mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
Merge pull request #20359 from mpashchenkov:mp/onnx-tests
G-API: ONNX. Skip tests. * imread for every test * Changed name for Yolo function
This commit is contained in:
parent
aaad1791d9
commit
ed2a698392
@ -67,17 +67,17 @@ struct ONNXInitPath {
|
||||
static ONNXInitPath g_init_path;
|
||||
|
||||
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
|
||||
const cv::Mat in_mat1 = cv::Mat(sz_in, type);
|
||||
const cv::Mat in_mat = cv::Mat(sz_in, type);
|
||||
|
||||
if (CV_MAT_DEPTH(type) < CV_32F) {
|
||||
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
|
||||
cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255));
|
||||
} else {
|
||||
const int fscale = 256; // avoid bits near ULP, generate stable test input
|
||||
cv::Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
|
||||
cv::Mat in_mat32s(in_mat.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
|
||||
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
|
||||
in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0);
|
||||
in_mat32s.convertTo(in_mat, type, 1.0f / fscale, 0);
|
||||
}
|
||||
return in_mat1;
|
||||
return in_mat;
|
||||
}
|
||||
} // anonymous namespace
|
||||
namespace opencv_test
|
||||
@ -319,15 +319,13 @@ public:
|
||||
size_t num_in, num_out;
|
||||
std::vector<cv::Mat> out_gapi;
|
||||
std::vector<cv::Mat> out_onnx;
|
||||
cv::Mat in_mat1;
|
||||
cv::Mat in_mat;
|
||||
|
||||
ONNXtest() {
|
||||
initTestDataPath();
|
||||
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
|
||||
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
|
||||
out_gapi.resize(1);
|
||||
// FIXME: It should be an image from own (gapi) directory in opencv extra
|
||||
in_mat1 = cv::imread(findDataFile("cv/dpm/cat.png"));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@ -463,13 +461,9 @@ public:
|
||||
cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}),
|
||||
cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}),
|
||||
};
|
||||
cv::Mat m_in_y;
|
||||
cv::Mat m_in_uv;
|
||||
virtual void SetUp() {
|
||||
cv::Size sz{640, 480};
|
||||
m_in_y = initMatrixRandU(CV_8UC1, sz);
|
||||
m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
|
||||
}
|
||||
const cv::Size sz{640, 480};
|
||||
const cv::Mat m_in_y = initMatrixRandU(CV_8UC1, sz);
|
||||
const cv::Mat m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
|
||||
};
|
||||
|
||||
class ONNXGRayScale : public ONNXtest {
|
||||
@ -545,20 +539,20 @@ class ONNXYoloV3 : public ONNXWithRemap {
|
||||
public:
|
||||
std::vector<cv::Mat> ins;
|
||||
|
||||
private:
|
||||
virtual void SetUp() {
|
||||
void constructYoloInputs(const cv::Mat& src) {
|
||||
const int yolo_in_h = 416;
|
||||
const int yolo_in_w = 416;
|
||||
cv::Mat yolov3_input, shape, prep_mat;
|
||||
cv::resize(in_mat1, yolov3_input, cv::Size(yolo_in_w, yolo_in_h));
|
||||
cv::resize(src, yolov3_input, cv::Size(yolo_in_w, yolo_in_h));
|
||||
shape.create(cv::Size(2, 1), CV_32F);
|
||||
float* ptr = shape.ptr<float>();
|
||||
ptr[0] = in_mat1.cols;
|
||||
ptr[1] = in_mat1.rows;
|
||||
ptr[0] = src.cols;
|
||||
ptr[1] = src.rows;
|
||||
preprocess(yolov3_input, prep_mat);
|
||||
ins = {prep_mat, shape};
|
||||
}
|
||||
|
||||
private:
|
||||
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
||||
cv::Mat cvt;
|
||||
src.convertTo(cvt, CV_32F, 1.f / 255.f);
|
||||
@ -571,9 +565,10 @@ private:
|
||||
TEST_F(ONNXClassification, Infer)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// ONNX_API code
|
||||
cv::Mat processed_mat;
|
||||
preprocess(in_mat1, processed_mat);
|
||||
preprocess(in_mat, processed_mat);
|
||||
infer<float>(processed_mat, out_onnx);
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
@ -583,7 +578,7 @@ TEST_F(ONNXClassification, Infer)
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1),
|
||||
comp.apply(cv::gin(in_mat),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
@ -593,9 +588,10 @@ TEST_F(ONNXClassification, Infer)
|
||||
TEST_F(ONNXClassification, InferTensor)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// Create tensor
|
||||
cv::Mat tensor;
|
||||
preprocess(in_mat1, tensor);
|
||||
preprocess(in_mat, tensor);
|
||||
// ONNX_API code
|
||||
infer<float>(tensor, out_onnx);
|
||||
// G_API code
|
||||
@ -614,10 +610,11 @@ TEST_F(ONNXClassification, InferTensor)
|
||||
TEST_F(ONNXClassification, InferROI)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto ROI = rois.at(0);
|
||||
// ONNX_API code
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(ROI), roi_mat);
|
||||
preprocess(in_mat(ROI), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx);
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
@ -628,7 +625,7 @@ TEST_F(ONNXClassification, InferROI)
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1, ROI),
|
||||
comp.apply(cv::gin(in_mat, ROI),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
@ -638,10 +635,11 @@ TEST_F(ONNXClassification, InferROI)
|
||||
TEST_F(ONNXClassification, InferROIList)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// ONNX_API code
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois[i]), roi_mat);
|
||||
preprocess(in_mat(rois[i]), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx);
|
||||
}
|
||||
// G_API code
|
||||
@ -653,7 +651,7 @@ TEST_F(ONNXClassification, InferROIList)
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1, rois),
|
||||
comp.apply(cv::gin(in_mat, rois),
|
||||
cv::gout(out_gapi),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
@ -663,10 +661,11 @@ TEST_F(ONNXClassification, InferROIList)
|
||||
TEST_F(ONNXClassification, Infer2ROIList)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// ONNX_API code
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois[i]), roi_mat);
|
||||
preprocess(in_mat(rois[i]), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx);
|
||||
}
|
||||
// G_API code
|
||||
@ -678,7 +677,7 @@ TEST_F(ONNXClassification, Infer2ROIList)
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1, rois),
|
||||
comp.apply(cv::gin(in_mat, rois),
|
||||
cv::gout(out_gapi),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
@ -688,9 +687,10 @@ TEST_F(ONNXClassification, Infer2ROIList)
|
||||
TEST_F(ONNXWithRemap, InferDynamicInputTensor)
|
||||
{
|
||||
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// Create tensor
|
||||
cv::Mat cvt, rsz, tensor;
|
||||
cv::resize(in_mat1, rsz, cv::Size{416, 416});
|
||||
cv::resize(in_mat, rsz, cv::Size{416, 416});
|
||||
rsz.convertTo(cvt, CV_32F, 1.f / 255.f);
|
||||
toCHW(cvt, tensor);
|
||||
tensor = tensor.reshape(1, {1, 3, 416, 416});
|
||||
@ -714,9 +714,10 @@ TEST_F(ONNXWithRemap, InferDynamicInputTensor)
|
||||
TEST_F(ONNXGRayScale, InferImage)
|
||||
{
|
||||
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// ONNX_API code
|
||||
cv::Mat prep_mat;
|
||||
preprocess(in_mat1, prep_mat);
|
||||
preprocess(in_mat, prep_mat);
|
||||
infer<float>(prep_mat, out_onnx);
|
||||
// G_API code
|
||||
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
|
||||
@ -725,7 +726,7 @@ TEST_F(ONNXGRayScale, InferImage)
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
|
||||
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
|
||||
comp.apply(cv::gin(in_mat1),
|
||||
comp.apply(cv::gin(in_mat),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
@ -735,8 +736,9 @@ TEST_F(ONNXGRayScale, InferImage)
|
||||
TEST_F(ONNXWithRemap, InferMultiOutput)
|
||||
{
|
||||
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// ONNX_API code
|
||||
const auto prep_mat = in_mat1.reshape(1, {1, in_mat1.rows, in_mat1.cols, in_mat1.channels()});
|
||||
const auto prep_mat = in_mat.reshape(1, {1, in_mat.rows, in_mat.cols, in_mat.channels()});
|
||||
infer<uint8_t>(prep_mat, out_onnx);
|
||||
cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F);
|
||||
remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out);
|
||||
@ -750,7 +752,7 @@ TEST_F(ONNXWithRemap, InferMultiOutput)
|
||||
auto net = cv::gapi::onnx::Params<MobileNet>{ model_path }
|
||||
.cfgOutputLayers({"detection_output"})
|
||||
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts);
|
||||
comp.apply(cv::gin(in_mat1),
|
||||
comp.apply(cv::gin(in_mat),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
@ -760,12 +762,13 @@ TEST_F(ONNXWithRemap, InferMultiOutput)
|
||||
TEST_F(ONNXMediaFrame, InferBGR)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// ONNX_API code
|
||||
cv::Mat processed_mat;
|
||||
preprocess(in_mat1, processed_mat);
|
||||
preprocess(in_mat, processed_mat);
|
||||
infer<float>(processed_mat, out_onnx);
|
||||
// G_API code
|
||||
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
||||
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
cv::GFrame in;
|
||||
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
||||
@ -783,6 +786,7 @@ TEST_F(ONNXMediaFrame, InferBGR)
|
||||
TEST_F(ONNXMediaFrame, InferYUV)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
||||
// ONNX_API code
|
||||
cv::Mat pp;
|
||||
@ -808,10 +812,11 @@ TEST_F(ONNXMediaFrame, InferYUV)
|
||||
TEST_F(ONNXMediaFrame, InferROIBGR)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
||||
// ONNX_API code
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois.front()), roi_mat);
|
||||
preprocess(in_mat(rois.front()), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx);
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
@ -832,6 +837,7 @@ TEST_F(ONNXMediaFrame, InferROIBGR)
|
||||
TEST_F(ONNXMediaFrame, InferROIYUV)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
||||
// ONNX_API code
|
||||
cv::Mat pp;
|
||||
@ -858,11 +864,12 @@ TEST_F(ONNXMediaFrame, InferROIYUV)
|
||||
TEST_F(ONNXMediaFrame, InferListBGR)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
||||
// ONNX_API code
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois[i]), roi_mat);
|
||||
preprocess(in_mat(rois[i]), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx);
|
||||
}
|
||||
// G_API code
|
||||
@ -884,6 +891,7 @@ TEST_F(ONNXMediaFrame, InferListBGR)
|
||||
TEST_F(ONNXMediaFrame, InferListYUV)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
||||
// ONNX_API code
|
||||
cv::Mat pp;
|
||||
@ -911,8 +919,9 @@ TEST_F(ONNXMediaFrame, InferListYUV)
|
||||
TEST_F(ONNXRCNN, InferWithDisabledOut)
|
||||
{
|
||||
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
cv::Mat pp;
|
||||
preprocess(in_mat1, pp);
|
||||
preprocess(in_mat, pp);
|
||||
// ONNX_API code
|
||||
infer<float>(pp, out_onnx, {"6379", "6383"});
|
||||
// G_API code
|
||||
@ -937,11 +946,12 @@ TEST_F(ONNXRCNN, InferWithDisabledOut)
|
||||
TEST_F(ONNXMediaFrame, InferList2BGR)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
||||
// ONNX_API code
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois[i]), roi_mat);
|
||||
preprocess(in_mat(rois[i]), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx);
|
||||
}
|
||||
// G_API code
|
||||
@ -963,6 +973,7 @@ TEST_F(ONNXMediaFrame, InferList2BGR)
|
||||
TEST_F(ONNXMediaFrame, InferList2YUV)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
||||
// ONNX_API code
|
||||
cv::Mat pp;
|
||||
@ -991,6 +1002,8 @@ TEST_F(ONNXMediaFrame, InferList2YUV)
|
||||
TEST_F(ONNXYoloV3, InferConstInput)
|
||||
{
|
||||
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
constructYoloInputs(in_mat);
|
||||
// ONNX_API code
|
||||
infer<float>(ins, out_onnx);
|
||||
// G_API code
|
||||
@ -1022,6 +1035,8 @@ TEST_F(ONNXYoloV3, InferBSConstInput)
|
||||
// and all input layer names are specified.
|
||||
// Const input has the advantage. It is expected behavior.
|
||||
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
constructYoloInputs(in_mat);
|
||||
// Tensor with incorrect image size
|
||||
// is used for check case when InputLayers and constInput have same names
|
||||
cv::Mat bad_shape;
|
||||
@ -1059,8 +1074,9 @@ TEST_F(ONNXYoloV3, InferBSConstInput)
|
||||
TEST_F(ONNXRCNN, ConversionInt64to32)
|
||||
{
|
||||
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
cv::Mat dst;
|
||||
preprocess(in_mat1, dst);
|
||||
preprocess(in_mat, dst);
|
||||
// ONNX_API code
|
||||
infer<float>(dst, out_onnx);
|
||||
// G_API code
|
||||
@ -1087,6 +1103,7 @@ TEST_F(ONNXRCNN, ConversionInt64to32)
|
||||
TEST_F(ONNXWithRemap, InferOutReallocation)
|
||||
{
|
||||
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
|
||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||
// G_API code
|
||||
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
|
||||
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
|
||||
@ -1096,7 +1113,7 @@ TEST_F(ONNXWithRemap, InferOutReallocation)
|
||||
cv::GMat out1;
|
||||
out1 = cv::gapi::infer<MobileNet>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out1));
|
||||
EXPECT_THROW(comp.apply(cv::gin(in_mat1),
|
||||
EXPECT_THROW(comp.apply(cv::gin(in_mat),
|
||||
cv::gout(out_gapi[0]),
|
||||
cv::compile_args(cv::gapi::networks(net))), std::exception);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user