mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00
Merge pull request #14124 from alalek:fix_python_samples
This commit is contained in:
commit
f147ba16e2
@ -18,6 +18,7 @@ from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
import video
|
||||
|
||||
|
||||
@ -56,7 +57,7 @@ def warp_flow(img, flow):
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
def main():
|
||||
import sys
|
||||
print(__doc__)
|
||||
try:
|
||||
@ -111,4 +112,11 @@ if __name__ == '__main__':
|
||||
if ch == ord('4'):
|
||||
use_temporal_propagation = not use_temporal_propagation
|
||||
print('temporal propagation is', ['off', 'on'][use_temporal_propagation])
|
||||
|
||||
print('Done')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(__doc__)
|
||||
main()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -8,15 +8,18 @@ Show how to use Stitcher API from python in a simple way to stitch panoramas
|
||||
or scans.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
modes = (cv.Stitcher_PANORAMA, cv.Stitcher_SCANS)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Stitching sample.')
|
||||
parser = argparse.ArgumentParser(prog='stitching.py', description='Stitching sample.')
|
||||
parser.add_argument('--mode',
|
||||
type = int, choices = modes, default = cv.Stitcher_PANORAMA,
|
||||
help = 'Determines configuration of stitcher. The default is `PANORAMA` (%d), '
|
||||
@ -25,12 +28,16 @@ parser.add_argument('--mode',
|
||||
parser.add_argument('--output', default = 'result.jpg',
|
||||
help = 'Resulting image. The default is `result.jpg`.')
|
||||
parser.add_argument('img', nargs='+', help = 'input images')
|
||||
|
||||
__doc__ += '\n' + parser.format_help()
|
||||
|
||||
def main():
|
||||
args = parser.parse_args()
|
||||
|
||||
# read input images
|
||||
imgs = []
|
||||
for img_name in args.img:
|
||||
img = cv.imread(img_name)
|
||||
img = cv.imread(cv.samples.findFile(img_name))
|
||||
if img is None:
|
||||
print("can't read image " + img_name)
|
||||
sys.exit(-1)
|
||||
@ -45,3 +52,11 @@ if status != cv.Stitcher_OK:
|
||||
|
||||
cv.imwrite(args.output, pano);
|
||||
print("stitching completed successfully. %s saved!" % args.output)
|
||||
|
||||
print('Done')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(__doc__)
|
||||
main()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -1,71 +1,20 @@
|
||||
"""Rotation model images stitcher.
|
||||
stitching_detailed img1 img2 [...imgN] [flags]
|
||||
Flags:
|
||||
--preview
|
||||
Run stitching in the preview mode. Works faster than usual mode,
|
||||
but output image will have lower resolution.
|
||||
--try_cuda (yes|no)
|
||||
Try to use CUDA. The default value is 'no'. All default values
|
||||
are for CPU mode.
|
||||
\nMotion Estimation Flags:
|
||||
--work_megapix <float>
|
||||
Resolution for image registration step. The default is 0.6 Mpx.
|
||||
--features (surf|orb|sift)
|
||||
Type of features used for images matching. The default is surf.
|
||||
--matcher (homography|affine)
|
||||
Matcher used for pairwise image matching.
|
||||
--estimator (homography|affine)
|
||||
Type of estimator used for transformation estimation.
|
||||
--match_conf <float>
|
||||
Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.
|
||||
--conf_thresh <float>
|
||||
Threshold for two images are from the same panorama confidence.
|
||||
The default is 1.0.
|
||||
--ba (no|reproj|ray|affine)
|
||||
Bundle adjustment cost function. The default is ray.
|
||||
--ba_refine_mask (mask)
|
||||
Set refinement mask for bundle adjustment. It looks like 'x_xxx',
|
||||
where 'x' means refine respective parameter and '_' means don't
|
||||
refine one, and has the following format:
|
||||
<fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle
|
||||
adjustment doesn't support estimation of selected parameter then
|
||||
the respective flag is ignored.
|
||||
--wave_correct (no|horiz|vert)
|
||||
Perform wave effect correction. The default is 'horiz'.
|
||||
--save_graph <file_name>
|
||||
Save matches graph represented in DOT language to <file_name> file.
|
||||
Labels description: Nm is number of matches, Ni is number of inliers,
|
||||
C is confidence.
|
||||
\nCompositing Flags:
|
||||
--warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)
|
||||
Warp surface type. The default is 'spherical'.
|
||||
--seam_megapix <float>
|
||||
Resolution for seam estimation step. The default is 0.1 Mpx.
|
||||
--seam (no|voronoi|gc_color|gc_colorgrad)
|
||||
Seam estimation method. The default is 'gc_color'.
|
||||
--compose_megapix <float>
|
||||
Resolution for compositing step. Use -1 for original resolution.
|
||||
The default is -1.
|
||||
--expos_comp (no|gain|gain_blocks)
|
||||
Exposure compensation method. The default is 'gain_blocks'.
|
||||
--blend (no|feather|multiband)
|
||||
Blending method. The default is 'multiband'.
|
||||
--blend_strength <float>
|
||||
Blending strength from [0,100] range. The default is 5.
|
||||
--output <result_img>
|
||||
The default is 'result.jpg'.
|
||||
--timelapse (as_is|crop)
|
||||
Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.
|
||||
--rangewidth <int>
|
||||
uses range_width to limit number of images to match with.\n
|
||||
"""
|
||||
Stitching sample (advanced)
|
||||
===========================
|
||||
|
||||
Show how to use Stitcher API from python.
|
||||
"""
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='stitching_detailed')
|
||||
parser = argparse.ArgumentParser(prog='stitching_detailed.py', description='Rotation model images stitcher')
|
||||
parser.add_argument('img_names', nargs='+',help='files to stitch',type=str)
|
||||
parser.add_argument('--preview',help='Run stitching in the preview mode. Works faster than usual mode but output image will have lower resolution.',type=bool,dest = 'preview' )
|
||||
parser.add_argument('--try_cuda',action = 'store', default = False,help='Try to use CUDA. The default value is no. All default values are for CPU mode.',type=bool,dest = 'try_cuda' )
|
||||
@ -92,6 +41,10 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--output',action = 'store', default = 'result.jpg',help='The default is "result.jpg"',type=str,dest = 'output' )
|
||||
parser.add_argument('--timelapse',action = 'store', default = None,help='Output warped images separately as frames of a time lapse movie, with "fixed_" prepended to input file names.',type=str,dest = 'timelapse' )
|
||||
parser.add_argument('--rangewidth',action = 'store', default = -1,help='uses range_width to limit number of images to match with.',type=int,dest = 'rangewidth' )
|
||||
|
||||
__doc__ += '\n' + parser.format_help()
|
||||
|
||||
def main():
|
||||
args = parser.parse_args()
|
||||
img_names=args.img_names
|
||||
print(img_names)
|
||||
@ -167,7 +120,7 @@ if __name__ == '__main__':
|
||||
is_seam_scale_set = False
|
||||
is_compose_scale_set = False;
|
||||
for name in img_names:
|
||||
full_img = cv.imread(name)
|
||||
full_img = cv.imread(cv.samples.findFile(name))
|
||||
if full_img is None:
|
||||
print("Cannot read image ", name)
|
||||
exit()
|
||||
@ -401,8 +354,16 @@ if __name__ == '__main__':
|
||||
result_mask=None
|
||||
result,result_mask = blender.blend(result,result_mask)
|
||||
cv.imwrite(result_name,result)
|
||||
zoomx =600/result.shape[1]
|
||||
zoomx = 600.0 / result.shape[1]
|
||||
dst=cv.normalize(src=result,dst=None,alpha=255.,norm_type=cv.NORM_MINMAX,dtype=cv.CV_8U)
|
||||
dst=cv.resize(dst,dsize=None,fx=zoomx,fy=zoomx)
|
||||
cv.imshow(result_name,dst)
|
||||
cv.waitKey()
|
||||
|
||||
print('Done')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(__doc__)
|
||||
main()
|
||||
cv.destroyAllWindows()
|
||||
|
Loading…
Reference in New Issue
Block a user