mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #24378 from fengyuentau:instance_norm
dnn onnx: add instance norm layer #24378 Resolves https://github.com/opencv/opencv/issues/24377 Relates https://github.com/opencv/opencv/pull/24092#discussion_r1349841644 | Perf | multi-thread | single-thread | | - | - | - | | x: [2, 64, 180, 240] | 3.95ms | 11.12ms | Todo: - [x] speed up by multi-threading - [x] add perf - [x] add backend: OpenVINO - [x] add backend: CUDA - [x] add backend: OpenCL (no fp16) - [ ] add backend: CANN (will be done via https://github.com/opencv/opencv/pull/24462) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake ``` force_builders=Linux OpenCL,Win64 OpenCL,Custom buildworker:Custom=linux-4 build_image:Custom=ubuntu:18.04 modules_filter:Custom=none disable_ipp:Custom=ON ```
This commit is contained in:
parent
832f738db0
commit
ee0822dc4d
@ -1166,6 +1166,13 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
static Ptr<ExpandLayer> create(const LayerParams ¶ms);
|
||||
};
|
||||
|
||||
class CV_EXPORTS InstanceNormLayer : public Layer {
|
||||
public:
|
||||
float epsilon;
|
||||
|
||||
static Ptr<InstanceNormLayer> create(const LayerParams ¶ms);
|
||||
};
|
||||
|
||||
//! @}
|
||||
//! @}
|
||||
CV__DNN_INLINE_NS_END
|
||||
|
@ -683,6 +683,62 @@ PERF_TEST_P_(Layer_GatherElements, GatherElements)
|
||||
test_layer({2700, 1, 2914}, {2700, 1, 81}, 2);
|
||||
}
|
||||
|
||||
struct Layer_InstanceNorm : public TestBaseWithParam<tuple<Backend, Target> >
|
||||
{
|
||||
void test_layer(const std::vector<int>& x_shape)
|
||||
{
|
||||
int backendId = get<0>(GetParam());
|
||||
int targetId = get<1>(GetParam());
|
||||
|
||||
Mat x(x_shape, CV_32FC1);
|
||||
Mat scale(x_shape[1], 1, CV_32FC1);
|
||||
Mat b(x_shape[1], 1, CV_32FC1);
|
||||
|
||||
randu(x, 0.f, 1.f);
|
||||
randu(scale, 0.f, 1.f);
|
||||
randu(b, 0.f, 1.f);
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.type = "InstanceNormalization";
|
||||
lp.name = "testLayer";
|
||||
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
||||
net.connect(0, 0, id, 0);
|
||||
net.connect(0, 1, id, 1);
|
||||
net.connect(0, 2, id, 2);
|
||||
|
||||
// warmup
|
||||
{
|
||||
std::vector<String> inpNames{"x", "scale", "b"};
|
||||
net.setInputsNames(inpNames);
|
||||
net.setInput(x, inpNames[0]);
|
||||
net.setInput(scale, inpNames[1]);
|
||||
net.setInput(b, inpNames[2]);
|
||||
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
Mat out = net.forward();
|
||||
}
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
Mat res = net.forward();
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
int N = 2;
|
||||
int C = 64;
|
||||
int H = 180;
|
||||
int W = 240;
|
||||
};
|
||||
|
||||
PERF_TEST_P_(Layer_InstanceNorm, InstanceNorm)
|
||||
{
|
||||
test_layer({N, C, H, W});
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false));
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
#ifdef HAVE_CUDA
|
||||
@ -693,6 +749,7 @@ INSTANTIATE_TEST_CASE_P(/**/, Layer_ScatterND, testing::Values(std::make_tuple(D
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_LayerNorm, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_LayerNormExpanded, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_GatherElements, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_InstanceNorm, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
|
||||
|
||||
typedef TestBaseWithParam<tuple<Vec4i, int, bool, tuple<Backend, Target> > > Layer_FullyConnected;
|
||||
|
@ -66,6 +66,17 @@ namespace raw {
|
||||
output[idx] = (static_cast<float>(input[idx]) - means[outer_idx]) * scale[outer_idx];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
__global__ void normalize_mean_variance_channelwise(Span<T> output, View<T> input, View<T> scale, View<T> bias, View<float> means, View<float> stdev, size_type inner_size, size_type C) {
|
||||
for (auto idx : grid_stride_range(output.size())) {
|
||||
const index_type outer_idx = idx / inner_size;
|
||||
const index_type c = outer_idx % C;
|
||||
auto s = static_cast<float>(scale[c]) * stdev[outer_idx];
|
||||
auto b = static_cast<float>(bias[c]);
|
||||
output[idx] = (static_cast<float>(input[idx]) - means[outer_idx]) * s + b;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
@ -142,4 +153,21 @@ template void normalize_mean_variance(const Stream&, Span<__half>, View<__half>,
|
||||
#endif
|
||||
template void normalize_mean_variance(const Stream&, Span<float>, View<float>, View<float>, View<float>, std::size_t);
|
||||
|
||||
template <class T>
|
||||
void normalize_mean_variance_channelwise(const Stream& stream, Span<T> output, View<T> input, View<T> scale, View<T> bias, View<float> means, View<float> stdev, std::size_t inner_size, std::size_t C)
|
||||
{
|
||||
CV_Assert(input.size() == output.size());
|
||||
CV_Assert(input.size() / inner_size == means.size());
|
||||
CV_Assert(means.size() == stdev.size());
|
||||
|
||||
auto kernel = raw::normalize_mean_variance_channelwise<T>;
|
||||
auto policy = make_policy(kernel, output.size(), 0, stream);
|
||||
launch_kernel(kernel, policy, output, input, scale, bias, means, stdev, inner_size, C);
|
||||
}
|
||||
|
||||
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
|
||||
template void normalize_mean_variance_channelwise(const Stream&, Span<__half> /*output*/, View<__half> /*input*/, View<__half> /*scale*/, View<__half> /*bias*/, View<float> /*means*/, View<float> /*stdev*/, std::size_t, std::size_t);
|
||||
#endif
|
||||
template void normalize_mean_variance_channelwise(const Stream&, Span<float> /*output*/, View<float> /*input*/, View<float> /*scale*/, View<float> /*bias*/, View<float> /*means*/, View<float> /*stdev*/, std::size_t, std::size_t);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
@ -26,6 +26,9 @@ void normalize_mean(const csl::Stream& stream, csl::Span<T> output, csl::View<T>
|
||||
template <class T>
|
||||
void normalize_mean_variance(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, csl::View<float> means, csl::View<float> scale, std::size_t inner_size);
|
||||
|
||||
template <class T>
|
||||
void normalize_mean_variance_channelwise(const csl::Stream &stream, csl::Span<T> output, csl::View<T> input, csl::View<T> scale, csl::View<T> bias, csl::View<float> means, csl::View<float> stdev, std::size_t inner_size, std::size_t C);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
||||
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MVN_HPP */
|
||||
|
86
modules/dnn/src/cuda4dnn/primitives/instance_norm.hpp
Normal file
86
modules/dnn/src/cuda4dnn/primitives/instance_norm.hpp
Normal file
@ -0,0 +1,86 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_INSTANCE_NORM_HPP
|
||||
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_INSTANCE_NORM_HPP
|
||||
|
||||
#include "../../op_cuda.hpp"
|
||||
|
||||
#include "../csl/stream.hpp"
|
||||
#include "../csl/span.hpp"
|
||||
#include "../csl/tensor.hpp"
|
||||
#include "../csl/workspace.hpp"
|
||||
|
||||
#include "../kernels/fill_copy.hpp"
|
||||
#include "../kernels/mvn.hpp"
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
|
||||
template <class T>
|
||||
class InstanceNormOp final : public CUDABackendNode {
|
||||
public:
|
||||
using wrapper_type = GetCUDABackendWrapperType<T>;
|
||||
|
||||
InstanceNormOp(csl::Stream stream_, float epsilon_, size_t loops)
|
||||
: stream(std::move(stream_)), epsilon(epsilon_) {
|
||||
csl::WorkspaceBuilder builder;
|
||||
builder.require<float>(loops);
|
||||
builder.require<float>(loops);
|
||||
scratch_mem_in_bytes = builder.required_workspace_size();
|
||||
}
|
||||
|
||||
void forward(const std::vector<cv::Ptr<BackendWrapper>>& inputs,
|
||||
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
|
||||
csl::Workspace& workspace) override {
|
||||
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
|
||||
auto scale_wrapper = inputs[1].dynamicCast<wrapper_type>();
|
||||
auto bias_wrapper = inputs[2].dynamicCast<wrapper_type>();
|
||||
|
||||
auto input = input_wrapper->getView();
|
||||
auto scale = scale_wrapper->getView();
|
||||
auto bias = bias_wrapper->getView();
|
||||
|
||||
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
|
||||
auto output = output_wrapper->getSpan();
|
||||
|
||||
auto C = input.get_axis_size(1);
|
||||
auto loops = input.size_range(0, 2);
|
||||
auto norm_size = input.size_range(2, input.rank());
|
||||
if (norm_size == 1) {
|
||||
kernels::fill<T>(stream, output, 0.f);
|
||||
return;
|
||||
} else {
|
||||
auto ws_allocator = csl::WorkspaceAllocator(workspace);
|
||||
|
||||
auto mean = ws_allocator.get_span<float>(loops);
|
||||
kernels::fill<float>(stream, mean, 0.f);
|
||||
|
||||
auto stdev = ws_allocator.get_span<float>(loops);
|
||||
kernels::fill<float>(stream, stdev, 0.f);
|
||||
|
||||
kernels::reduce_mean_sqr_sum<T>(stream, mean, stdev, input, norm_size);
|
||||
kernels::compute_normalization_scale(stream, stdev, mean, stdev, norm_size, epsilon);
|
||||
kernels::normalize_mean_variance_channelwise<T>(stream, output, input, scale, bias, mean, stdev, norm_size, C);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
|
||||
|
||||
private:
|
||||
csl::Stream stream;
|
||||
|
||||
float epsilon;
|
||||
|
||||
std::size_t scratch_mem_in_bytes;
|
||||
};
|
||||
|
||||
}}} // cv::dnn::cuda4dnn
|
||||
|
||||
#endif // OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_INSTANCE_NORM_HPP
|
@ -160,6 +160,7 @@ void initializeLayerFactory()
|
||||
CV_DNN_REGISTER_LAYER_CLASS(GatherElements, GatherElementsLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(LayerNormalization, LayerNormLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Expand, ExpandLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(InstanceNormalization, InstanceNormLayer);
|
||||
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Crop, CropLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Eltwise, EltwiseLayer);
|
||||
|
@ -118,10 +118,11 @@ void fastNorm(const Mat &input, const Mat &scale, const Mat &bias, Mat &output,
|
||||
|
||||
void fastNormChannel(const Mat &input, const Mat &scale, const Mat &bias, Mat &output, float epsilon) {
|
||||
const auto input_shape = shape(input);
|
||||
size_t N = input_shape[0], C = input_shape[1];
|
||||
CV_CheckEQ(scale.total(), bias.total(), "fastNormChannel: scale and bias should have the same shape");
|
||||
CV_CheckEQ(scale.total(), C, "fastNormChannel: scale should be a 1d tensor and match the channel of input");
|
||||
CV_CheckGE(input.dims, 3, "fastNormChannel: input dimension >= 3");
|
||||
|
||||
size_t N = input_shape[0], C = input_shape[1];
|
||||
size_t loops = N * C,
|
||||
norm_size = static_cast<size_t>(total(input_shape, 2));
|
||||
float inv_norm_size = 1.0 / norm_size;
|
||||
@ -147,9 +148,9 @@ void fastNormChannel(const Mat &input, const Mat &scale, const Mat &bias, Mat &o
|
||||
float inv_stdev = 1.f / mean_square;
|
||||
|
||||
size_t c = i % C;
|
||||
float s = scale_data[c], b = bias_data[c];
|
||||
float s = scale_data[c] * inv_stdev, b = bias_data[c];
|
||||
for (size_t j = 0; j < norm_size; j++) {
|
||||
y[j] = s * (x[j] - mean) * inv_stdev + b;
|
||||
y[j] = s * (x[j] - mean) + b;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
231
modules/dnn/src/layers/instance_norm_layer.cpp
Normal file
231
modules/dnn/src/layers/instance_norm_layer.cpp
Normal file
@ -0,0 +1,231 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
#include "./cpu_kernels/fast_norm.hpp"
|
||||
|
||||
// OpenVINO backend
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
|
||||
// CUDA backend
|
||||
#include "../op_cuda.hpp"
|
||||
#ifdef HAVE_CUDA
|
||||
#include "../cuda4dnn/primitives/instance_norm.hpp"
|
||||
using namespace cv::dnn::cuda4dnn;
|
||||
#endif
|
||||
|
||||
// OpenCL backend
|
||||
#ifdef HAVE_OPENCL
|
||||
#include "../ocl4dnn/include/math_functions.hpp"
|
||||
#include "opencl_kernels_dnn.hpp"
|
||||
#endif
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#InstanceNormalization
|
||||
class InstanceNormLayerImpl CV_FINAL : public InstanceNormLayer {
|
||||
public:
|
||||
InstanceNormLayerImpl(const LayerParams ¶ms) {
|
||||
setParamsFrom(params);
|
||||
|
||||
epsilon = params.get<float>("epsilon", 1e-5);
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE {
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
return true;
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE {
|
||||
const auto &input = inputs[0];
|
||||
const auto &scale = inputs[1];
|
||||
const auto &bias = inputs[2];
|
||||
CV_CheckGE(input.size(), static_cast<size_t>(3), "DNN/InstanceNorm: input dimension >= 3 is required");
|
||||
|
||||
int C = input[1];
|
||||
int scale_dim = std::accumulate(scale.begin(), scale.end(), 1, std::multiplies<int>());
|
||||
CV_CheckEQ(scale_dim, C, "DNN/InstanceNorm: scale must be a 1d tensor and match the channel of input");
|
||||
int bias_dim = std::accumulate(bias.begin(), bias.end(), 1, std::multiplies<int>());
|
||||
CV_CheckEQ(bias_dim, C, "DNN/InstanceNorm: bias must be a 1d tensor and match the channel of input");
|
||||
|
||||
outputs.assign(1, inputs[0]);
|
||||
return false;
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE {
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
if (inputs_arr.depth() == CV_16S)
|
||||
{
|
||||
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<Mat> inputs, outputs;
|
||||
inputs_arr.getMatVector(inputs);
|
||||
outputs_arr.getMatVector(outputs);
|
||||
|
||||
const auto &input = inputs[0];
|
||||
const auto &scale = inputs[1];
|
||||
const auto &bias = inputs[2];
|
||||
|
||||
fastNormChannel(input, scale, bias, outputs[0], epsilon);
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) {
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
|
||||
const auto &input = inputs[0], &scale = inputs[1], &bias = inputs[2];
|
||||
auto &output = outputs[0];
|
||||
|
||||
const auto input_shape = shape(input);
|
||||
size_t N = input_shape[0], C = input_shape[1],
|
||||
loops = N * C, norm_size = static_cast<size_t>(total(input_shape, 2));
|
||||
float inv_norm_size = 1.f / norm_size;
|
||||
|
||||
// no fp16 support
|
||||
if (input.depth() == CV_16S) {
|
||||
return false;
|
||||
}
|
||||
|
||||
String base_opts = format(" -DT=float -DT4=float4 -Dconvert_T=convert_float4");
|
||||
|
||||
// Calculate mean
|
||||
UMat one = UMat::ones(norm_size, 1, CV_32F);
|
||||
UMat mean = UMat(loops, 1, CV_32F);
|
||||
UMat mean_square = UMat(loops, 1, CV_32F);
|
||||
UMat tmp = UMat(loops, norm_size, CV_32F);
|
||||
bool ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, loops, norm_size, inv_norm_size,
|
||||
input, 0, one, 0, 0.f, mean, 0);
|
||||
if (!ret) {
|
||||
return false;
|
||||
}
|
||||
// Calculate mean_square
|
||||
int num_vector = (norm_size % 8 == 0) ? 8 : ((norm_size % 4 == 0) ? 4 : 1);
|
||||
size_t global[] = {loops, static_cast<size_t>(norm_size / num_vector)};
|
||||
String build_opt = format(" -DNUM=%d", num_vector) + base_opts;
|
||||
String mean_square_kernel_name = format("calc_mean%d", num_vector);
|
||||
ocl::Kernel mean_square_kernel(mean_square_kernel_name.c_str(), ocl::dnn::mvn_oclsrc, build_opt + " -DKERNEL_MEAN");
|
||||
if (mean_square_kernel.empty()) {
|
||||
return false;
|
||||
}
|
||||
mean_square_kernel.set(0, ocl::KernelArg::PtrReadOnly(input));
|
||||
mean_square_kernel.set(1, (int)loops);
|
||||
mean_square_kernel.set(2, (int)norm_size);
|
||||
mean_square_kernel.set(3, ocl::KernelArg::PtrReadOnly(mean));
|
||||
mean_square_kernel.set(4, ocl::KernelArg::PtrWriteOnly(tmp));
|
||||
ret = mean_square_kernel.run(2, global, NULL, false);
|
||||
if (!ret) {
|
||||
return false;
|
||||
}
|
||||
ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, loops, norm_size, inv_norm_size,
|
||||
tmp, 0, one, 0, 0.f, mean_square, 0);
|
||||
if (!ret) {
|
||||
return false;
|
||||
}
|
||||
// Calculate instance norm: output = scale * (x - mean) / sqrt(var + eps) + bias
|
||||
String mvn_kernel_name = format("mvn%d", num_vector);
|
||||
build_opt += " -DNORM_VARIANCE -DFUSE_BATCH_NORM -DKERNEL_MVN";
|
||||
ocl::Kernel mvn_kernel(mvn_kernel_name.c_str(), ocl::dnn::mvn_oclsrc, build_opt);
|
||||
if (mvn_kernel.empty()) {
|
||||
return false;
|
||||
}
|
||||
mvn_kernel.set(0, ocl::KernelArg::PtrReadOnly(input));
|
||||
mvn_kernel.set(1, (int)loops);
|
||||
mvn_kernel.set(2, (int)norm_size);
|
||||
mvn_kernel.set(3, (float)epsilon);
|
||||
mvn_kernel.set(4, ocl::KernelArg::PtrReadOnly(mean));
|
||||
mvn_kernel.set(5, ocl::KernelArg::PtrReadOnly(mean_square));
|
||||
mvn_kernel.set(6, ocl::KernelArg::PtrReadOnly(scale));
|
||||
mvn_kernel.set(7, ocl::KernelArg::PtrReadOnly(bias));
|
||||
mvn_kernel.set(8, (int)C);
|
||||
mvn_kernel.set(9, (float)0.f);
|
||||
mvn_kernel.set(10, ocl::KernelArg::PtrWriteOnly(output));
|
||||
ret = mvn_kernel.run(2, global, NULL, false);
|
||||
if (!ret) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE {
|
||||
// onnx to openvino convertion: https://github.com/openvinotoolkit/openvino/blob/2023.1.0/src/frontends/onnx/frontend/src/op/instance_norm.cpp
|
||||
|
||||
auto ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
||||
const auto &input_shape = ieInpNode.get_shape();
|
||||
std::shared_ptr<ngraph::Node> mvn, result;
|
||||
|
||||
// mvn
|
||||
#if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2021_2)
|
||||
// https://docs.openvino.ai/2021.4/api/ngraph_python_api/_autosummary/ngraph.opset3.mvn.html?highlight=mvn#ngraph.opset3.mvn
|
||||
bool across_channels = false;
|
||||
bool normalize_variance = true;
|
||||
mvn = std::make_shared<ngraph::op::MVN>(ieInpNode, across_channels, normalize_variance, epsilon);
|
||||
#else
|
||||
// https://docs.openvino.ai/2023.1/openvino_docs_ops_normalization_MVN_6.html
|
||||
std::vector<int64_t> axes_v(input_shape.size() - 2);
|
||||
std::iota(axes_v.begin(), axes_v.end(), 2); // {2, 3, ...} for nd input tensor, n>=3
|
||||
auto axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{axes_v.size()}, axes_v.data());
|
||||
bool normalize_variance = true;
|
||||
mvn = std::make_shared<ngraph::op::v6::MVN>(ieInpNode, axes, normalize_variance, epsilon, ngraph::op::MVNEpsMode::INSIDE_SQRT);
|
||||
#endif
|
||||
|
||||
// instance norm = scale * mvn + bias
|
||||
auto scale = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
|
||||
std::vector<int64_t> shared_shape_v(input_shape.size(), 1);
|
||||
shared_shape_v[1] = -1;
|
||||
auto shared_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{shared_shape_v.size()}, shared_shape_v.data());
|
||||
scale = std::make_shared<ngraph::op::v1::Reshape>(scale, shared_shape, true);
|
||||
result = std::make_shared<ngraph::op::v1::Multiply>(mvn, scale);
|
||||
auto bias = nodes[2].dynamicCast<InfEngineNgraphNode>()->node;
|
||||
bias = std::make_shared<ngraph::op::v1::Reshape>(bias, shared_shape, true);
|
||||
result = std::make_shared<ngraph::op::v1::Add>(result, bias);
|
||||
|
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(result));
|
||||
}
|
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
Ptr<BackendNode> initCUDA(void *context_,
|
||||
const std::vector<Ptr<BackendWrapper>>& inputs,
|
||||
const std::vector<Ptr<BackendWrapper>>& outputs) override {
|
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
||||
|
||||
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
||||
auto input_shape = input_wrapper->getShape();
|
||||
size_t loops = static_cast<size_t>(total(input_shape, 0, 2));
|
||||
|
||||
return make_cuda_node<cuda4dnn::InstanceNormOp>(preferableTarget, std::move(context->stream), epsilon, loops);
|
||||
}
|
||||
#endif // HAVE_CUDA
|
||||
|
||||
};
|
||||
|
||||
Ptr<InstanceNormLayer> InstanceNormLayer::create(const LayerParams ¶ms) {
|
||||
return Ptr<InstanceNormLayer>(new InstanceNormLayerImpl(params));
|
||||
}
|
||||
|
||||
}} // cv::dnn
|
@ -1844,44 +1844,43 @@ void ONNXImporter::parseLRN(LayerParams& layerParams, const opencv_onnx::NodePro
|
||||
addLayer(layerParams, node_proto);
|
||||
}
|
||||
|
||||
void ONNXImporter::parseInstanceNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
|
||||
{
|
||||
opencv_onnx::NodeProto node_proto = node_proto_;
|
||||
if (node_proto.input_size() != 3)
|
||||
CV_Error(Error::StsNotImplemented,
|
||||
"Expected input, scale, bias");
|
||||
void ONNXImporter::parseInstanceNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) {
|
||||
int num_inputs = node_proto.input_size();
|
||||
CV_CheckEQ(num_inputs, 3, "DNN/ONNXImporter - InstanceNorm: three inputs are required");
|
||||
|
||||
layerParams.blobs.resize(4);
|
||||
layerParams.blobs[2] = getBlob(node_proto, 1); // weightData
|
||||
layerParams.blobs[3] = getBlob(node_proto, 2); // biasData
|
||||
layerParams.set("has_bias", true);
|
||||
layerParams.set("has_weight", true);
|
||||
bool found_input = constBlobs.find(node_proto.input(0)) != constBlobs.end();
|
||||
bool found_scale = constBlobs.find(node_proto.input(1)) != constBlobs.end();
|
||||
bool found_bias = constBlobs.find(node_proto.input(2)) != constBlobs.end();
|
||||
|
||||
// Get number of channels in input
|
||||
int size = layerParams.blobs[2].total();
|
||||
layerParams.blobs[0] = Mat::zeros(size, 1, CV_32F); // mean
|
||||
layerParams.blobs[1] = Mat::ones(size, 1, CV_32F); // std
|
||||
if (found_input && found_scale && found_bias) {
|
||||
std::vector<Mat> inputs, output;
|
||||
|
||||
LayerParams mvnParams;
|
||||
mvnParams.name = layerParams.name + "/MVN";
|
||||
mvnParams.type = "MVN";
|
||||
mvnParams.set("eps", layerParams.get<float>("epsilon"));
|
||||
layerParams.erase("epsilon");
|
||||
Mat input = getBlob(node_proto, 0);
|
||||
Mat scale = getBlob(node_proto, 1);
|
||||
Mat bias = getBlob(node_proto, 2);
|
||||
inputs.push_back(input);
|
||||
inputs.push_back(scale);
|
||||
inputs.push_back(bias);
|
||||
|
||||
//Create MVN layer
|
||||
int id = dstNet.addLayer(mvnParams.name, mvnParams.type, mvnParams);
|
||||
//Connect to input
|
||||
IterLayerId_t layerId = layer_id.find(node_proto.input(0));
|
||||
CV_Assert(layerId != layer_id.end());
|
||||
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0);
|
||||
//Add shape
|
||||
layer_id.insert(std::make_pair(mvnParams.name, LayerInfo(id, 0)));
|
||||
outShapes[mvnParams.name] = outShapes[node_proto.input(0)];
|
||||
runLayer(layerParams, inputs, output);
|
||||
addConstant(node_proto.output(0), output[0]);
|
||||
} else {
|
||||
auto add_const_node = [&] (int i) {
|
||||
LayerParams const_params;
|
||||
const_params.name = node_proto.input(i);
|
||||
const_params.type = "Const";
|
||||
Mat blob = getBlob(node_proto, i);
|
||||
const_params.blobs.push_back(blob);
|
||||
|
||||
//Replace Batch Norm's input to MVN
|
||||
node_proto.set_input(0, mvnParams.name);
|
||||
layerParams.type = "BatchNorm";
|
||||
opencv_onnx::NodeProto proto;
|
||||
proto.add_output(const_params.name);
|
||||
addLayer(const_params, proto);
|
||||
};
|
||||
if (found_input && layer_id.find(node_proto.input(0)) == layer_id.end()) { add_const_node(0); }
|
||||
if (found_scale && layer_id.find(node_proto.input(1)) == layer_id.end()) { add_const_node(1); }
|
||||
if (found_bias && layer_id.find(node_proto.input(2)) == layer_id.end()) { add_const_node(2); }
|
||||
addLayer(layerParams, node_proto);
|
||||
}
|
||||
}
|
||||
|
||||
void ONNXImporter::parseBatchNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
|
||||
|
@ -159,8 +159,6 @@
|
||||
"test_if",
|
||||
"test_if_opt",
|
||||
"test_if_seq",
|
||||
"test_instancenorm_epsilon",
|
||||
"test_instancenorm_example",
|
||||
"test_isinf",
|
||||
"test_isinf_negative",
|
||||
"test_isinf_positive",
|
||||
|
Loading…
Reference in New Issue
Block a user