernel void fft_multi_radix(__global const uchar* src_ptr, int src_step, int s
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
const int ind = x;
const int block_size = LOCAL_SIZE/kercn;
#ifndef REAL_INPUT
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
smem[x+i*block_size] = src[i*block_size];
#else
__global const float* src = (__global const float*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(float), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
smem[x+i*block_size] = (float2)(src[i*block_size], 0.f);
#endif
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
#ifndef CCS_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
dst[i*block_size] = smem[x + i*block_size];
#else
// pack row to CCS
__local float* smem_1cn = (__local float*) smem;
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
for (int i=x; i<dst_cols-1; i+=block_size)
dst[i+1] = smem_1cn[i+2];
if (x == 0)
dst[0] = smem_1cn[0];
#endif
}
}
__kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant float2 * twiddles_ptr, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
#pragma unroll
for (int i=0; i<kercn; i++)
smem[y+i*block_size] = *((__global const float2*)(src + i*block_size*src_step));
barrier(CLK_LOCAL_MEM_FENCE);
@ -269,8 +373,6 @@ __kernel void fft_multi_radix(__global const uchar* src_ptr, int src_step, int s
// copy data to dst
#pragma unroll
for (int i=0; i<kercn; i++)
{
dst[i*block_size] = smem[x + i*block_size];
}
*((__global float2*)(dst + i*block_size*src_step)) = smem[y + i*block_size];
}
}

View File

@ -62,7 +62,7 @@ namespace ocl {
////////////////////////////////////////////////////////////////////////////
// Dft
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool)
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool)
{
cv::Size dft_size;
int dft_flags, depth, cn, dft_type;
@ -86,16 +86,16 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool)
case C2C: dft_flags |= cv::DFT_COMPLEX_OUTPUT; cn = 2; break;
}
inplace = false;
if (GET_PARAM(2))
dft_flags |= cv::DFT_ROWS; // (DFT_COMPLEX_OUTPUT | DFT_ROWS) works incorrect
dft_flags |= cv::DFT_ROWS;
//if (GET_PARAM(3))
// if (dft_type == C2C) dft_flags |= cv::DFT_INVERSE;
//if (GET_PARAM(3))
// dft_flags |= cv::DFT_SCALE;
inplace = GET_PARAM(3);
if (inplace && dft_type == 0)
inplace = 0;
}
void generateTestData()
@ -124,7 +124,7 @@ OCL_TEST_P(Dft, Mat)
//Mat df;
//absdiff(dst, gpu, df);
//std::cout << df << std::endl;
//std::cout << df << std::endl;
double eps = src.size().area() * 1e-4;
EXPECT_MAT_NEAR(dst, udst, eps);
@ -181,10 +181,11 @@ OCL_TEST_P(MulSpectrums, Mat)
OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(1920, 1), cv::Size(5, 4), cv::Size(30, 20),
cv::Size(512, 1), cv::Size(1024, 1024)),
Values(/*(OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2C,*/ (OCL_FFT_TYPE) R2R/*, (OCL_FFT_TYPE) C2R*/),
Bool() // DFT_ROWS
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(6, 1), cv::Size(5, 8), cv::Size(30, 20),
cv::Size(512, 1), cv::Size(1280, 768)),
Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R/*, (OCL_FFT_TYPE) C2R*/),
Bool(), // DFT_ROWS
Bool() // inplace
)
);