mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
Merge pull request #11461 from dkurt:dnn_reduce_mem_consumption
This commit is contained in:
commit
ed150bd97a
@ -250,16 +250,13 @@ public:
|
||||
blobShapeFromProto(pbBlob, shape);
|
||||
|
||||
dstBlob.create((int)shape.size(), &shape[0], CV_32F);
|
||||
float *dstData = dstBlob.ptr<float>();
|
||||
if (pbBlob.data_size())
|
||||
{
|
||||
// Single precision floats.
|
||||
CV_Assert(pbBlob.data_size() == (int)dstBlob.total());
|
||||
|
||||
CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT);
|
||||
|
||||
for (int i = 0; i < pbBlob.data_size(); i++)
|
||||
dstData[i] = pbBlob.data(i);
|
||||
Mat(dstBlob.dims, &dstBlob.size[0], CV_32F, (void*)pbBlob.data().data()).copyTo(dstBlob);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -288,11 +285,18 @@ public:
|
||||
if (li == netBinary.layer_size() || netBinary.layer(li).blobs_size() == 0)
|
||||
return;
|
||||
|
||||
const caffe::LayerParameter &binLayer = netBinary.layer(li);
|
||||
layerParams.blobs.resize(binLayer.blobs_size());
|
||||
for (int bi = 0; bi < binLayer.blobs_size(); bi++)
|
||||
caffe::LayerParameter* binLayer = netBinary.mutable_layer(li);
|
||||
const int numBlobs = binLayer->blobs_size();
|
||||
layerParams.blobs.resize(numBlobs);
|
||||
for (int bi = 0; bi < numBlobs; bi++)
|
||||
{
|
||||
blobFromProto(binLayer.blobs(bi), layerParams.blobs[bi]);
|
||||
blobFromProto(binLayer->blobs(bi), layerParams.blobs[bi]);
|
||||
}
|
||||
binLayer->clear_blobs();
|
||||
CV_Assert(numBlobs == binLayer->blobs().ClearedCount());
|
||||
for (int bi = 0; bi < numBlobs; bi++)
|
||||
{
|
||||
delete binLayer->mutable_blobs()->ReleaseCleared();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -132,7 +132,7 @@ void UpgradeV0PaddingLayers(const NetParameter& param,
|
||||
NetParameter* param_upgraded_pad);
|
||||
|
||||
// Upgrade a single V0LayerConnection to the V1LayerParameter format.
|
||||
bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
|
||||
bool UpgradeV0LayerParameter(V1LayerParameter* v0_layer_connection,
|
||||
V1LayerParameter* layer_param);
|
||||
|
||||
V1LayerParameter_LayerType UpgradeV0LayerType(const string& type);
|
||||
@ -149,9 +149,9 @@ bool NetNeedsV1ToV2Upgrade(const NetParameter& net_param);
|
||||
|
||||
// Perform all necessary transformations to upgrade a NetParameter with
|
||||
// deprecated V1LayerParameters.
|
||||
bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param);
|
||||
bool UpgradeV1Net(NetParameter* net_param);
|
||||
|
||||
bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param,
|
||||
bool UpgradeV1LayerParameter(V1LayerParameter* v1_layer_param,
|
||||
LayerParameter* layer_param);
|
||||
|
||||
const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type);
|
||||
@ -194,7 +194,7 @@ bool UpgradeV0Net(const NetParameter& v0_net_param_padding_layers,
|
||||
net_param->set_name(v0_net_param.name());
|
||||
}
|
||||
for (int i = 0; i < v0_net_param.layers_size(); ++i) {
|
||||
is_fully_compatible &= UpgradeV0LayerParameter(v0_net_param.layers(i),
|
||||
is_fully_compatible &= UpgradeV0LayerParameter(v0_net_param.mutable_layers(i),
|
||||
net_param->add_layers());
|
||||
}
|
||||
for (int i = 0; i < v0_net_param.input_size(); ++i) {
|
||||
@ -268,8 +268,10 @@ void UpgradeV0PaddingLayers(const NetParameter& param,
|
||||
}
|
||||
}
|
||||
|
||||
bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
|
||||
bool UpgradeV0LayerParameter(V1LayerParameter* v0_layer_connection_,
|
||||
V1LayerParameter* layer_param) {
|
||||
CV_Assert(v0_layer_connection_ != NULL);
|
||||
const V1LayerParameter& v0_layer_connection = *v0_layer_connection_;
|
||||
bool is_fully_compatible = true;
|
||||
layer_param->Clear();
|
||||
for (int i = 0; i < v0_layer_connection.bottom_size(); ++i) {
|
||||
@ -287,9 +289,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
|
||||
if (v0_layer_param.has_type()) {
|
||||
layer_param->set_type(UpgradeV0LayerType(type));
|
||||
}
|
||||
for (int i = 0; i < v0_layer_param.blobs_size(); ++i) {
|
||||
layer_param->add_blobs()->CopyFrom(v0_layer_param.blobs(i));
|
||||
}
|
||||
layer_param->mutable_blobs()->Swap(v0_layer_connection_->mutable_blobs());
|
||||
for (int i = 0; i < v0_layer_param.blobs_lr_size(); ++i) {
|
||||
layer_param->add_blobs_lr(v0_layer_param.blobs_lr(i));
|
||||
}
|
||||
@ -770,8 +770,7 @@ bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param) {
|
||||
if (NetNeedsV1ToV2Upgrade(*param)) {
|
||||
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
|
||||
<< "V1LayerParameter: " << param_file;
|
||||
NetParameter original_param(*param);
|
||||
if (!UpgradeV1Net(original_param, param)) {
|
||||
if (!UpgradeV1Net(param)) {
|
||||
success = false;
|
||||
LOG(ERROR) << "Warning: had one or more problems upgrading "
|
||||
<< "V1LayerParameter (see above); continuing anyway.";
|
||||
@ -791,23 +790,24 @@ bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param) {
|
||||
return success;
|
||||
}
|
||||
|
||||
bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param) {
|
||||
bool UpgradeV1Net(NetParameter* net_param) {
|
||||
// V1LayerParameter layers -> LayerParameter layer
|
||||
CV_Assert(net_param != NULL);
|
||||
bool is_fully_compatible = true;
|
||||
if (v1_net_param.layer_size() > 0) {
|
||||
if (net_param->layer_size() > 0) {
|
||||
LOG(ERROR) << "Input NetParameter to be upgraded already specifies 'layer' "
|
||||
<< "fields; these will be ignored for the upgrade.";
|
||||
is_fully_compatible = false;
|
||||
}
|
||||
net_param->CopyFrom(v1_net_param);
|
||||
net_param->clear_layers();
|
||||
net_param->clear_layer();
|
||||
for (int i = 0; i < v1_net_param.layers_size(); ++i) {
|
||||
if (!UpgradeV1LayerParameter(v1_net_param.layers(i),
|
||||
for (int i = 0; i < net_param->layers_size(); ++i) {
|
||||
if (!UpgradeV1LayerParameter(net_param->mutable_layers(i),
|
||||
net_param->add_layer())) {
|
||||
LOG(ERROR) << "Upgrade of input layer " << i << " failed.";
|
||||
is_fully_compatible = false;
|
||||
}
|
||||
}
|
||||
net_param->clear_layers();
|
||||
return is_fully_compatible;
|
||||
}
|
||||
|
||||
@ -834,8 +834,10 @@ void UpgradeNetBatchNorm(NetParameter* net_param) {
|
||||
}
|
||||
}
|
||||
|
||||
bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param,
|
||||
bool UpgradeV1LayerParameter(V1LayerParameter* v1_layer_param_,
|
||||
LayerParameter* layer_param) {
|
||||
CV_Assert(v1_layer_param_ != NULL);
|
||||
const V1LayerParameter& v1_layer_param = *v1_layer_param_;
|
||||
layer_param->Clear();
|
||||
bool is_fully_compatible = true;
|
||||
for (int i = 0; i < v1_layer_param.bottom_size(); ++i) {
|
||||
@ -856,9 +858,7 @@ bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param,
|
||||
if (v1_layer_param.has_type()) {
|
||||
layer_param->set_type(UpgradeV1LayerType(v1_layer_param.type()));
|
||||
}
|
||||
for (int i = 0; i < v1_layer_param.blobs_size(); ++i) {
|
||||
layer_param->add_blobs()->CopyFrom(v1_layer_param.blobs(i));
|
||||
}
|
||||
layer_param->mutable_blobs()->Swap(v1_layer_param_->mutable_blobs());
|
||||
for (int i = 0; i < v1_layer_param.param_size(); ++i) {
|
||||
while (layer_param->param_size() <= i) { layer_param->add_param(); }
|
||||
layer_param->mutable_param(i)->set_name(v1_layer_param.param(i));
|
||||
|
@ -169,7 +169,8 @@ class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
||||
{
|
||||
public:
|
||||
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
||||
Mat weightsMat, weightsMat_doubles;
|
||||
Mat weightsMat;
|
||||
std::vector<double> weightsMultipliers;
|
||||
std::vector<float> biasvec;
|
||||
std::vector<float> reluslope;
|
||||
Ptr<ActivationLayer> activ;
|
||||
@ -259,7 +260,7 @@ public:
|
||||
wm = wm_aligned;
|
||||
}
|
||||
weightsMat = wm;
|
||||
weightsMat.convertTo(weightsMat_doubles, CV_64F);
|
||||
weightsMultipliers.assign(outCn, 1.0);
|
||||
|
||||
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
|
||||
biasvec.resize(outCn+2);
|
||||
@ -335,13 +336,14 @@ public:
|
||||
|
||||
if (!w.empty())
|
||||
{
|
||||
Mat originWeights = blobs[0].reshape(1, outCn);
|
||||
for (int i = 0; i < outCn; ++i)
|
||||
{
|
||||
double wi = w.at<float>(i);
|
||||
cv::multiply(slice(weightsMat_doubles, i), wi, slice(weightsMat_doubles, i));
|
||||
weightsMultipliers[i] *= wi;
|
||||
cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
|
||||
biasvec[i] *= wi;
|
||||
}
|
||||
weightsMat_doubles.convertTo(weightsMat, weightsMat.type());
|
||||
}
|
||||
|
||||
if (!b.empty())
|
||||
|
@ -612,7 +612,7 @@ void RemoveIdentityOps(tensorflow::GraphDef& net)
|
||||
|
||||
Mat getTensorContent(const tensorflow::TensorProto &tensor)
|
||||
{
|
||||
std::string content = tensor.tensor_content();
|
||||
const std::string& content = tensor.tensor_content();
|
||||
switch (tensor.dtype())
|
||||
{
|
||||
case tensorflow::DT_FLOAT:
|
||||
@ -681,6 +681,14 @@ Mat getTensorContent(const tensorflow::TensorProto &tensor)
|
||||
return Mat();
|
||||
}
|
||||
|
||||
void releaseTensor(tensorflow::TensorProto* tensor)
|
||||
{
|
||||
if (!tensor->mutable_tensor_content()->empty())
|
||||
{
|
||||
delete tensor->release_tensor_content();
|
||||
}
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
|
@ -23,6 +23,8 @@ void simplifySubgraphs(tensorflow::GraphDef& net);
|
||||
|
||||
Mat getTensorContent(const tensorflow::TensorProto &tensor);
|
||||
|
||||
void releaseTensor(tensorflow::TensorProto* tensor);
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
|
@ -677,7 +677,9 @@ void TFImporter::populateNet(Net dstNet)
|
||||
layers_to_ignore.insert(next_layers[0].first);
|
||||
}
|
||||
|
||||
kernelFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);
|
||||
const tensorflow::TensorProto& kernelTensor = getConstBlob(layer, value_id);
|
||||
kernelFromTensor(kernelTensor, layerParams.blobs[0]);
|
||||
releaseTensor(const_cast<tensorflow::TensorProto*>(&kernelTensor));
|
||||
int* kshape = layerParams.blobs[0].size.p;
|
||||
if (type == "DepthwiseConv2dNative")
|
||||
{
|
||||
@ -788,7 +790,9 @@ void TFImporter::populateNet(Net dstNet)
|
||||
}
|
||||
|
||||
int kernel_blob_index = -1;
|
||||
blobFromTensor(getConstBlob(layer, value_id, -1, &kernel_blob_index), layerParams.blobs[0]);
|
||||
const tensorflow::TensorProto& kernelTensor = getConstBlob(layer, value_id, -1, &kernel_blob_index);
|
||||
blobFromTensor(kernelTensor, layerParams.blobs[0]);
|
||||
releaseTensor(const_cast<tensorflow::TensorProto*>(&kernelTensor));
|
||||
|
||||
if (kernel_blob_index == 1) { // In this case output is computed by x*W formula - W should be transposed
|
||||
Mat data = layerParams.blobs[0].t();
|
||||
|
Loading…
Reference in New Issue
Block a user