mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 20:09:23 +08:00
Merge pull request #11108 from take1014:hough_4303
* Added accumulator value to the output of HoughLines and HoughCircles * imgproc: refactor Hough patch - eliminate code duplication - fix type handling, fix OpenCL code - fix test data generation - re-generated test data in debug mode via plain CPU code path
This commit is contained in:
parent
2d5d98ec0f
commit
ed207d79e7
@ -1977,10 +1977,11 @@ detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good ex
|
||||
transform.
|
||||
|
||||
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
|
||||
@param lines Output vector of lines. Each line is represented by a two-element vector
|
||||
\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
|
||||
@param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
|
||||
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \votes)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
|
||||
the image). \f$\theta\f$ is the line rotation angle in radians (
|
||||
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
|
||||
\f$\votes\f$ is the value of accumulator.
|
||||
@param rho Distance resolution of the accumulator in pixels.
|
||||
@param theta Angle resolution of the accumulator in radians.
|
||||
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
@ -2155,8 +2156,8 @@ you know it. Or, you may set maxRadius to a negative number to return centers on
|
||||
search, and find the correct radius using an additional procedure.
|
||||
|
||||
@param image 8-bit, single-channel, grayscale input image.
|
||||
@param circles Output vector of found circles. Each vector is encoded as a 3-element
|
||||
floating-point vector \f$(x, y, radius)\f$ .
|
||||
@param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
|
||||
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ .
|
||||
@param method Detection method, see #HoughModes. Currently, the only implemented method is #HOUGH_GRADIENT
|
||||
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
|
||||
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
|
||||
|
@ -56,4 +56,30 @@ PERF_TEST(PerfHoughCircles2, ManySmallCircles)
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST(PerfHoughCircles4f, Basic)
|
||||
{
|
||||
string filename = getDataPath("cv/imgproc/stuff.jpg");
|
||||
const double dp = 1.0;
|
||||
double minDist = 20;
|
||||
double edgeThreshold = 20;
|
||||
double accumThreshold = 30;
|
||||
int minRadius = 20;
|
||||
int maxRadius = 200;
|
||||
|
||||
Mat img = imread(filename, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty()) << "Unable to load source image " << filename;
|
||||
|
||||
GaussianBlur(img, img, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec4f> circles;
|
||||
declare.in(img);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
HoughCircles(img, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
@ -69,4 +69,47 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines,
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines3f,
|
||||
testing::Combine(
|
||||
testing::Values( "cv/shared/pic5.png", "stitching/a1.png" ),
|
||||
testing::Values( 1, 10 ),
|
||||
testing::Values( 0.01, 0.1 ),
|
||||
testing::Values( 0.5, 1.1 )
|
||||
)
|
||||
)
|
||||
{
|
||||
string filename = getDataPath(get<0>(GetParam()));
|
||||
double rhoStep = get<1>(GetParam());
|
||||
double thetaStep = get<2>(GetParam());
|
||||
double threshold_ratio = get<3>(GetParam());
|
||||
|
||||
Mat image = imread(filename, IMREAD_GRAYSCALE);
|
||||
if (image.empty())
|
||||
FAIL() << "Unable to load source image" << filename;
|
||||
|
||||
Canny(image, image, 32, 128);
|
||||
|
||||
// add some syntetic lines:
|
||||
line(image, Point(0, 0), Point(image.cols, image.rows), Scalar::all(255), 3);
|
||||
line(image, Point(image.cols, 0), Point(image.cols/2, image.rows), Scalar::all(255), 3);
|
||||
|
||||
vector<Vec3f> lines;
|
||||
declare.time(60);
|
||||
|
||||
int hough_threshold = (int)(std::min(image.cols, image.rows) * threshold_ratio);
|
||||
|
||||
TEST_CYCLE() HoughLines(image, lines, rhoStep, thetaStep, hough_threshold);
|
||||
|
||||
printf("%dx%d: %d lines\n", image.cols, image.rows, (int)lines.size());
|
||||
|
||||
if (threshold_ratio < 1.0)
|
||||
{
|
||||
EXPECT_GE(lines.size(), 2u);
|
||||
}
|
||||
|
||||
EXPECT_LT(lines.size(), 3000u);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
@ -105,48 +105,56 @@ array of (rho, theta) pairs. linesMax is the buffer size (number of pairs).
|
||||
Functions return the actual number of found lines.
|
||||
*/
|
||||
static void
|
||||
HoughLinesStandard( const Mat& img, float rho, float theta,
|
||||
int threshold, std::vector<Vec2f>& lines, int linesMax,
|
||||
HoughLinesStandard( InputArray src, OutputArray lines, int type,
|
||||
float rho, float theta,
|
||||
int threshold, int linesMax,
|
||||
double min_theta, double max_theta )
|
||||
{
|
||||
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error");
|
||||
|
||||
Mat img = src.getMat();
|
||||
|
||||
int i, j;
|
||||
float irho = 1 / rho;
|
||||
|
||||
CV_Assert( img.type() == CV_8UC1 );
|
||||
CV_Assert( linesMax > 0 );
|
||||
|
||||
const uchar* image = img.ptr();
|
||||
int step = (int)img.step;
|
||||
int width = img.cols;
|
||||
int height = img.rows;
|
||||
|
||||
if (max_theta < min_theta ) {
|
||||
CV_Error( CV_StsBadArg, "max_theta must be greater than min_theta" );
|
||||
}
|
||||
int max_rho = width + height;
|
||||
int min_rho = -max_rho;
|
||||
|
||||
CV_CheckGE(max_theta, min_theta, "max_theta must be greater than min_theta");
|
||||
|
||||
int numangle = cvRound((max_theta - min_theta) / theta);
|
||||
int numrho = cvRound(((width + height) * 2 + 1) / rho);
|
||||
int numrho = cvRound(((max_rho - min_rho) + 1) / rho);
|
||||
|
||||
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
|
||||
CV_IPP_CHECK()
|
||||
if (type == CV_32FC2 && CV_IPP_CHECK_COND)
|
||||
{
|
||||
IppiSize srcSize = { width, height };
|
||||
IppPointPolar delta = { rho, theta };
|
||||
IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}};
|
||||
IppPointPolar dstRoi[2] = {{(Ipp32f) min_rho, (Ipp32f) min_theta},{(Ipp32f) max_rho, (Ipp32f) max_theta}};
|
||||
int bufferSize;
|
||||
int nz = countNonZero(img);
|
||||
int ipp_linesMax = std::min(linesMax, nz*numangle/threshold);
|
||||
int linesCount = 0;
|
||||
lines.resize(ipp_linesMax);
|
||||
std::vector<Vec2f> _lines(ipp_linesMax);
|
||||
IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize);
|
||||
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize);
|
||||
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);};
|
||||
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &_lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);};
|
||||
ippsFree(buffer);
|
||||
if (ok >= 0)
|
||||
{
|
||||
lines.resize(linesCount);
|
||||
lines.create(linesCount, 1, CV_32FC2);
|
||||
Mat(linesCount, 1, CV_32FC2, &_lines[0]).copyTo(lines);
|
||||
CV_IMPL_ADD(CV_IMPL_IPP);
|
||||
return;
|
||||
}
|
||||
lines.clear();
|
||||
setIppErrorStatus();
|
||||
}
|
||||
#endif
|
||||
@ -185,6 +193,9 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
|
||||
// stage 4. store the first min(total,linesMax) lines to the output buffer
|
||||
linesMax = std::min(linesMax, (int)_sort_buf.size());
|
||||
double scale = 1./(numrho+2);
|
||||
|
||||
lines.create(linesMax, 1, type);
|
||||
Mat _lines = lines.getMat();
|
||||
for( i = 0; i < linesMax; i++ )
|
||||
{
|
||||
LinePolar line;
|
||||
@ -193,7 +204,15 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
|
||||
int r = idx - (n+1)*(numrho+2) - 1;
|
||||
line.rho = (r - (numrho - 1)*0.5f) * rho;
|
||||
line.angle = static_cast<float>(min_theta) + n * theta;
|
||||
lines.push_back(Vec2f(line.rho, line.angle));
|
||||
if (type == CV_32FC2)
|
||||
{
|
||||
_lines.at<Vec2f>(i) = Vec2f(line.rho, line.angle);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_DbgAssert(type == CV_32FC3);
|
||||
_lines.at<Vec3f>(i) = Vec3f(line.rho, line.angle, (float)accum[idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -212,15 +231,17 @@ struct hough_index
|
||||
|
||||
|
||||
static void
|
||||
HoughLinesSDiv( const Mat& img,
|
||||
HoughLinesSDiv( InputArray image, OutputArray lines, int type,
|
||||
float rho, float theta, int threshold,
|
||||
int srn, int stn,
|
||||
std::vector<Vec2f>& lines, int linesMax,
|
||||
int srn, int stn, int linesMax,
|
||||
double min_theta, double max_theta )
|
||||
{
|
||||
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error");
|
||||
|
||||
#define _POINT(row, column)\
|
||||
(image_src[(row)*step+(column)])
|
||||
|
||||
Mat img = image.getMat();
|
||||
int index, i;
|
||||
int ri, ti, ti1, ti0;
|
||||
int row, col;
|
||||
@ -343,7 +364,7 @@ HoughLinesSDiv( const Mat& img,
|
||||
|
||||
if( count * 100 > rn * tn )
|
||||
{
|
||||
HoughLinesStandard( img, rho, theta, threshold, lines, linesMax, min_theta, max_theta );
|
||||
HoughLinesStandard( image, lines, type, rho, theta, threshold, linesMax, min_theta, max_theta );
|
||||
return;
|
||||
}
|
||||
|
||||
@ -415,11 +436,21 @@ HoughLinesSDiv( const Mat& img,
|
||||
}
|
||||
}
|
||||
|
||||
lines.create((int)lst.size(), 1, type);
|
||||
Mat _lines = lines.getMat();
|
||||
for( size_t idx = 0; idx < lst.size(); idx++ )
|
||||
{
|
||||
if( lst[idx].rho < 0 )
|
||||
continue;
|
||||
lines.push_back(Vec2f(lst[idx].rho, lst[idx].theta));
|
||||
if (type == CV_32FC2)
|
||||
{
|
||||
_lines.at<Vec2f>((int)idx) = Vec2f(lst[idx].rho, lst[idx].theta);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_DbgAssert(type == CV_32FC3);
|
||||
_lines.at<Vec3f>((int)idx) = Vec3f(lst[idx].rho, lst[idx].theta, (float)lst[idx].value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -861,24 +892,26 @@ static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, dou
|
||||
|
||||
#endif /* HAVE_OPENCL */
|
||||
|
||||
void HoughLines( InputArray _image, OutputArray _lines,
|
||||
void HoughLines( InputArray _image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn, double stn, double min_theta, double max_theta )
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(),
|
||||
ocl_HoughLines(_image, _lines, rho, theta, threshold, min_theta, max_theta));
|
||||
int type = CV_32FC2;
|
||||
if (lines.fixedType())
|
||||
{
|
||||
type = lines.type();
|
||||
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Wrong type of output lines");
|
||||
}
|
||||
|
||||
Mat image = _image.getMat();
|
||||
std::vector<Vec2f> lines;
|
||||
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && lines.isUMat() && type == CV_32FC2,
|
||||
ocl_HoughLines(_image, lines, rho, theta, threshold, min_theta, max_theta));
|
||||
|
||||
if( srn == 0 && stn == 0 )
|
||||
HoughLinesStandard(image, (float)rho, (float)theta, threshold, lines, INT_MAX, min_theta, max_theta );
|
||||
HoughLinesStandard(_image, lines, type, (float)rho, (float)theta, threshold, INT_MAX, min_theta, max_theta );
|
||||
else
|
||||
HoughLinesSDiv(image, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), lines, INT_MAX, min_theta, max_theta);
|
||||
|
||||
Mat(lines).copyTo(_lines);
|
||||
HoughLinesSDiv(_image, lines, type, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), INT_MAX, min_theta, max_theta);
|
||||
}
|
||||
|
||||
|
||||
@ -1007,11 +1040,16 @@ static bool cmpAccum(const EstimatedCircle& left, const EstimatedCircle& right)
|
||||
return false;
|
||||
}
|
||||
|
||||
inline Vec3f GetCircle(const EstimatedCircle& est)
|
||||
static inline Vec3f GetCircle(const EstimatedCircle& est)
|
||||
{
|
||||
return est.c;
|
||||
}
|
||||
|
||||
static inline Vec4f GetCircle4f(const EstimatedCircle& est)
|
||||
{
|
||||
return Vec4f(est.c[0], est.c[1], est.c[2], (float)est.accum);
|
||||
}
|
||||
|
||||
class NZPointList : public std::vector<Point>
|
||||
{
|
||||
private:
|
||||
@ -1264,12 +1302,13 @@ private:
|
||||
Mutex& _lock;
|
||||
};
|
||||
|
||||
static bool CheckDistance(const std::vector<Vec3f> &circles, size_t endIdx, const Vec3f& circle, float minDist2)
|
||||
template<typename T>
|
||||
static bool CheckDistance(const std::vector<T> &circles, size_t endIdx, const T& circle, float minDist2)
|
||||
{
|
||||
bool goodPoint = true;
|
||||
for (uint j = 0; j < endIdx; ++j)
|
||||
{
|
||||
Vec3f pt = circles[j];
|
||||
T pt = circles[j];
|
||||
float distX = circle[0] - pt[0], distY = circle[1] - pt[1];
|
||||
if (distX * distX + distY * distY < minDist2)
|
||||
{
|
||||
@ -1297,13 +1336,31 @@ static void GetCircleCenters(const std::vector<int> ¢ers, std::vector<Vec3f>
|
||||
}
|
||||
}
|
||||
|
||||
static void RemoveOverlaps(std::vector<Vec3f>& circles, float minDist)
|
||||
static void GetCircleCenters(const std::vector<int> ¢ers, std::vector<Vec4f> &circles, int acols, float minDist, float dr)
|
||||
{
|
||||
size_t centerCnt = centers.size();
|
||||
float minDist2 = minDist * minDist;
|
||||
for (size_t i = 0; i < centerCnt; ++i)
|
||||
{
|
||||
int center = centers[i];
|
||||
int y = center / acols;
|
||||
int x = center - y * acols;
|
||||
Vec4f circle = Vec4f((x + 0.5f) * dr, (y + 0.5f) * dr, 0, (float)center);
|
||||
|
||||
bool goodPoint = CheckDistance(circles, circles.size(), circle, minDist2);
|
||||
if (goodPoint)
|
||||
circles.push_back(circle);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void RemoveOverlaps(std::vector<T>& circles, float minDist)
|
||||
{
|
||||
float minDist2 = minDist * minDist;
|
||||
size_t endIdx = 1;
|
||||
for (size_t i = 1; i < circles.size(); ++i)
|
||||
{
|
||||
Vec3f circle = circles[i];
|
||||
T circle = circles[i];
|
||||
if (CheckDistance(circles, endIdx, circle, minDist2))
|
||||
{
|
||||
circles[endIdx] = circle;
|
||||
@ -1313,6 +1370,16 @@ static void RemoveOverlaps(std::vector<Vec3f>& circles, float minDist)
|
||||
circles.resize(endIdx);
|
||||
}
|
||||
|
||||
static void CreateCircles(const std::vector<EstimatedCircle>& circlesEst, std::vector<Vec3f>& circles)
|
||||
{
|
||||
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle);
|
||||
}
|
||||
|
||||
static void CreateCircles(const std::vector<EstimatedCircle>& circlesEst, std::vector<Vec4f>& circles)
|
||||
{
|
||||
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle4f);
|
||||
}
|
||||
|
||||
template<class NZPoints>
|
||||
class HoughCircleEstimateRadiusInvoker : public ParallelLoopBody
|
||||
{
|
||||
@ -1556,11 +1623,14 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Poi
|
||||
return nzCount;
|
||||
}
|
||||
|
||||
static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float dp, float minDist,
|
||||
template <typename CircleType>
|
||||
static void HoughCirclesGradient(InputArray _image, OutputArray _circles,
|
||||
float dp, float minDist,
|
||||
int minRadius, int maxRadius, int cannyThreshold,
|
||||
int accThreshold, int maxCircles, int kernelSize, bool centersOnly)
|
||||
{
|
||||
CV_Assert(kernelSize == -1 || kernelSize == 3 || kernelSize == 5 || kernelSize == 7);
|
||||
|
||||
dp = max(dp, 1.f);
|
||||
float idp = 1.f/dp;
|
||||
|
||||
@ -1602,7 +1672,7 @@ static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float
|
||||
|
||||
std::sort(centers.begin(), centers.end(), hough_cmp_gt(accum.ptr<int>()));
|
||||
|
||||
std::vector<Vec3f> circles;
|
||||
std::vector<CircleType> circles;
|
||||
circles.reserve(256);
|
||||
if (centersOnly)
|
||||
{
|
||||
@ -1635,15 +1705,16 @@ static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float
|
||||
|
||||
// Sort by accumulator value
|
||||
std::sort(circlesEst.begin(), circlesEst.end(), cmpAccum);
|
||||
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle);
|
||||
|
||||
// Create Circles
|
||||
CreateCircles(circlesEst, circles);
|
||||
RemoveOverlaps(circles, minDist);
|
||||
}
|
||||
|
||||
if(circles.size() > 0)
|
||||
if (circles.size() > 0)
|
||||
{
|
||||
int numCircles = std::min(maxCircles, int(circles.size()));
|
||||
_circles.create(1, numCircles, CV_32FC3);
|
||||
Mat(1, numCircles, CV_32FC3, &circles[0]).copyTo(_circles.getMat());
|
||||
Mat(1, numCircles, cv::traits::Type<CircleType>::value, &circles[0]).copyTo(_circles);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -1656,6 +1727,13 @@ static void HoughCircles( InputArray _image, OutputArray _circles,
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
int type = CV_32FC3;
|
||||
if( _circles.fixedType() )
|
||||
{
|
||||
type = _circles.type();
|
||||
CV_CheckType(type, type == CV_32FC3 || type == CV_32FC4, "Wrong type of output circles");
|
||||
}
|
||||
|
||||
CV_Assert(!_image.empty() && _image.type() == CV_8UC1 && (_image.isMat() || _image.isUMat()));
|
||||
CV_Assert(_circles.isMat() || _circles.isVector());
|
||||
|
||||
@ -1679,9 +1757,16 @@ static void HoughCircles( InputArray _image, OutputArray _circles,
|
||||
switch( method )
|
||||
{
|
||||
case CV_HOUGH_GRADIENT:
|
||||
HoughCirclesGradient(_image, _circles, (float)dp, (float)minDist,
|
||||
minRadius, maxRadius, cannyThresh,
|
||||
accThresh, maxCircles, kernelSize, centersOnly);
|
||||
if (type == CV_32FC3)
|
||||
HoughCirclesGradient<Vec3f>(_image, _circles, (float)dp, (float)minDist,
|
||||
minRadius, maxRadius, cannyThresh,
|
||||
accThresh, maxCircles, kernelSize, centersOnly);
|
||||
else if (type == CV_32FC4)
|
||||
HoughCirclesGradient<Vec4f>(_image, _circles, (float)dp, (float)minDist,
|
||||
minRadius, maxRadius, cannyThresh,
|
||||
accThresh, maxCircles, kernelSize, centersOnly);
|
||||
else
|
||||
CV_Error(Error::StsError, "Internal error");
|
||||
break;
|
||||
default:
|
||||
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually only CV_HOUGH_GRADIENT is supported." );
|
||||
@ -1764,12 +1849,12 @@ cvHoughLines2( CvArr* src_image, void* lineStorage, int method,
|
||||
switch( method )
|
||||
{
|
||||
case CV_HOUGH_STANDARD:
|
||||
HoughLinesStandard( image, (float)rho,
|
||||
(float)theta, threshold, l2, linesMax, min_theta, max_theta );
|
||||
HoughLinesStandard( image, l2, CV_32FC2, (float)rho,
|
||||
(float)theta, threshold, linesMax, min_theta, max_theta );
|
||||
break;
|
||||
case CV_HOUGH_MULTI_SCALE:
|
||||
HoughLinesSDiv( image, (float)rho, (float)theta,
|
||||
threshold, iparam1, iparam2, l2, linesMax, min_theta, max_theta );
|
||||
HoughLinesSDiv( image, l2, CV_32FC2, (float)rho, (float)theta,
|
||||
threshold, iparam1, iparam2, linesMax, min_theta, max_theta );
|
||||
break;
|
||||
case CV_HOUGH_PROBABILISTIC:
|
||||
HoughLinesProbabilistic( image, (float)rho, (float)theta,
|
||||
|
@ -49,6 +49,8 @@ namespace opencv_test { namespace {
|
||||
#define DEBUG_IMAGES 0
|
||||
#endif
|
||||
|
||||
//#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators)
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
@ -109,7 +111,8 @@ public:
|
||||
{
|
||||
}
|
||||
|
||||
void run_test()
|
||||
template <typename CircleType>
|
||||
void run_test(const char* xml_name)
|
||||
{
|
||||
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
@ -118,7 +121,7 @@ public:
|
||||
|
||||
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
vector<CircleType> circles;
|
||||
const double dp = 1.0;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
@ -127,31 +130,37 @@ public:
|
||||
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
|
||||
#endif
|
||||
|
||||
string xml = imgProc + "HoughCircles.xml";
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
FileNode node = fs[test_case_name];
|
||||
if (node.empty())
|
||||
string xml = imgProc + xml_name;
|
||||
#ifdef GENERATE_DATA
|
||||
{
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::APPEND);
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty());
|
||||
}
|
||||
{
|
||||
FileStorage fs(xml, FileStorage::APPEND);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
fs << test_case_name << circles;
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::READ);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
}
|
||||
|
||||
vector<Vec3f> exp_circles;
|
||||
read(fs[test_case_name], exp_circles, vector<Vec3f>());
|
||||
#else
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
FileNode node = fs[test_case_name];
|
||||
ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml;
|
||||
vector<CircleType> exp_circles;
|
||||
read(fs[test_case_name], exp_circles, vector<CircleType>());
|
||||
fs.release();
|
||||
|
||||
EXPECT_EQ(exp_circles.size(), circles.size());
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HoughCirclesTestFixture, regression)
|
||||
{
|
||||
run_test();
|
||||
run_test<Vec3f>("HoughCircles.xml");
|
||||
}
|
||||
|
||||
TEST_P(HoughCirclesTestFixture, regression4f)
|
||||
{
|
||||
run_test<Vec4f>("HoughCircles4f.xml");
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, HoughCirclesTestFixture, testing::Combine(
|
||||
@ -186,7 +195,9 @@ TEST(HoughCirclesTest, DefaultMaxRadius)
|
||||
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
vector<Vec4f> circles4f;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(src, circles4f, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
@ -220,7 +231,9 @@ TEST(HoughCirclesTest, CentersOnly)
|
||||
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
vector<Vec4f> circles4f;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(src, circles4f, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
@ -231,6 +244,9 @@ TEST(HoughCirclesTest, CentersOnly)
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
{
|
||||
EXPECT_EQ(circles[i][2], 0.0f) << "Did not ask for radius";
|
||||
EXPECT_EQ(circles[i][0], circles4f[i][0]);
|
||||
EXPECT_EQ(circles[i][1], circles4f[i][1]);
|
||||
EXPECT_EQ(circles[i][2], circles4f[i][2]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -249,7 +265,9 @@ TEST(HoughCirclesTest, ManySmallCircles)
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
vector<Vec3f> circles;
|
||||
vector<Vec4f> circles4f;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(src, circles4f, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
@ -258,6 +276,7 @@ TEST(HoughCirclesTest, ManySmallCircles)
|
||||
#endif
|
||||
|
||||
EXPECT_GT(circles.size(), size_t(3000)) << "Should find a lot of circles";
|
||||
EXPECT_EQ(circles.size(), circles4f.size());
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
//#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators)
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
template<typename T>
|
||||
@ -52,30 +54,36 @@ struct SimilarWith
|
||||
float theta_eps;
|
||||
float rho_eps;
|
||||
SimilarWith<T>(T val, float e, float r_e): value(val), theta_eps(e), rho_eps(r_e) { };
|
||||
bool operator()(T other);
|
||||
bool operator()(const T& other);
|
||||
};
|
||||
|
||||
template<>
|
||||
bool SimilarWith<Vec2f>::operator()(Vec2f other)
|
||||
bool SimilarWith<Vec2f>::operator()(const Vec2f& other)
|
||||
{
|
||||
return std::abs(other[0] - value[0]) < rho_eps && std::abs(other[1] - value[1]) < theta_eps;
|
||||
}
|
||||
|
||||
template<>
|
||||
bool SimilarWith<Vec4i>::operator()(Vec4i other)
|
||||
bool SimilarWith<Vec3f>::operator()(const Vec3f& other)
|
||||
{
|
||||
return std::abs(other[0] - value[0]) < rho_eps && std::abs(other[1] - value[1]) < theta_eps;
|
||||
}
|
||||
|
||||
template<>
|
||||
bool SimilarWith<Vec4i>::operator()(const Vec4i& other)
|
||||
{
|
||||
return cv::norm(value, other) < theta_eps;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
int countMatIntersection(Mat expect, Mat actual, float eps, float rho_eps)
|
||||
int countMatIntersection(const Mat& expect, const Mat& actual, float eps, float rho_eps)
|
||||
{
|
||||
int count = 0;
|
||||
if (!expect.empty() && !actual.empty())
|
||||
{
|
||||
for (MatIterator_<T> it=expect.begin<T>(); it!=expect.end<T>(); it++)
|
||||
for (MatConstIterator_<T> it=expect.begin<T>(); it!=expect.end<T>(); it++)
|
||||
{
|
||||
MatIterator_<T> f = std::find_if(actual.begin<T>(), actual.end<T>(), SimilarWith<T>(*it, eps, rho_eps));
|
||||
MatConstIterator_<T> f = std::find_if(actual.begin<T>(), actual.end<T>(), SimilarWith<T>(*it, eps, rho_eps));
|
||||
if (f != actual.end<T>())
|
||||
count++;
|
||||
}
|
||||
@ -99,7 +107,8 @@ class BaseHoughLineTest
|
||||
public:
|
||||
enum {STANDART = 0, PROBABILISTIC};
|
||||
protected:
|
||||
void run_test(int type);
|
||||
template<typename LinesType, typename LineType>
|
||||
void run_test(int type, const char* xml_name);
|
||||
|
||||
string picture_name;
|
||||
double rhoStep;
|
||||
@ -162,60 +171,63 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
void BaseHoughLineTest::run_test(int type)
|
||||
template<typename LinesType, typename LineType>
|
||||
void BaseHoughLineTest::run_test(int type, const char* xml_name)
|
||||
{
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
ASSERT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
string xml;
|
||||
if (type == STANDART)
|
||||
xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLines.xml";
|
||||
else if (type == PROBABILISTIC)
|
||||
xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLinesP.xml";
|
||||
string xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/" + xml_name;
|
||||
|
||||
Mat dst;
|
||||
Canny(src, dst, 100, 150, 3);
|
||||
EXPECT_FALSE(dst.empty()) << "Failed Canny edge detector";
|
||||
ASSERT_FALSE(dst.empty()) << "Failed Canny edge detector";
|
||||
|
||||
Mat lines;
|
||||
LinesType lines;
|
||||
if (type == STANDART)
|
||||
HoughLines(dst, lines, rhoStep, thetaStep, threshold, 0, 0);
|
||||
else if (type == PROBABILISTIC)
|
||||
HoughLinesP(dst, lines, rhoStep, thetaStep, threshold, minLineLength, maxGap);
|
||||
|
||||
String test_case_name = format("lines_%s_%.0f_%.2f_%d_%d_%d", picture_name.c_str(), rhoStep, thetaStep,
|
||||
threshold, minLineLength, maxGap);
|
||||
threshold, minLineLength, maxGap);
|
||||
test_case_name = getTestCaseName(test_case_name);
|
||||
|
||||
#ifdef GENERATE_DATA
|
||||
{
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty());
|
||||
}
|
||||
{
|
||||
FileStorage fs(xml, FileStorage::APPEND);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
fs << test_case_name << Mat(lines);
|
||||
}
|
||||
#else
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
FileNode node = fs[test_case_name];
|
||||
if (node.empty())
|
||||
{
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::APPEND);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
fs << test_case_name << lines;
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::READ);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
}
|
||||
ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml;
|
||||
|
||||
Mat exp_lines;
|
||||
read( fs[test_case_name], exp_lines, Mat() );
|
||||
Mat exp_lines_;
|
||||
read(fs[test_case_name], exp_lines_, Mat());
|
||||
fs.release();
|
||||
LinesType exp_lines;
|
||||
exp_lines_.copyTo(exp_lines);
|
||||
|
||||
int count = -1;
|
||||
if (type == STANDART)
|
||||
count = countMatIntersection<Vec2f>(exp_lines, lines, (float) thetaStep + FLT_EPSILON, (float) rhoStep + FLT_EPSILON);
|
||||
count = countMatIntersection<LineType>(Mat(exp_lines), Mat(lines), (float) thetaStep + FLT_EPSILON, (float) rhoStep + FLT_EPSILON);
|
||||
else if (type == PROBABILISTIC)
|
||||
count = countMatIntersection<Vec4i>(exp_lines, lines, 1e-4f, 0.f);
|
||||
count = countMatIntersection<LineType>(Mat(exp_lines), Mat(lines), 1e-4f, 0.f);
|
||||
|
||||
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
|
||||
EXPECT_GE( count, (int) (exp_lines.total() * 0.8) );
|
||||
EXPECT_LE(std::abs((double)count - Mat(exp_lines).total()), Mat(exp_lines).total() * 0.25)
|
||||
<< "count=" << count << " expected=" << Mat(exp_lines).total();
|
||||
#else
|
||||
EXPECT_EQ( count, (int) exp_lines.total());
|
||||
EXPECT_EQ(count, (int)Mat(exp_lines).total());
|
||||
#endif
|
||||
#endif // GENERATE_DATA
|
||||
}
|
||||
|
||||
void HoughLinesPointSetTest::run_test(void)
|
||||
@ -264,12 +276,22 @@ void HoughLinesPointSetTest::run_test(void)
|
||||
|
||||
TEST_P(StandartHoughLinesTest, regression)
|
||||
{
|
||||
run_test(STANDART);
|
||||
run_test<Mat, Vec2f>(STANDART, "HoughLines.xml");
|
||||
}
|
||||
|
||||
TEST_P(ProbabilisticHoughLinesTest, regression)
|
||||
{
|
||||
run_test(PROBABILISTIC);
|
||||
run_test<Mat, Vec4i>(PROBABILISTIC, "HoughLinesP.xml");
|
||||
}
|
||||
|
||||
TEST_P(StandartHoughLinesTest, regression_Vec2f)
|
||||
{
|
||||
run_test<std::vector<Vec2f>, Vec2f>(STANDART, "HoughLines2f.xml");
|
||||
}
|
||||
|
||||
TEST_P(StandartHoughLinesTest, regression_Vec3f)
|
||||
{
|
||||
run_test<std::vector<Vec3f>, Vec3f>(STANDART, "HoughLines3f.xml");
|
||||
}
|
||||
|
||||
TEST_P(HoughLinesPointSetTest, regression)
|
||||
|
Loading…
Reference in New Issue
Block a user