mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
fixed compile warnings from MSVC; fixed warnings in Python bindings; added some debugging code
This commit is contained in:
parent
9cb79b9abb
commit
eeb786fcfd
@ -205,7 +205,7 @@ public:
|
||||
class CV_EXPORTS_W NormalBayesClassifier : public StatModel
|
||||
{
|
||||
public:
|
||||
class CV_EXPORTS_W_MAP Params
|
||||
class CV_EXPORTS_W Params
|
||||
{
|
||||
public:
|
||||
Params();
|
||||
@ -231,8 +231,8 @@ public:
|
||||
public:
|
||||
Params(int defaultK=10, bool isclassifier=true);
|
||||
|
||||
int defaultK;
|
||||
bool isclassifier;
|
||||
CV_PROP_RW int defaultK;
|
||||
CV_PROP_RW bool isclassifier;
|
||||
};
|
||||
virtual void setParams(const Params& p) = 0;
|
||||
virtual Params getParams() const = 0;
|
||||
@ -328,9 +328,9 @@ public:
|
||||
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
|
||||
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
|
||||
EM::DEFAULT_MAX_ITERS, 1e-6));
|
||||
int nclusters;
|
||||
int covMatType;
|
||||
TermCriteria termCrit;
|
||||
CV_PROP_RW int nclusters;
|
||||
CV_PROP_RW int covMatType;
|
||||
CV_PROP_RW TermCriteria termCrit;
|
||||
};
|
||||
|
||||
virtual void setParams(const Params& p) = 0;
|
||||
|
@ -123,7 +123,7 @@ public:
|
||||
void clear()
|
||||
{
|
||||
min_val = max_val = min_val1 = max_val1 = 0.;
|
||||
rng = RNG(-1);
|
||||
rng = RNG((uint64)-1);
|
||||
weights.clear();
|
||||
trained = false;
|
||||
}
|
||||
@ -300,7 +300,7 @@ public:
|
||||
{
|
||||
int maxIdx[] = {0, 0};
|
||||
minMaxIdx(outputs, 0, 0, 0, maxIdx);
|
||||
return maxIdx[0] + maxIdx[1];
|
||||
return (float)(maxIdx[0] + maxIdx[1]);
|
||||
}
|
||||
|
||||
return 0.f;
|
||||
@ -702,9 +702,8 @@ public:
|
||||
train_backprop( inputs, outputs, sw, termcrit ) :
|
||||
train_rprop( inputs, outputs, sw, termcrit );
|
||||
|
||||
trained = true;
|
||||
|
||||
return iter;
|
||||
trained = iter > 0;
|
||||
return trained;
|
||||
}
|
||||
|
||||
int train_backprop( const Mat& inputs, const Mat& outputs, const Mat& _sw, TermCriteria termCrit )
|
||||
|
@ -220,12 +220,13 @@ public:
|
||||
|
||||
void updateWeightsAndTrim( int treeidx, vector<int>& sidx )
|
||||
{
|
||||
putchar('<');
|
||||
int i, n = (int)w->sidx.size();
|
||||
int nvars = (int)varIdx.size();
|
||||
double sumw = 0., C = 1.;
|
||||
cv::AutoBuffer<double> buf(n*3 + nvars);
|
||||
cv::AutoBuffer<double> buf(n + nvars);
|
||||
double* result = buf;
|
||||
float* sbuf = (float*)(result + n*3);
|
||||
float* sbuf = (float*)(result + n);
|
||||
Mat sample(1, nvars, CV_32F, sbuf);
|
||||
int predictFlags = bparams.boostType == Boost::DISCRETE ? (PREDICT_MAX_VOTE | RAW_OUTPUT) : PREDICT_SUM;
|
||||
predictFlags |= COMPRESSED_INPUT;
|
||||
@ -373,6 +374,7 @@ public:
|
||||
if( w->sample_weights[si] >= threshold )
|
||||
sidx.push_back(si);
|
||||
}
|
||||
putchar('>'); fflush(stdout);
|
||||
}
|
||||
|
||||
float predictTrees( const Range& range, const Mat& sample, int flags0 ) const
|
||||
|
@ -310,7 +310,7 @@ public:
|
||||
varType.create(1, nvars, CV_8U);
|
||||
varType = Scalar::all(VAR_ORDERED);
|
||||
if( noutputvars == 1 )
|
||||
varType.at<uchar>(ninputvars) = responses.type() < CV_32F ? VAR_CATEGORICAL : VAR_ORDERED;
|
||||
varType.at<uchar>(ninputvars) = (uchar)(responses.type() < CV_32F ? VAR_CATEGORICAL : VAR_ORDERED);
|
||||
}
|
||||
|
||||
if( noutputvars > 1 )
|
||||
@ -558,7 +558,7 @@ public:
|
||||
if( tp == VAR_MISSED )
|
||||
haveMissed = true;
|
||||
rowvals.push_back(val);
|
||||
rowtypes.push_back(tp);
|
||||
rowtypes.push_back((uchar)tp);
|
||||
token = strtok(NULL, delimiters);
|
||||
if (!token)
|
||||
break;
|
||||
@ -880,7 +880,7 @@ public:
|
||||
if( s )
|
||||
{
|
||||
j = s[i];
|
||||
CV_DbgAssert( 0 <= j && j < nsamples );
|
||||
CV_Assert( 0 <= j && j < nsamples );
|
||||
}
|
||||
values[i] = src[j*sstep];
|
||||
if( values[i] == MISSED_VAL )
|
||||
@ -955,7 +955,7 @@ public:
|
||||
if( vptr )
|
||||
{
|
||||
j = vptr[i];
|
||||
CV_DbgAssert( 0 <= j && j < nvars );
|
||||
CV_Assert( 0 <= j && j < nvars );
|
||||
}
|
||||
buf[i] = src[j*vstep];
|
||||
}
|
||||
|
@ -108,7 +108,7 @@ float StatModel::calcError( const Ptr<TrainData>& data, bool testerr, OutputArra
|
||||
if( _resp.needed() )
|
||||
resp.copyTo(_resp);
|
||||
|
||||
return err / n * (isclassifier ? 100 : 1);
|
||||
return (float)(err / n * (isclassifier ? 100 : 1));
|
||||
}
|
||||
|
||||
void StatModel::save(const String& filename) const
|
||||
|
@ -173,7 +173,7 @@ public:
|
||||
}
|
||||
|
||||
float result = 0.f;
|
||||
float inv_scale = 1./k;
|
||||
float inv_scale = 1.f/k;
|
||||
|
||||
for( testidx = 0; testidx < testcount; testidx++ )
|
||||
{
|
||||
|
@ -111,7 +111,7 @@ namespace ml
|
||||
termCrit.type |= TermCriteria::EPS;
|
||||
termCrit.epsilon = epsilon;
|
||||
}
|
||||
int iters = (double)fn["iterations"];
|
||||
int iters = (int)fn["iterations"];
|
||||
if( iters > 0 )
|
||||
{
|
||||
termCrit.type |= TermCriteria::COUNT;
|
||||
@ -134,7 +134,7 @@ namespace ml
|
||||
}
|
||||
|
||||
int class_idx;
|
||||
int Tn;
|
||||
double Tn;
|
||||
double value;
|
||||
|
||||
int parent;
|
||||
@ -164,7 +164,7 @@ namespace ml
|
||||
}
|
||||
|
||||
int varIdx;
|
||||
int inversed;
|
||||
bool inversed;
|
||||
float quality;
|
||||
int next;
|
||||
float c;
|
||||
@ -179,7 +179,7 @@ namespace ml
|
||||
vector<WNode> wnodes;
|
||||
vector<WSplit> wsplits;
|
||||
vector<int> wsubsets;
|
||||
vector<int> cv_Tn;
|
||||
vector<double> cv_Tn;
|
||||
vector<double> cv_node_risk;
|
||||
vector<double> cv_node_error;
|
||||
vector<int> cv_labels;
|
||||
|
@ -90,7 +90,7 @@ public:
|
||||
{
|
||||
DTreesImpl::clear();
|
||||
oobError = 0.;
|
||||
rng = RNG(-1);
|
||||
rng = RNG((uint64)-1);
|
||||
}
|
||||
|
||||
const vector<int>& getActiveVars()
|
||||
@ -177,7 +177,6 @@ public:
|
||||
|
||||
for( treeidx = 0; treeidx < ntrees; treeidx++ )
|
||||
{
|
||||
putchar('.'); fflush(stdout);
|
||||
for( i = 0; i < n; i++ )
|
||||
oobmask[i] = (uchar)1;
|
||||
|
||||
|
@ -1587,7 +1587,7 @@ public:
|
||||
bool balanced )
|
||||
{
|
||||
int svmType = params.svmType;
|
||||
RNG rng(-1);
|
||||
RNG rng((uint64)-1);
|
||||
|
||||
if( svmType == ONE_CLASS )
|
||||
// current implementation of "auto" svm does not support the 1-class case.
|
||||
|
@ -730,7 +730,7 @@ DTreesImpl::WSplit DTreesImpl::findSplitOrdClass( int vi, const vector<int>& _si
|
||||
{
|
||||
split.varIdx = vi;
|
||||
split.c = (values[sorted_idx[best_i]] + values[sorted_idx[best_i+1]])*0.5f;
|
||||
split.inversed = 0;
|
||||
split.inversed = false;
|
||||
split.quality = (float)best_val;
|
||||
}
|
||||
return split;
|
||||
@ -744,12 +744,12 @@ void DTreesImpl::clusterCategories( const double* vectors, int n, int m, double*
|
||||
cv::AutoBuffer<double> buf(n + k);
|
||||
double *v_weights = buf, *c_weights = buf + n;
|
||||
bool modified = true;
|
||||
RNG r(-1);
|
||||
RNG r((uint64)-1);
|
||||
|
||||
// assign labels randomly
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
int sum = 0;
|
||||
double sum = 0;
|
||||
const double* v = vectors + i*m;
|
||||
labels[i] = i < k ? i : r.uniform(0, k);
|
||||
|
||||
@ -1063,7 +1063,7 @@ DTreesImpl::WSplit DTreesImpl::findSplitOrdReg( int vi, const vector<int>& _sidx
|
||||
{
|
||||
split.varIdx = vi;
|
||||
split.c = (values[sorted_idx[best_i]] + values[sorted_idx[best_i+1]])*0.5f;
|
||||
split.inversed = 0;
|
||||
split.inversed = false;
|
||||
split.quality = (float)best_val;
|
||||
}
|
||||
return split;
|
||||
|
Loading…
Reference in New Issue
Block a user