mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 12:10:49 +08:00
add factory method for Fields structure
This commit is contained in:
parent
0898c3c651
commit
f196e9fda4
@ -78,77 +78,255 @@ namespace imgproc
|
|||||||
|
|
||||||
struct cv::gpu::SoftCascade::Filds
|
struct cv::gpu::SoftCascade::Filds
|
||||||
{
|
{
|
||||||
|
struct CascadeIntrinsics
|
||||||
|
{
|
||||||
|
static const float lambda = 1.099f, a = 0.89f;
|
||||||
|
|
||||||
Filds()
|
static float getFor(int channel, float scaling)
|
||||||
|
{
|
||||||
|
CV_Assert(channel < 10);
|
||||||
|
|
||||||
|
if (fabs(scaling - 1.f) < FLT_EPSILON)
|
||||||
|
return 1.f;
|
||||||
|
|
||||||
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
||||||
|
static const float A[2][2] =
|
||||||
|
{ //channel <= 6, otherwise
|
||||||
|
{ 0.89f, 1.f}, // down
|
||||||
|
{ 1.00f, 1.f} // up
|
||||||
|
};
|
||||||
|
|
||||||
|
static const float B[2][2] =
|
||||||
|
{ //channel <= 6, otherwise
|
||||||
|
{ 1.099f / ::log(2), 2.f}, // down
|
||||||
|
{ 0.f, 2.f} // up
|
||||||
|
};
|
||||||
|
|
||||||
|
float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
|
||||||
|
float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
|
||||||
|
|
||||||
|
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
|
||||||
|
return a * ::pow(scaling, b);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
static Filds* parseCascade(const FileNode &root, const float mins, const float maxs)
|
||||||
|
{
|
||||||
|
static const char *const SC_STAGE_TYPE = "stageType";
|
||||||
|
static const char *const SC_BOOST = "BOOST";
|
||||||
|
|
||||||
|
static const char *const SC_FEATURE_TYPE = "featureType";
|
||||||
|
static const char *const SC_ICF = "ICF";
|
||||||
|
|
||||||
|
// only Ada Boost supported
|
||||||
|
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
|
||||||
|
CV_Assert(stageTypeStr == SC_BOOST);
|
||||||
|
|
||||||
|
// only HOG-like integral channel features cupported
|
||||||
|
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
|
||||||
|
CV_Assert(featureTypeStr == SC_ICF);
|
||||||
|
|
||||||
|
static const char *const SC_ORIG_W = "width";
|
||||||
|
static const char *const SC_ORIG_H = "height";
|
||||||
|
|
||||||
|
int origWidth = (int)root[SC_ORIG_W];
|
||||||
|
CV_Assert(origWidth == ORIG_OBJECT_WIDTH);
|
||||||
|
|
||||||
|
int origHeight = (int)root[SC_ORIG_H];
|
||||||
|
CV_Assert(origHeight == ORIG_OBJECT_HEIGHT);
|
||||||
|
|
||||||
|
static const char *const SC_OCTAVES = "octaves";
|
||||||
|
static const char *const SC_STAGES = "stages";
|
||||||
|
static const char *const SC_FEATURES = "features";
|
||||||
|
|
||||||
|
static const char *const SC_WEEK = "weakClassifiers";
|
||||||
|
static const char *const SC_INTERNAL = "internalNodes";
|
||||||
|
static const char *const SC_LEAF = "leafValues";
|
||||||
|
|
||||||
|
static const char *const SC_OCT_SCALE = "scale";
|
||||||
|
static const char *const SC_OCT_STAGES = "stageNum";
|
||||||
|
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||||
|
|
||||||
|
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
|
||||||
|
|
||||||
|
static const char * const SC_F_CHANNEL = "channel";
|
||||||
|
static const char * const SC_F_RECT = "rect";
|
||||||
|
|
||||||
|
|
||||||
|
FileNode fn = root[SC_OCTAVES];
|
||||||
|
if (fn.empty()) return false;
|
||||||
|
|
||||||
|
using namespace device::icf;
|
||||||
|
|
||||||
|
std::vector<Octave> voctaves;
|
||||||
|
std::vector<float> vstages;
|
||||||
|
std::vector<Node> vnodes;
|
||||||
|
std::vector<float> vleaves;
|
||||||
|
|
||||||
|
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||||
|
int feature_offset = 0;
|
||||||
|
ushort octIndex = 0;
|
||||||
|
ushort shrinkage = 1;
|
||||||
|
|
||||||
|
for (; it != it_end; ++it)
|
||||||
|
{
|
||||||
|
FileNode fns = *it;
|
||||||
|
float scale = (float)fns[SC_OCT_SCALE];
|
||||||
|
|
||||||
|
bool isUPOctave = scale >= 1;
|
||||||
|
|
||||||
|
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
|
||||||
|
ushort2 size;
|
||||||
|
size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
|
||||||
|
size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
|
||||||
|
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
|
||||||
|
|
||||||
|
Octave octave(octIndex, nstages, shrinkage, size, scale);
|
||||||
|
CV_Assert(octave.stages > 0);
|
||||||
|
voctaves.push_back(octave);
|
||||||
|
|
||||||
|
FileNode ffs = fns[SC_FEATURES];
|
||||||
|
if (ffs.empty()) return false;
|
||||||
|
|
||||||
|
FileNodeIterator ftrs = ffs.begin();
|
||||||
|
|
||||||
|
fns = fns[SC_STAGES];
|
||||||
|
if (fn.empty()) return false;
|
||||||
|
|
||||||
|
// for each stage (~ decision tree with H = 2)
|
||||||
|
FileNodeIterator st = fns.begin(), st_end = fns.end();
|
||||||
|
for (; st != st_end; ++st )
|
||||||
|
{
|
||||||
|
fns = *st;
|
||||||
|
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
|
||||||
|
|
||||||
|
fns = fns[SC_WEEK];
|
||||||
|
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
|
||||||
|
for (; ftr != ft_end; ++ftr)
|
||||||
|
{
|
||||||
|
fns = (*ftr)[SC_INTERNAL];
|
||||||
|
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
||||||
|
for (; inIt != inIt_end;)
|
||||||
|
{
|
||||||
|
// int feature = (int)(*(inIt +=2)) + feature_offset;
|
||||||
|
inIt +=3;
|
||||||
|
// extract feature, Todo:check it
|
||||||
|
uint th = saturate_cast<uint>((float)(*(inIt++)));
|
||||||
|
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
|
||||||
|
cv::FileNodeIterator r_it = ftn.begin();
|
||||||
|
uchar4 rect;
|
||||||
|
rect.x = saturate_cast<uchar>((int)*(r_it++));
|
||||||
|
rect.y = saturate_cast<uchar>((int)*(r_it++));
|
||||||
|
rect.z = saturate_cast<uchar>((int)*(r_it++));
|
||||||
|
rect.w = saturate_cast<uchar>((int)*(r_it++));
|
||||||
|
|
||||||
|
if (isUPOctave)
|
||||||
|
{
|
||||||
|
rect.z -= rect.x;
|
||||||
|
rect.w -= rect.y;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint channel = saturate_cast<uint>((int)(*ftrs)[SC_F_CHANNEL]);
|
||||||
|
vnodes.push_back(Node(rect, channel, th));
|
||||||
|
++ftrs;
|
||||||
|
}
|
||||||
|
|
||||||
|
fns = (*ftr)[SC_LEAF];
|
||||||
|
inIt = fns.begin(), inIt_end = fns.end();
|
||||||
|
for (; inIt != inIt_end; ++inIt)
|
||||||
|
vleaves.push_back((float)(*inIt));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
feature_offset += octave.stages * 3;
|
||||||
|
++octIndex;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat hoctaves(1, voctaves.size() * sizeof(Octave), CV_8UC1, (uchar*)&(voctaves[0]));
|
||||||
|
CV_Assert(!hoctaves.empty());
|
||||||
|
|
||||||
|
cv::Mat hstages(cv::Mat(vstages).reshape(1,1));
|
||||||
|
CV_Assert(!hstages.empty());
|
||||||
|
|
||||||
|
cv::Mat hnodes(1, vnodes.size() * sizeof(Node), CV_8UC1, (uchar*)&(vnodes[0]) );
|
||||||
|
CV_Assert(!hnodes.empty());
|
||||||
|
|
||||||
|
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1));
|
||||||
|
CV_Assert(!hleaves.empty());
|
||||||
|
|
||||||
|
std::vector<Level> vlevels;
|
||||||
|
float logFactor = (::log(maxs) - ::log(mins)) / (TOTAL_SCALES -1);
|
||||||
|
|
||||||
|
float scale = mins;
|
||||||
|
int downscales = 0;
|
||||||
|
for (int sc = 0; sc < TOTAL_SCALES; ++sc)
|
||||||
|
{
|
||||||
|
int width = ::std::max(0.0f, FRAME_WIDTH - (origWidth * scale));
|
||||||
|
int height = ::std::max(0.0f, FRAME_HEIGHT - (origHeight * scale));
|
||||||
|
|
||||||
|
float logScale = ::log(scale);
|
||||||
|
int fit = fitOctave(voctaves, logScale);
|
||||||
|
|
||||||
|
Level level(fit, voctaves[fit], scale, width, height);
|
||||||
|
level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
|
||||||
|
level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
|
||||||
|
|
||||||
|
if (!width || !height)
|
||||||
|
break;
|
||||||
|
else
|
||||||
|
{
|
||||||
|
vlevels.push_back(level);
|
||||||
|
if (voctaves[fit].scale < 1) ++downscales;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (::fabs(scale - maxs) < FLT_EPSILON) break;
|
||||||
|
scale = ::std::min(maxs, ::expf(::log(scale) + logFactor));
|
||||||
|
|
||||||
|
// std::cout << "level " << sc
|
||||||
|
// << " octeve "
|
||||||
|
// << vlevels[sc].octave
|
||||||
|
// << " relScale "
|
||||||
|
// << vlevels[sc].relScale
|
||||||
|
// << " " << vlevels[sc].shrScale
|
||||||
|
// << " [" << (int)vlevels[sc].objSize.x
|
||||||
|
// << " " << (int)vlevels[sc].objSize.y << "] ["
|
||||||
|
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat hlevels(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) );
|
||||||
|
CV_Assert(!hlevels.empty());
|
||||||
|
|
||||||
|
Filds* filds = new Filds(mins, maxs, origWidth, origHeight, shrinkage, downscales,
|
||||||
|
hoctaves, hstages, hnodes, hleaves, hlevels);
|
||||||
|
|
||||||
|
return filds;
|
||||||
|
}
|
||||||
|
|
||||||
|
Filds( const float mins, const float maxs, const int ow, const int oh, const int shr, const int ds,
|
||||||
|
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, cv::Mat hlevels)
|
||||||
|
: minScale(mins), maxScale(maxs), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
|
||||||
{
|
{
|
||||||
plane.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
|
plane.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
|
||||||
fplane.create(FRAME_HEIGHT * 6, FRAME_WIDTH, CV_32FC1);
|
fplane.create(FRAME_HEIGHT * 6, FRAME_WIDTH, CV_32FC1);
|
||||||
luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
|
luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
|
||||||
shrunk.create(FRAME_HEIGHT / 4 * HOG_LUV_BINS, FRAME_WIDTH / 4, CV_8UC1);
|
shrunk.create(FRAME_HEIGHT / shr * HOG_LUV_BINS, FRAME_WIDTH / shr, CV_8UC1);
|
||||||
integralBuffer.create(1 , (shrunk.rows + 1) * HOG_LUV_BINS * (shrunk.cols + 1), CV_32SC1);
|
integralBuffer.create(1 , (shrunk.rows + 1) * HOG_LUV_BINS * (shrunk.cols + 1), CV_32SC1);
|
||||||
hogluv.create((FRAME_HEIGHT / 4 + 1) * HOG_LUV_BINS, FRAME_WIDTH / 4 + 64, CV_32SC1);
|
hogluv.create((FRAME_HEIGHT / shr + 1) * HOG_LUV_BINS, FRAME_WIDTH / shr + 64, CV_32SC1);
|
||||||
detCounter.create(1,1, CV_32SC1);
|
detCounter.create(1,1, CV_32SC1);
|
||||||
|
|
||||||
|
octaves.upload(hoctaves);
|
||||||
|
stages.upload(hstages);
|
||||||
|
nodes.upload(hnodes);
|
||||||
|
leaves.upload(hleaves);
|
||||||
|
levels.upload(hlevels);
|
||||||
|
|
||||||
|
invoker = device::icf::CascadeInvoker<device::icf::CascadePolicy>(levels, octaves, stages, nodes, leaves);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// scales range
|
|
||||||
float minScale;
|
|
||||||
float maxScale;
|
|
||||||
|
|
||||||
int origObjWidth;
|
|
||||||
int origObjHeight;
|
|
||||||
|
|
||||||
int downscales;
|
|
||||||
|
|
||||||
GpuMat octaves;
|
|
||||||
GpuMat stages;
|
|
||||||
GpuMat nodes;
|
|
||||||
GpuMat leaves;
|
|
||||||
GpuMat levels;
|
|
||||||
|
|
||||||
GpuMat detCounter;
|
|
||||||
|
|
||||||
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray
|
|
||||||
GpuMat plane;
|
|
||||||
|
|
||||||
// preallocated buffer for floating point operations
|
|
||||||
GpuMat fplane;
|
|
||||||
|
|
||||||
// temporial mat for cvtColor
|
|
||||||
GpuMat luv;
|
|
||||||
|
|
||||||
// 160x120x10
|
|
||||||
GpuMat shrunk;
|
|
||||||
|
|
||||||
// temporial mat for integrall
|
|
||||||
GpuMat integralBuffer;
|
|
||||||
|
|
||||||
// 161x121x10
|
|
||||||
GpuMat hogluv;
|
|
||||||
|
|
||||||
std::vector<float> scales;
|
|
||||||
|
|
||||||
device::icf::CascadeInvoker<device::icf::CascadePolicy> invoker;
|
|
||||||
|
|
||||||
static const int shrinkage = 4;
|
|
||||||
|
|
||||||
enum { BOOST = 0 };
|
|
||||||
enum
|
|
||||||
{
|
|
||||||
FRAME_WIDTH = 640,
|
|
||||||
FRAME_HEIGHT = 480,
|
|
||||||
TOTAL_SCALES = 55,
|
|
||||||
ORIG_OBJECT_WIDTH = 64,
|
|
||||||
ORIG_OBJECT_HEIGHT = 128,
|
|
||||||
HOG_BINS = 6,
|
|
||||||
LUV_BINS = 3,
|
|
||||||
HOG_LUV_BINS = 10
|
|
||||||
};
|
|
||||||
|
|
||||||
bool fill(const FileNode &root, const float mins, const float maxs);
|
|
||||||
void detect(int scale, const cv::gpu::GpuMat& roi, cv::gpu::GpuMat& objects, cudaStream_t stream) const
|
void detect(int scale, const cv::gpu::GpuMat& roi, cv::gpu::GpuMat& objects, cudaStream_t stream) const
|
||||||
{
|
{
|
||||||
cudaMemset(detCounter.data, 0, detCounter.step * detCounter.rows * sizeof(int));
|
cudaMemset(detCounter.data, 0, detCounter.step * detCounter.rows * sizeof(int));
|
||||||
// device::icf::CascadeInvoker<device::icf::CascadePolicy> invoker(levels, octaves, stages, nodes, leaves);
|
|
||||||
invoker(roi, hogluv, objects, detCounter, downscales, scale);
|
invoker(roi, hogluv, objects, detCounter, downscales, scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -169,11 +347,9 @@ struct cv::gpu::SoftCascade::Filds
|
|||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
void calcLevels(const std::vector<device::icf::Octave>& octs,
|
|
||||||
int frameW, int frameH, int nscales);
|
|
||||||
|
|
||||||
typedef std::vector<device::icf::Octave>::const_iterator octIt_t;
|
typedef std::vector<device::icf::Octave>::const_iterator octIt_t;
|
||||||
int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor) const
|
static int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor)
|
||||||
{
|
{
|
||||||
float minAbsLog = FLT_MAX;
|
float minAbsLog = FLT_MAX;
|
||||||
int res = 0;
|
int res = 0;
|
||||||
@ -257,247 +433,61 @@ private:
|
|||||||
cv::gpu::integralBuffered(channel, sum, integralBuffer);
|
cv::gpu::integralBuffered(channel, sum, integralBuffer);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
|
||||||
|
|
||||||
bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs)
|
public:
|
||||||
{
|
|
||||||
using namespace device::icf;
|
|
||||||
minScale = mins;
|
|
||||||
maxScale = maxs;
|
|
||||||
|
|
||||||
// cascade properties
|
// scales range
|
||||||
static const char *const SC_STAGE_TYPE = "stageType";
|
float minScale;
|
||||||
static const char *const SC_BOOST = "BOOST";
|
float maxScale;
|
||||||
|
|
||||||
static const char *const SC_FEATURE_TYPE = "featureType";
|
int origObjWidth;
|
||||||
static const char *const SC_ICF = "ICF";
|
int origObjHeight;
|
||||||
|
|
||||||
static const char *const SC_ORIG_W = "width";
|
const int shrinkage;
|
||||||
static const char *const SC_ORIG_H = "height";
|
int downscales;
|
||||||
|
|
||||||
static const char *const SC_OCTAVES = "octaves";
|
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray
|
||||||
static const char *const SC_STAGES = "stages";
|
GpuMat plane;
|
||||||
static const char *const SC_FEATURES = "features";
|
|
||||||
|
|
||||||
static const char *const SC_WEEK = "weakClassifiers";
|
// preallocated buffer for floating point operations
|
||||||
static const char *const SC_INTERNAL = "internalNodes";
|
GpuMat fplane;
|
||||||
static const char *const SC_LEAF = "leafValues";
|
|
||||||
|
|
||||||
static const char *const SC_OCT_SCALE = "scale";
|
// temporial mat for cvtColor
|
||||||
static const char *const SC_OCT_STAGES = "stageNum";
|
GpuMat luv;
|
||||||
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
|
|
||||||
|
|
||||||
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
|
// 160x120x10
|
||||||
|
GpuMat shrunk;
|
||||||
|
|
||||||
static const char * const SC_F_CHANNEL = "channel";
|
// temporial mat for integrall
|
||||||
static const char * const SC_F_RECT = "rect";
|
GpuMat integralBuffer;
|
||||||
|
|
||||||
// only Ada Boost supported
|
// 161x121x10
|
||||||
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
|
GpuMat hogluv;
|
||||||
CV_Assert(stageTypeStr == SC_BOOST);
|
|
||||||
|
|
||||||
// only HOG-like integral channel features cupported
|
GpuMat detCounter;
|
||||||
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
|
|
||||||
CV_Assert(featureTypeStr == SC_ICF);
|
|
||||||
|
|
||||||
origObjWidth = (int)root[SC_ORIG_W];
|
// Cascade from xml
|
||||||
CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH);
|
GpuMat octaves;
|
||||||
|
GpuMat stages;
|
||||||
|
GpuMat nodes;
|
||||||
|
GpuMat leaves;
|
||||||
|
GpuMat levels;
|
||||||
|
|
||||||
origObjHeight = (int)root[SC_ORIG_H];
|
device::icf::CascadeInvoker<device::icf::CascadePolicy> invoker;
|
||||||
CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT);
|
|
||||||
|
|
||||||
FileNode fn = root[SC_OCTAVES];
|
enum { BOOST = 0 };
|
||||||
if (fn.empty()) return false;
|
enum
|
||||||
|
|
||||||
std::vector<Octave> voctaves;
|
|
||||||
std::vector<float> vstages;
|
|
||||||
std::vector<Node> vnodes;
|
|
||||||
std::vector<float> vleaves;
|
|
||||||
scales.clear();
|
|
||||||
|
|
||||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
|
||||||
int feature_offset = 0;
|
|
||||||
ushort octIndex = 0;
|
|
||||||
ushort shrinkage = 1;
|
|
||||||
|
|
||||||
for (; it != it_end; ++it)
|
|
||||||
{
|
{
|
||||||
FileNode fns = *it;
|
FRAME_WIDTH = 640,
|
||||||
float scale = (float)fns[SC_OCT_SCALE];
|
FRAME_HEIGHT = 480,
|
||||||
|
TOTAL_SCALES = 55,
|
||||||
bool isUPOctave = scale >= 1;
|
ORIG_OBJECT_WIDTH = 64,
|
||||||
|
ORIG_OBJECT_HEIGHT = 128,
|
||||||
scales.push_back(scale);
|
HOG_BINS = 6,
|
||||||
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
|
LUV_BINS = 3,
|
||||||
ushort2 size;
|
HOG_LUV_BINS = 10
|
||||||
size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
|
|
||||||
size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
|
|
||||||
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
|
|
||||||
|
|
||||||
Octave octave(octIndex, nstages, shrinkage, size, scale);
|
|
||||||
CV_Assert(octave.stages > 0);
|
|
||||||
voctaves.push_back(octave);
|
|
||||||
|
|
||||||
FileNode ffs = fns[SC_FEATURES];
|
|
||||||
if (ffs.empty()) return false;
|
|
||||||
|
|
||||||
FileNodeIterator ftrs = ffs.begin();
|
|
||||||
|
|
||||||
fns = fns[SC_STAGES];
|
|
||||||
if (fn.empty()) return false;
|
|
||||||
|
|
||||||
// for each stage (~ decision tree with H = 2)
|
|
||||||
FileNodeIterator st = fns.begin(), st_end = fns.end();
|
|
||||||
for (; st != st_end; ++st )
|
|
||||||
{
|
|
||||||
fns = *st;
|
|
||||||
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
|
|
||||||
|
|
||||||
fns = fns[SC_WEEK];
|
|
||||||
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
|
|
||||||
for (; ftr != ft_end; ++ftr)
|
|
||||||
{
|
|
||||||
fns = (*ftr)[SC_INTERNAL];
|
|
||||||
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
|
||||||
for (; inIt != inIt_end;)
|
|
||||||
{
|
|
||||||
// int feature = (int)(*(inIt +=2)) + feature_offset;
|
|
||||||
inIt +=3;
|
|
||||||
// extract feature, Todo:check it
|
|
||||||
uint th = saturate_cast<uint>((float)(*(inIt++)));
|
|
||||||
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
|
|
||||||
cv::FileNodeIterator r_it = ftn.begin();
|
|
||||||
uchar4 rect;
|
|
||||||
rect.x = saturate_cast<uchar>((int)*(r_it++));
|
|
||||||
rect.y = saturate_cast<uchar>((int)*(r_it++));
|
|
||||||
rect.z = saturate_cast<uchar>((int)*(r_it++));
|
|
||||||
rect.w = saturate_cast<uchar>((int)*(r_it++));
|
|
||||||
|
|
||||||
if (isUPOctave)
|
|
||||||
{
|
|
||||||
rect.z -= rect.x;
|
|
||||||
rect.w -= rect.y;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint channel = saturate_cast<uint>((int)(*ftrs)[SC_F_CHANNEL]);
|
|
||||||
vnodes.push_back(Node(rect, channel, th));
|
|
||||||
++ftrs;
|
|
||||||
}
|
|
||||||
|
|
||||||
fns = (*ftr)[SC_LEAF];
|
|
||||||
inIt = fns.begin(), inIt_end = fns.end();
|
|
||||||
for (; inIt != inIt_end; ++inIt)
|
|
||||||
vleaves.push_back((float)(*inIt));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
feature_offset += octave.stages * 3;
|
|
||||||
++octIndex;
|
|
||||||
}
|
|
||||||
|
|
||||||
// upload in gpu memory
|
|
||||||
octaves.upload(cv::Mat(1, voctaves.size() * sizeof(Octave), CV_8UC1, (uchar*)&(voctaves[0]) ));
|
|
||||||
CV_Assert(!octaves.empty());
|
|
||||||
|
|
||||||
stages.upload(cv::Mat(vstages).reshape(1,1));
|
|
||||||
CV_Assert(!stages.empty());
|
|
||||||
|
|
||||||
nodes.upload(cv::Mat(1, vnodes.size() * sizeof(Node), CV_8UC1, (uchar*)&(vnodes[0]) ));
|
|
||||||
CV_Assert(!nodes.empty());
|
|
||||||
|
|
||||||
leaves.upload(cv::Mat(vleaves).reshape(1,1));
|
|
||||||
CV_Assert(!leaves.empty());
|
|
||||||
|
|
||||||
// compute levels
|
|
||||||
calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
|
|
||||||
CV_Assert(!levels.empty());
|
|
||||||
|
|
||||||
invoker = device::icf::CascadeInvoker<device::icf::CascadePolicy>(levels, octaves, stages, nodes, leaves);
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
struct CascadeIntrinsics
|
|
||||||
{
|
|
||||||
static const float lambda = 1.099f, a = 0.89f;
|
|
||||||
|
|
||||||
static float getFor(int channel, float scaling)
|
|
||||||
{
|
|
||||||
CV_Assert(channel < 10);
|
|
||||||
|
|
||||||
if (fabs(scaling - 1.f) < FLT_EPSILON)
|
|
||||||
return 1.f;
|
|
||||||
|
|
||||||
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
|
||||||
static const float A[2][2] =
|
|
||||||
{ //channel <= 6, otherwise
|
|
||||||
{ 0.89f, 1.f}, // down
|
|
||||||
{ 1.00f, 1.f} // up
|
|
||||||
};
|
|
||||||
|
|
||||||
static const float B[2][2] =
|
|
||||||
{ //channel <= 6, otherwise
|
|
||||||
{ 1.099f / log(2), 2.f}, // down
|
|
||||||
{ 0.f, 2.f} // up
|
|
||||||
};
|
|
||||||
|
|
||||||
float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
|
|
||||||
float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
|
|
||||||
|
|
||||||
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
|
|
||||||
return a * pow(scaling, b);
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
}
|
};
|
||||||
|
|
||||||
inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<device::icf::Octave>& octs,
|
|
||||||
int frameW, int frameH, int nscales)
|
|
||||||
{
|
|
||||||
CV_Assert(nscales > 1);
|
|
||||||
using device::icf::Level;
|
|
||||||
|
|
||||||
std::vector<Level> vlevels;
|
|
||||||
float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1);
|
|
||||||
|
|
||||||
float scale = minScale;
|
|
||||||
downscales = 0;
|
|
||||||
for (int sc = 0; sc < nscales; ++sc)
|
|
||||||
{
|
|
||||||
int width = ::std::max(0.0f, frameW - (origObjWidth * scale));
|
|
||||||
int height = ::std::max(0.0f, frameH - (origObjHeight * scale));
|
|
||||||
|
|
||||||
float logScale = ::log(scale);
|
|
||||||
int fit = fitOctave(octs, logScale);
|
|
||||||
|
|
||||||
Level level(fit, octs[fit], scale, width, height);
|
|
||||||
level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
|
|
||||||
level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
|
|
||||||
|
|
||||||
if (!width || !height)
|
|
||||||
break;
|
|
||||||
else
|
|
||||||
{
|
|
||||||
vlevels.push_back(level);
|
|
||||||
if (octs[fit].scale < 1) ++downscales;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
|
|
||||||
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
|
|
||||||
|
|
||||||
// std::cout << "level " << sc
|
|
||||||
// << " octeve "
|
|
||||||
// << vlevels[sc].octave
|
|
||||||
// << " relScale "
|
|
||||||
// << vlevels[sc].relScale
|
|
||||||
// << " " << vlevels[sc].shrScale
|
|
||||||
// << " [" << (int)vlevels[sc].objSize.x
|
|
||||||
// << " " << (int)vlevels[sc].objSize.y << "] ["
|
|
||||||
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
levels.upload(cv::Mat(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) ));
|
|
||||||
}
|
|
||||||
|
|
||||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) {}
|
cv::gpu::SoftCascade::SoftCascade() : filds(0) {}
|
||||||
|
|
||||||
@ -513,21 +503,15 @@ cv::gpu::SoftCascade::~SoftCascade()
|
|||||||
|
|
||||||
bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, const float maxScale)
|
bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, const float maxScale)
|
||||||
{
|
{
|
||||||
if (filds)
|
if (filds) delete filds;
|
||||||
delete filds;
|
|
||||||
filds = 0;
|
|
||||||
|
|
||||||
cv::FileStorage fs(filename, FileStorage::READ);
|
cv::FileStorage fs(filename, FileStorage::READ);
|
||||||
if (!fs.isOpened()) return false;
|
if (!fs.isOpened()) return false;
|
||||||
|
|
||||||
filds = new Filds;
|
filds = Filds::parseCascade(fs.getFirstTopLevelNode(), minScale, maxScale);
|
||||||
Filds& flds = *filds;
|
return filds != 0;
|
||||||
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
|
|
||||||
return true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//================================== synchronous version ============================================================//
|
|
||||||
|
|
||||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& rois,
|
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& rois,
|
||||||
GpuMat& objects, const int /*rejectfactor*/, int specificScale) const
|
GpuMat& objects, const int /*rejectfactor*/, int specificScale) const
|
||||||
{
|
{
|
||||||
@ -562,7 +546,7 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat
|
|||||||
|
|
||||||
cv::Size cv::gpu::SoftCascade::getRoiSize() const
|
cv::Size cv::gpu::SoftCascade::getRoiSize() const
|
||||||
{
|
{
|
||||||
return cv::Size(Filds::FRAME_WIDTH / 4, Filds::FRAME_HEIGHT / 4);
|
return cv::Size(Filds::FRAME_WIDTH / (*filds).shrinkage, Filds::FRAME_HEIGHT / (*filds).shrinkage);
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
Loading…
Reference in New Issue
Block a user