Merge pull request #17 from ozantonkal/implementing_widgets

Implementing widgets
This commit is contained in:
Anatoly Baksheev 2013-07-31 11:54:42 -07:00
commit f30f3b6c87
11 changed files with 1338 additions and 63 deletions

View File

@ -64,7 +64,7 @@ namespace cv
CV_EXPORTS Affine3f makeTransformToGlobal(const Vec3f& axis_x, const Vec3f& axis_y, const Vec3f& axis_z, const Vec3f& origin = Vec3f::all(0));
//! constructs camera pose from position, focal_point and up_vector (see gluLookAt() for more infromation
CV_EXPORTS Affine3f makeCameraPose(const Vec3f& position, const Vec3f& focal_point, const Vec3f& up_vector);
CV_EXPORTS Affine3f makeCameraPose(const Vec3f& position, const Vec3f& focal_point, const Vec3f& y_dir);
//! checks float value for Nan

View File

@ -1,6 +1,7 @@
#pragma once
#include <opencv2/viz/types.hpp>
#include <common.h>
namespace cv
@ -70,6 +71,8 @@ namespace cv
public:
PlaneWidget(const Vec4f& coefs, double size = 1.0, const Color &color = Color::white());
PlaneWidget(const Vec4f& coefs, const Point3f& pt, double size = 1.0, const Color &color = Color::white());
private:
struct SetSizeImpl;
};
class CV_EXPORTS SphereWidget : public Widget3D
@ -81,7 +84,7 @@ namespace cv
class CV_EXPORTS ArrowWidget : public Widget3D
{
public:
ArrowWidget(const Point3f& pt1, const Point3f& pt2, const Color &color = Color::white());
ArrowWidget(const Point3f& pt1, const Point3f& pt2, double thickness = 0.03, const Color &color = Color::white());
};
class CV_EXPORTS CircleWidget : public Widget3D
@ -120,7 +123,12 @@ namespace cv
class CV_EXPORTS GridWidget : public Widget3D
{
public:
GridWidget(Vec2i dimensions, Vec2d spacing, const Color &color = Color::white());
GridWidget(const Vec2i &dimensions, const Vec2d &spacing, const Color &color = Color::white());
GridWidget(const Vec4f &coeffs, const Vec2i &dimensions, const Vec2d &spacing, const Color &color = Color::white());
private:
struct GridImpl;
};
class CV_EXPORTS Text3DWidget : public Widget3D
@ -140,6 +148,48 @@ namespace cv
void setText(const String &text);
String getText() const;
};
class CV_EXPORTS ImageOverlayWidget : public Widget2D
{
public:
ImageOverlayWidget(const Mat &image, const Rect &rect);
void setImage(const Mat &image);
};
class CV_EXPORTS Image3DWidget : public Widget3D
{
public:
Image3DWidget(const Mat &image, const Size &size);
Image3DWidget(const Vec3f &position, const Vec3f &normal, const Vec3f &up_vector, const Mat &image, const Size &size);
void setImage(const Mat &image);
};
class CV_EXPORTS CameraPositionWidget : public Widget3D
{
public:
CameraPositionWidget(double scale = 1.0);
CameraPositionWidget(const Matx33f &K, double scale = 1.0, const Color &color = Color::white());
CameraPositionWidget(const Vec2f &fov, double scale = 1.0, const Color &color = Color::white());
CameraPositionWidget(const Matx33f &K, const Mat &img, double scale = 1.0, const Color &color = Color::white());
};
class CV_EXPORTS TrajectoryWidget : public Widget3D
{
public:
enum {DISPLAY_FRAMES = 1, DISPLAY_PATH = 2};
TrajectoryWidget(const std::vector<Affine3f> &path, int display_mode = TrajectoryWidget::DISPLAY_PATH, const Color &color = Color::white(), double scale = 1.0);
TrajectoryWidget(const std::vector<Affine3f> &path, float line_length, double init_sphere_radius,
double sphere_radius, const Color &line_color = Color::white(), const Color &sphere_color = Color::white());
TrajectoryWidget(const std::vector<Affine3f> &path, const Matx33f &K, double scale = 1.0, const Color &color = Color::white()); // Camera frustums
TrajectoryWidget(const std::vector<Affine3f> &path, const Vec2f &fov, double scale = 1.0, const Color &color = Color::white()); // Camera frustums
private:
struct ApplyPath;
};
class CV_EXPORTS CloudWidget : public Widget3D
{
@ -151,6 +201,18 @@ namespace cv
struct CreateCloudWidget;
};
class CV_EXPORTS CloudCollectionWidget : public Widget3D
{
public:
CloudCollectionWidget();
void addCloud(InputArray cloud, InputArray colors, const Affine3f &pose = Affine3f::Identity());
void addCloud(InputArray cloud, const Color &color = Color::white(), const Affine3f &pose = Affine3f::Identity());
private:
struct CreateCloudWidget;
};
class CV_EXPORTS CloudNormalsWidget : public Widget3D
{
public:
@ -183,7 +245,12 @@ namespace cv
template<> CV_EXPORTS GridWidget Widget::cast<GridWidget>();
template<> CV_EXPORTS Text3DWidget Widget::cast<Text3DWidget>();
template<> CV_EXPORTS TextWidget Widget::cast<TextWidget>();
template<> CV_EXPORTS ImageOverlayWidget Widget::cast<ImageOverlayWidget>();
template<> CV_EXPORTS Image3DWidget Widget::cast<Image3DWidget>();
template<> CV_EXPORTS CameraPositionWidget Widget::cast<CameraPositionWidget>();
template<> CV_EXPORTS TrajectoryWidget Widget::cast<TrajectoryWidget>();
template<> CV_EXPORTS CloudWidget Widget::cast<CloudWidget>();
template<> CV_EXPORTS CloudCollectionWidget Widget::cast<CloudCollectionWidget>();
template<> CV_EXPORTS CloudNormalsWidget Widget::cast<CloudNormalsWidget>();
template<> CV_EXPORTS MeshWidget Widget::cast<MeshWidget>();

View File

@ -116,7 +116,7 @@ cv::viz::CloudWidget::CloudWidget(InputArray _cloud, InputArray _colors)
// Filter colors
Vec3b* colors_data = new Vec3b[nr_points];
NanFilter::copy(colors, colors_data, cloud);
NanFilter::copyColor(colors, colors_data, cloud);
vtkSmartPointer<vtkUnsignedCharArray> scalars = vtkSmartPointer<vtkUnsignedCharArray>::New ();
scalars->SetNumberOfComponents (3);
@ -154,7 +154,6 @@ cv::viz::CloudWidget::CloudWidget(InputArray _cloud, const Color &color)
Mat cloud = _cloud.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
@ -184,6 +183,227 @@ template<> cv::viz::CloudWidget cv::viz::Widget::cast<cv::viz::CloudWidget>()
return static_cast<CloudWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// Cloud Collection Widget implementation
struct cv::viz::CloudCollectionWidget::CreateCloudWidget
{
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
{
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New ();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New ();
polydata->SetVerts (vertices);
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
if (!points)
{
points = vtkSmartPointer<vtkPoints>::New ();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints (points);
}
points->SetNumberOfPoints (nr_points);
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints (nr_points);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData ();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New ();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples () < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New ();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples () >= nr_points)
{
cells->DeepCopy (initcells);
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
}
else
{
// If the number of tuples is still too small, we need to recreate the array
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
vtkIdType *cell = cells->GetPointer (0);
// Fill it with 1s
std::fill_n (cell, nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New ();
initcells->DeepCopy (cells);
}
}
else
{
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
}
// Set the cells and the vertices
vertices->SetCells (nr_points, cells);
return polydata;
}
static void createMapper(vtkSmartPointer<vtkLODActor> actor, vtkSmartPointer<vtkPolyData> poly_data, Vec3d& minmax)
{
vtkDataSetMapper *mapper = vtkDataSetMapper::SafeDownCast(actor->GetMapper());
if (!mapper)
{
// This is the first cloud
vtkSmartPointer<vtkDataSetMapper> mapper_new = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper_new->SetInputConnection (poly_data->GetProducerPort());
mapper_new->SetScalarRange(minmax.val);
mapper_new->SetScalarModeToUsePointData ();
bool interpolation = (poly_data && poly_data->GetNumberOfCells () != poly_data->GetNumberOfVerts ());
mapper_new->SetInterpolateScalarsBeforeMapping(interpolation);
mapper_new->ScalarVisibilityOn();
mapper_new->ImmediateModeRenderingOff();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType>(1, poly_data->GetNumberOfPoints () / 10)));
actor->GetProperty()->SetInterpolationToFlat();
actor->GetProperty()->BackfaceCullingOn();
actor->SetMapper(mapper_new);
return ;
}
vtkPolyData *data = vtkPolyData::SafeDownCast(mapper->GetInput());
CV_Assert(data);
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
appendFilter->AddInputConnection(mapper->GetInput()->GetProducerPort());
appendFilter->AddInputConnection(poly_data->GetProducerPort());
mapper->SetInputConnection(appendFilter->GetOutputPort());
// Update the number of cloud points
vtkIdType old_cloud_points = actor->GetNumberOfCloudPoints();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType>(1, old_cloud_points+poly_data->GetNumberOfPoints () / 10)));
}
};
cv::viz::CloudCollectionWidget::CloudCollectionWidget()
{
// Just create the actor
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
WidgetAccessor::setProp(*this, actor);
}
void cv::viz::CloudCollectionWidget::addCloud(InputArray _cloud, InputArray _colors, const Affine3f &pose)
{
Mat cloud = _cloud.getMat();
Mat colors = _colors.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
CV_Assert(colors.type() == CV_8UC3 && cloud.size() == colors.size());
if (cloud.isContinuous() && colors.isContinuous())
{
cloud.reshape(cloud.channels(), 1);
colors.reshape(colors.channels(), 1);
}
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
// Filter colors
Vec3b* colors_data = new Vec3b[nr_points];
NanFilter::copyColor(colors, colors_data, cloud);
vtkSmartPointer<vtkUnsignedCharArray> scalars = vtkSmartPointer<vtkUnsignedCharArray>::New ();
scalars->SetNumberOfComponents (3);
scalars->SetNumberOfTuples (nr_points);
scalars->SetArray (colors_data->val, 3 * nr_points, 0);
// Assign the colors
polydata->GetPointData ()->SetScalars (scalars);
// Transform the poly data based on the pose
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->SetMatrix(convertToVtkMatrix(pose.matrix));
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(polydata->GetProducerPort());
transform_filter->Update();
vtkLODActor *actor = vtkLODActor::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert(actor);
Vec3d minmax(scalars->GetRange());
CreateCloudWidget::createMapper(actor, transform_filter->GetOutput(), minmax);
}
void cv::viz::CloudCollectionWidget::addCloud(InputArray _cloud, const Color &color, const Affine3f &pose)
{
Mat cloud = _cloud.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkUnsignedCharArray> scalars = vtkSmartPointer<vtkUnsignedCharArray>::New ();
scalars->SetNumberOfComponents (3);
scalars->SetNumberOfTuples (nr_points);
scalars->FillComponent(0, color[2]);
scalars->FillComponent(1, color[1]);
scalars->FillComponent(2, color[0]);
// Assign the colors
polydata->GetPointData ()->SetScalars (scalars);
// Transform the poly data based on the pose
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->SetMatrix(convertToVtkMatrix(pose.matrix));
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(polydata->GetProducerPort());
transform_filter->Update();
vtkLODActor *actor = vtkLODActor::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert(actor);
Vec3d minmax(scalars->GetRange());
CreateCloudWidget::createMapper(actor, transform_filter->GetOutput(), minmax);
}
template<> cv::viz::CloudCollectionWidget cv::viz::Widget::cast<cv::viz::CloudCollectionWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<CloudCollectionWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// Cloud Normals Widget implementation
@ -359,7 +579,8 @@ cv::viz::MeshWidget::MeshWidget(const Mesh3d &mesh)
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New ();
vtkIdType nr_points = mesh.cloud.total();
int * look_up = new int[nr_points];
Mat look_up_mat(1, nr_points, CV_32SC1);
int * look_up = look_up_mat.ptr<int>();
points->SetNumberOfPoints (nr_points);
// Copy data from cloud to vtkPoints
@ -384,7 +605,7 @@ cv::viz::MeshWidget::MeshWidget(const Mesh3d &mesh)
{
Vec3b * colors_data = 0;
colors_data = new Vec3b[nr_points];
NanFilter::copy(mesh.colors, colors_data, mesh.cloud);
NanFilter::copyColor(mesh.colors, colors_data, mesh.cloud);
scalars = vtkSmartPointer<vtkUnsignedCharArray>::New ();
scalars->SetNumberOfComponents (3);

View File

@ -43,6 +43,7 @@
#include <vtkPlaneSource.h>
#include <vtkSphereSource.h>
#include <vtkArrowSource.h>
#include <vtkOutlineSource.h>
#include <vtkIdentityTransform.h>
#include <vtkTransform.h>
#include <vtkTransformPolyDataFilter.h>
@ -107,6 +108,7 @@
#include <vtkImageCanvasSource2D.h>
#include <vtkImageBlend.h>
#include <vtkImageStencilData.h>
#include <vtkImageActor.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkChartXY.h>
@ -131,7 +133,9 @@
#include <vtkImageReader2Factory.h>
#include <vtkImageReader2.h>
#include <vtkImageData.h>
#include <vtkExtractEdges.h>
#include <vtkFrustumSource.h>
#include <vtkTextureMapToPlane.h>
#include <vtkPolyDataNormals.h>
#include <vtkMapper.h>

View File

@ -50,6 +50,26 @@ template<> cv::viz::LineWidget cv::viz::Widget::cast<cv::viz::LineWidget>()
///////////////////////////////////////////////////////////////////////////////////////////////
/// plane widget implementation
struct cv::viz::PlaneWidget::SetSizeImpl
{
template<typename _Tp>
static vtkSmartPointer<vtkPolyData> setSize(const Vec<_Tp, 3> &center, vtkSmartPointer<vtkPolyData> poly_data, double size)
{
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(center[0], center[1], center[2]);
transform->Scale(size, size, size);
transform->Translate(-center[0], -center[1], -center[2]);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetInput(poly_data);
transform_filter->SetTransform(transform);
transform_filter->Update();
return transform_filter->GetOutput();
}
};
cv::viz::PlaneWidget::PlaneWidget(const Vec4f& coefs, double size, const Color &color)
{
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New ();
@ -57,12 +77,14 @@ cv::viz::PlaneWidget::PlaneWidget(const Vec4f& coefs, double size, const Color &
double norm = cv::norm(Vec3f(coefs.val));
plane->Push (-coefs[3] / norm);
Vec3d p_center;
plane->GetOrigin(p_center.val);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput(plane->GetOutput ());
mapper->SetInput(SetSizeImpl::setSize(p_center, plane->GetOutput(), size));
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetMapper(mapper);
actor->SetScale(size);
WidgetAccessor::setProp(*this, actor);
setColor(color);
@ -80,11 +102,10 @@ cv::viz::PlaneWidget::PlaneWidget(const Vec4f& coefs, const Point3f& pt, double
plane->SetCenter (p_center[0], p_center[1], p_center[2]);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput(plane->GetOutput ());
mapper->SetInput(SetSizeImpl::setSize(p_center, plane->GetOutput(), size));
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetMapper(mapper);
actor->SetScale(size);
WidgetAccessor::setProp(*this, actor);
setColor(color);
@ -128,9 +149,13 @@ template<> cv::viz::SphereWidget cv::viz::Widget::cast<cv::viz::SphereWidget>()
///////////////////////////////////////////////////////////////////////////////////////////////
/// arrow widget implementation
cv::viz::ArrowWidget::ArrowWidget(const Point3f& pt1, const Point3f& pt2, const Color &color)
cv::viz::ArrowWidget::ArrowWidget(const Point3f& pt1, const Point3f& pt2, double thickness, const Color &color)
{
vtkSmartPointer<vtkArrowSource> arrowSource = vtkSmartPointer<vtkArrowSource>::New ();
arrowSource->SetShaftRadius(thickness);
// The thickness and radius of the tip are adjusted based on the thickness of the arrow
arrowSource->SetTipRadius(thickness * 3.0);
arrowSource->SetTipLength(thickness * 10.0);
float startPoint[3], endPoint[3];
startPoint[0] = pt1.x;
@ -265,19 +290,24 @@ template<> cv::viz::CylinderWidget cv::viz::Widget::cast<cv::viz::CylinderWidget
/// cylinder widget implementation
cv::viz::CubeWidget::CubeWidget(const Point3f& pt_min, const Point3f& pt_max, bool wire_frame, const Color &color)
{
vtkSmartPointer<vtkCubeSource> cube = vtkSmartPointer<vtkCubeSource>::New ();
cube->SetBounds (pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z);
{
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
if (wire_frame)
{
vtkSmartPointer<vtkOutlineSource> cube = vtkSmartPointer<vtkOutlineSource>::New();
cube->SetBounds (pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z);
mapper->SetInput(cube->GetOutput ());
}
else
{
vtkSmartPointer<vtkCubeSource> cube = vtkSmartPointer<vtkCubeSource>::New ();
cube->SetBounds (pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z);
mapper->SetInput(cube->GetOutput ());
}
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput(cube->GetOutput ());
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetMapper(mapper);
if (wire_frame)
actor->GetProperty ()->SetRepresentationToWireframe ();
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
@ -410,26 +440,88 @@ template<> cv::viz::PolyLineWidget cv::viz::Widget::cast<cv::viz::PolyLineWidget
///////////////////////////////////////////////////////////////////////////////////////////////
/// grid widget implementation
cv::viz::GridWidget::GridWidget(Vec2i dimensions, Vec2d spacing, const Color &color)
struct cv::viz::GridWidget::GridImpl
{
// Create the grid using image data
vtkSmartPointer<vtkImageData> grid = vtkSmartPointer<vtkImageData>::New();
// Add 1 to dimensions because in ImageData dimensions is the number of lines
// - however here it means number of cells
grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1);
grid->SetSpacing(spacing[0], spacing[1], 0.);
// Set origin of the grid to be the middle of the grid
grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0);
static vtkSmartPointer<vtkPolyData> createGrid(const Vec2i &dimensions, const Vec2d &spacing)
{
// Create the grid using image data
vtkSmartPointer<vtkImageData> grid = vtkSmartPointer<vtkImageData>::New();
// Add 1 to dimensions because in ImageData dimensions is the number of lines
// - however here it means number of cells
grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1);
grid->SetSpacing(spacing[0], spacing[1], 0.);
// Set origin of the grid to be the middle of the grid
grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0);
// Extract the edges so we have the grid
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(grid->GetProducerPort());
filter->Update();
return filter->GetOutput();
}
};
cv::viz::GridWidget::GridWidget(const Vec2i &dimensions, const Vec2d &spacing, const Color &color)
{
vtkSmartPointer<vtkPolyData> grid = GridImpl::createGrid(dimensions, spacing);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New();
mapper->SetInput(grid);
mapper->SetInputConnection(grid->GetProducerPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::GridWidget::GridWidget(const Vec4f &coefs, const Vec2i &dimensions, const Vec2d &spacing, const Color &color)
{
vtkSmartPointer<vtkPolyData> grid = GridImpl::createGrid(dimensions, spacing);
// Estimate the transform to set the normal based on the coefficients
Vec3f normal(coefs[0], coefs[1], coefs[2]);
Vec3f up_vector(0.0f, 1.0f, 0.0f); // Just set as default
double push_distance = -coefs[3]/cv::norm(Vec3f(coefs.val));
Vec3f u,v,n;
n = normalize(normal);
u = normalize(up_vector.cross(n));
v = n.cross(u);
vtkSmartPointer<vtkMatrix4x4> mat_trans = vtkSmartPointer<vtkMatrix4x4>::New();
mat_trans->SetElement(0,0,u[0]);
mat_trans->SetElement(0,1,u[1]);
mat_trans->SetElement(0,2,u[2]);
mat_trans->SetElement(1,0,v[0]);
mat_trans->SetElement(1,1,v[1]);
mat_trans->SetElement(1,2,v[2]);
mat_trans->SetElement(2,0,n[0]);
mat_trans->SetElement(2,1,n[1]);
mat_trans->SetElement(2,2,n[2]);
// Inverse rotation (orthogonal, so just take transpose)
mat_trans->Transpose();
mat_trans->SetElement(0,3,n[0] * push_distance);
mat_trans->SetElement(1,3,n[1] * push_distance);
mat_trans->SetElement(2,3,n[2] * push_distance);
mat_trans->SetElement(3,3,1);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->SetMatrix(mat_trans);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(grid->GetProducerPort());
transform_filter->Update();
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New();
mapper->SetInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
// Show it as wireframe
actor->GetProperty ()->SetRepresentationToWireframe ();
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
@ -533,3 +625,729 @@ cv::String cv::viz::TextWidget::getText() const
CV_Assert(actor);
return actor->GetInput();
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// image overlay widget implementation
cv::viz::ImageOverlayWidget::ImageOverlayWidget(const Mat &image, const Rect &rect)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->Update();
// Scale the image based on the Rect
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->Scale(double(image.cols)/rect.width,double(image.rows)/rect.height,1.0);
vtkSmartPointer<vtkImageReslice> image_reslice = vtkSmartPointer<vtkImageReslice>::New();
image_reslice->SetResliceTransform(transform);
image_reslice->SetInputConnection(flipFilter->GetOutputPort());
image_reslice->SetOutputDimensionality(2);
image_reslice->InterpolateOn();
image_reslice->AutoCropOutputOn();
vtkSmartPointer<vtkImageMapper> imageMapper = vtkSmartPointer<vtkImageMapper>::New();
imageMapper->SetInputConnection(image_reslice->GetOutputPort());
imageMapper->SetColorWindow(255); // OpenCV color
imageMapper->SetColorLevel(127.5);
vtkSmartPointer<vtkActor2D> actor = vtkSmartPointer<vtkActor2D>::New();
actor->SetMapper(imageMapper);
actor->SetPosition(rect.x, rect.y);
WidgetAccessor::setProp(*this, actor);
}
void cv::viz::ImageOverlayWidget::setImage(const Mat &image)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
vtkActor2D *actor = vtkActor2D::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert(actor);
vtkImageMapper *mapper = vtkImageMapper::SafeDownCast(actor->GetMapper());
CV_Assert(mapper);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->Update();
mapper->SetInputConnection(flipFilter->GetOutputPort());
}
template<> cv::viz::ImageOverlayWidget cv::viz::Widget::cast<cv::viz::ImageOverlayWidget>()
{
Widget2D widget = this->cast<Widget2D>();
return static_cast<ImageOverlayWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// image 3D widget implementation
cv::viz::Image3DWidget::Image3DWidget(const Mat &image, const Size &size)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->Update();
Vec3d plane_center(size.width * 0.5, size.height * 0.5, 0.0);
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]);
plane->SetNormal(0.0, 0.0, 1.0);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(plane_center[0], plane_center[1], plane_center[2]);
transform->Scale(size.width, size.height, 1.0);
transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(plane->GetOutputPort());
transform_filter->Update();
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(texturePlane->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::Image3DWidget::Image3DWidget(const Vec3f &position, const Vec3f &normal, const Vec3f &up_vector, const Mat &image, const Size &size)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->Update();
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(0.0, 0.0, 0.0);
plane->SetNormal(0.0, 0.0, 1.0);
// Compute the transformation matrix for drawing the camera frame in a scene
Vec3f u,v,n;
n = normalize(normal);
u = normalize(up_vector.cross(n));
v = n.cross(u);
vtkSmartPointer<vtkMatrix4x4> mat_trans = vtkSmartPointer<vtkMatrix4x4>::New();
mat_trans->SetElement(0,0,u[0]);
mat_trans->SetElement(0,1,u[1]);
mat_trans->SetElement(0,2,u[2]);
mat_trans->SetElement(1,0,v[0]);
mat_trans->SetElement(1,1,v[1]);
mat_trans->SetElement(1,2,v[2]);
mat_trans->SetElement(2,0,n[0]);
mat_trans->SetElement(2,1,n[1]);
mat_trans->SetElement(2,2,n[2]);
// Inverse rotation (orthogonal, so just take transpose)
mat_trans->Transpose();
// Then translate the coordinate frame to camera position
mat_trans->SetElement(0,3,position[0]);
mat_trans->SetElement(1,3,position[1]);
mat_trans->SetElement(2,3,position[2]);
mat_trans->SetElement(3,3,1);
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(plane->GetOutputPort());
// Apply the transform after texture mapping
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->SetMatrix(mat_trans);
transform->Scale(size.width, size.height, 1.0);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(texturePlane->GetOutputPort());
transform_filter->Update();
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
WidgetAccessor::setProp(*this, actor);
}
void cv::viz::Image3DWidget::setImage(const Mat &image)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert(actor);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->Update();
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
actor->SetTexture(texture);
}
template<> cv::viz::Image3DWidget cv::viz::Widget::cast<cv::viz::Image3DWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<Image3DWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// camera position widget implementation
cv::viz::CameraPositionWidget::CameraPositionWidget(double scale)
{
vtkSmartPointer<vtkAxes> axes = vtkSmartPointer<vtkAxes>::New ();
axes->SetOrigin (0, 0, 0);
axes->SetScaleFactor (scale);
vtkSmartPointer<vtkFloatArray> axes_colors = vtkSmartPointer<vtkFloatArray>::New ();
axes_colors->Allocate (6);
axes_colors->InsertNextValue (0.0);
axes_colors->InsertNextValue (0.0);
axes_colors->InsertNextValue (0.5);
axes_colors->InsertNextValue (0.5);
axes_colors->InsertNextValue (1.0);
axes_colors->InsertNextValue (1.0);
vtkSmartPointer<vtkPolyData> axes_data = axes->GetOutput ();
axes_data->Update ();
axes_data->GetPointData ()->SetScalars (axes_colors);
vtkSmartPointer<vtkTubeFilter> axes_tubes = vtkSmartPointer<vtkTubeFilter>::New ();
axes_tubes->SetInput (axes_data);
axes_tubes->SetRadius (axes->GetScaleFactor () / 50.0);
axes_tubes->SetNumberOfSides (6);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetScalarModeToUsePointData ();
mapper->SetInput(axes_tubes->GetOutput ());
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::CameraPositionWidget::CameraPositionWidget(const Matx33f &K, double scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float f_x = K(0,0);
float f_y = K(1,1);
float c_y = K(1,2);
float aspect_ratio = f_y / f_x;
// Assuming that this is an ideal camera (c_y and c_x are at the center of the image)
float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI;
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInput(frustumSource->GetOutput());
filter->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInput(filter->GetOutput());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::CameraPositionWidget::CameraPositionWidget(const Vec2f &fov, double scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
// Extract the edges so we have the grid
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInput(frustumSource->GetOutput());
filter->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInput(filter->GetOutput());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::CameraPositionWidget::CameraPositionWidget(const Matx33f &K, const Mat &image, double scale, const Color &color)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create a camera
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float f_x = K(0,0);
float f_y = K(1,1);
float c_y = K(1,2);
float aspect_ratio = float(image.cols)/float(image.rows);
// Assuming that this is an ideal camera (c_y and c_x are at the center of the image)
float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI;
float far_end_height = 2.0f * c_y * scale / f_y;
// Create the vtk image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Adjust a pixel of the vtk_image
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 0, color[2]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 1, color[1]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 2, color[0]);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
flipFilter->Update();
Vec3d plane_center(0.0, 0.0, scale);
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]);
plane->SetNormal(0.0, 0.0, 1.0);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(plane_center[0], plane_center[1], plane_center[2]);
transform->Scale(far_end_height*aspect_ratio, far_end_height, 1.0);
transform->RotateY(180.0);
transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]);
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(plane->GetOutputPort());
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(texturePlane->GetOutputPort());
transform_filter->Update();
// Create frustum
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInput(frustumSource->GetOutput());
filter->Update();
// Frustum needs to be textured or else it can't be combined with image
vtkSmartPointer<vtkTextureMapToPlane> frustum_texture = vtkSmartPointer<vtkTextureMapToPlane>::New();
frustum_texture->SetInputConnection(filter->GetOutputPort());
// Texture mapping with only one pixel from the image to have constant color
frustum_texture->SetSRange(0.0, 0.0);
frustum_texture->SetTRange(0.0, 0.0);
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
appendFilter->AddInputConnection(frustum_texture->GetOutputPort());
appendFilter->AddInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(appendFilter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
WidgetAccessor::setProp(*this, actor);
}
template<> cv::viz::CameraPositionWidget cv::viz::Widget::cast<cv::viz::CameraPositionWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<CameraPositionWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// trajectory widget implementation
struct cv::viz::TrajectoryWidget::ApplyPath
{
static void applyPath(vtkSmartPointer<vtkPolyData> poly_data, vtkSmartPointer<vtkAppendPolyData> append_filter, const std::vector<Affine3f> &path)
{
vtkIdType nr_points = path.size();
for (vtkIdType i = 0; i < nr_points; ++i)
{
vtkSmartPointer<vtkPolyData> new_data = vtkSmartPointer<vtkPolyData>::New();
new_data->DeepCopy(poly_data);
// Transform the default coordinate frame
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
vtkSmartPointer<vtkMatrix4x4> mat_trans = vtkSmartPointer<vtkMatrix4x4>::New();
mat_trans = convertToVtkMatrix(path[i].matrix);
transform->SetMatrix(mat_trans);
vtkSmartPointer<vtkTransformPolyDataFilter> filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
filter->SetInput(new_data);
filter->SetTransform(transform);
filter->Update();
append_filter->AddInputConnection(filter->GetOutputPort());
}
}
};
cv::viz::TrajectoryWidget::TrajectoryWidget(const std::vector<Affine3f> &path, int display_mode, const Color &color, double scale)
{
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
// Bitwise and with 3 in order to limit the domain to 2 bits
if ((~display_mode & 3) ^ TrajectoryWidget::DISPLAY_PATH)
{
// Create a poly line along the path
vtkIdType nr_points = path.size();
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New ();
vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New ();
vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New ();
points->SetDataTypeToFloat();
points->SetNumberOfPoints(nr_points);
polyLine->GetPointIds()->SetNumberOfIds(nr_points);
Vec3f *data_beg = vtkpoints_data<float>(points);
for (vtkIdType i = 0; i < nr_points; ++i)
{
Vec3f cam_pose = path[i].translation();
*data_beg++ = cam_pose;
polyLine->GetPointIds()->SetId(i,i);
}
vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New();
cells->InsertNextCell(polyLine);
polyData->SetPoints(points);
polyData->SetLines(cells);
// Set the color for polyData
vtkSmartPointer<vtkUnsignedCharArray> colors = vtkSmartPointer<vtkUnsignedCharArray>::New();
colors->SetNumberOfComponents(3);
colors->SetNumberOfTuples(nr_points);
colors->FillComponent(0, color[2]);
colors->FillComponent(1, color[1]);
colors->FillComponent(2, color[0]);
polyData->GetPointData()->SetScalars(colors);
appendFilter->AddInputConnection(polyData->GetProducerPort());
}
if ((~display_mode & 3) ^ TrajectoryWidget::DISPLAY_FRAMES)
{
// Create frames and transform along the path
vtkSmartPointer<vtkAxes> axes = vtkSmartPointer<vtkAxes>::New();
axes->SetOrigin (0, 0, 0);
axes->SetScaleFactor (scale);
vtkSmartPointer<vtkUnsignedCharArray> axes_colors = vtkSmartPointer<vtkUnsignedCharArray>::New ();
axes_colors->SetNumberOfComponents(3);
axes_colors->InsertNextTuple3(255,0,0);
axes_colors->InsertNextTuple3(255,0,0);
axes_colors->InsertNextTuple3(0,255,0);
axes_colors->InsertNextTuple3(0,255,0);
axes_colors->InsertNextTuple3(0,0,255);
axes_colors->InsertNextTuple3(0,0,255);
vtkSmartPointer<vtkPolyData> axes_data = axes->GetOutput ();
axes_data->Update ();
axes_data->GetPointData ()->SetScalars (axes_colors);
vtkSmartPointer<vtkTubeFilter> axes_tubes = vtkSmartPointer<vtkTubeFilter>::New ();
axes_tubes->SetInput (axes_data);
axes_tubes->SetRadius (axes->GetScaleFactor() / 50.0);
axes_tubes->SetNumberOfSides (6);
axes_tubes->Update();
ApplyPath::applyPath(axes_tubes->GetOutput(), appendFilter, path);
}
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetScalarModeToUsePointData ();
mapper->SetInput(appendFilter->GetOutput());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::TrajectoryWidget::TrajectoryWidget(const std::vector<Affine3f> &path, float line_length, double init_sphere_radius,
double sphere_radius, const Color &line_color, const Color &sphere_color)
{
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
vtkIdType nr_poses = path.size();
// Create color arrays
vtkSmartPointer<vtkUnsignedCharArray> line_scalars = vtkSmartPointer<vtkUnsignedCharArray>::New();
line_scalars->SetNumberOfComponents(3);
line_scalars->InsertNextTuple3(line_color[2], line_color[1], line_color[0]);
// Create color array for sphere
vtkSphereSource * dummy_sphere = vtkSphereSource::New();
// Create the array for big sphere
dummy_sphere->SetRadius(init_sphere_radius);
dummy_sphere->Update();
vtkIdType nr_points = dummy_sphere->GetOutput()->GetNumberOfCells();
vtkSmartPointer<vtkUnsignedCharArray> sphere_scalars_init = vtkSmartPointer<vtkUnsignedCharArray>::New();
sphere_scalars_init->SetNumberOfComponents(3);
sphere_scalars_init->SetNumberOfTuples(nr_points);
sphere_scalars_init->FillComponent(0, sphere_color[2]);
sphere_scalars_init->FillComponent(1, sphere_color[1]);
sphere_scalars_init->FillComponent(2, sphere_color[0]);
// Create the array for small sphere
dummy_sphere->SetRadius(sphere_radius);
dummy_sphere->Update();
nr_points = dummy_sphere->GetOutput()->GetNumberOfCells();
vtkSmartPointer<vtkUnsignedCharArray> sphere_scalars = vtkSmartPointer<vtkUnsignedCharArray>::New();
sphere_scalars->SetNumberOfComponents(3);
sphere_scalars->SetNumberOfTuples(nr_points);
sphere_scalars->FillComponent(0, sphere_color[2]);
sphere_scalars->FillComponent(1, sphere_color[1]);
sphere_scalars->FillComponent(2, sphere_color[0]);
dummy_sphere->Delete();
for (vtkIdType i = 0; i < nr_poses; ++i)
{
Point3f new_pos = path[i].translation();
vtkSmartPointer<vtkSphereSource> sphere_source = vtkSmartPointer<vtkSphereSource>::New();
sphere_source->SetCenter (new_pos.x, new_pos.y, new_pos.z);
if (i == 0)
{
sphere_source->SetRadius(init_sphere_radius);
sphere_source->Update();
sphere_source->GetOutput()->GetCellData()->SetScalars(sphere_scalars_init);
appendFilter->AddInputConnection(sphere_source->GetOutputPort());
continue;
}
else
{
sphere_source->SetRadius(sphere_radius);
sphere_source->Update();
sphere_source->GetOutput()->GetCellData()->SetScalars(sphere_scalars);
appendFilter->AddInputConnection(sphere_source->GetOutputPort());
}
Affine3f relativeAffine = path[i].inv() * path[i-1];
Vec3f v = path[i].rotation() * relativeAffine.translation();
v = normalize(v) * line_length;
vtkSmartPointer<vtkLineSource> line_source = vtkSmartPointer<vtkLineSource>::New();
line_source->SetPoint1(new_pos.x + v[0], new_pos.y + v[1], new_pos.z + v[2]);
line_source->SetPoint2(new_pos.x, new_pos.y, new_pos.z);
line_source->Update();
line_source->GetOutput()->GetCellData()->SetScalars(line_scalars);
appendFilter->AddInputConnection(line_source->GetOutputPort());
}
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetScalarModeToUseCellData();
mapper->SetInput(appendFilter->GetOutput());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::TrajectoryWidget::TrajectoryWidget(const std::vector<Affine3f> &path, const Matx33f &K, double scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float f_x = K(0,0);
float f_y = K(1,1);
float c_y = K(1,2);
float aspect_ratio = f_y / f_x;
// Assuming that this is an ideal camera (c_y and c_x are at the center of the image)
float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI;
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource = vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
// Extract the edges
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInput(frustumSource->GetOutput());
filter->Update();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
ApplyPath::applyPath(filter->GetOutput(), appendFilter, path);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInput(appendFilter->GetOutput());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::TrajectoryWidget::TrajectoryWidget(const std::vector<Affine3f> &path, const Vec2f &fov, double scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource = vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
// Extract the edges
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInput(frustumSource->GetOutput());
filter->Update();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
ApplyPath::applyPath(filter->GetOutput(), appendFilter, path);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInput(appendFilter->GetOutput());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::TrajectoryWidget cv::viz::Widget::cast<cv::viz::TrajectoryWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<TrajectoryWidget&>(widget);
}

View File

@ -111,7 +111,7 @@ struct cv::viz::Mesh3d::loadMeshImpl
Vec3b point_color;
poly_colors->GetTupleValue (i, point_color.val);
//RGB or BGR? should we swap channels????
std::swap(point_color[0], point_color[2]); // RGB -> BGR
mesh_colors[i] = point_color;
}
}

View File

@ -19,6 +19,32 @@ cv::Affine3f cv::viz::makeTransformToGlobal(const Vec3f& axis_x, const Vec3f& ax
return Affine3f(R, origin);
}
cv::Affine3f cv::viz::makeCameraPose(const Vec3f& position, const Vec3f& focal_point, const Vec3f& y_dir)
{
// Compute the transformation matrix for drawing the camera frame in a scene
Vec3f u,v,n;
n = normalize(focal_point - position);
u = normalize(y_dir.cross(n));
v = n.cross(u);
Matx44f pose_mat;
pose_mat.zeros();
pose_mat(0,0) = u[0];
pose_mat(0,1) = u[1];
pose_mat(0,2) = u[2];
pose_mat(1,0) = v[0];
pose_mat(1,1) = v[1];
pose_mat(1,2) = v[2];
pose_mat(2,0) = n[0];
pose_mat(2,1) = n[1];
pose_mat(2,2) = n[2];
pose_mat(3,0) = position[0];
pose_mat(3,1) = position[1];
pose_mat(3,2) = position[2];
pose_mat(3,3) = 1.0f;
pose_mat = pose_mat.t();
return pose_mat;
}
vtkSmartPointer<vtkMatrix4x4> cv::viz::convertToVtkMatrix (const cv::Matx44f &m)
{

View File

@ -847,7 +847,7 @@ bool cv::viz::Viz3d::VizImpl::addModelFromPLYFile (const std::string &filename,
return (true);
}
bool cv::viz::Viz3d::VizImpl::addPolylineFromPolygonMesh (const Mesh3d& mesh, const std::string &id)
bool cv::viz::Viz3d::VizImpl::addPolylineFromPolygonMesh (const Mesh3d& /*mesh*/, const std::string &/*id*/)
{
// CV_Assert(mesh.cloud.rows == 1 && mesh.cloud.type() == CV_32FC3);
//
@ -1017,7 +1017,7 @@ void cv::viz::Viz3d::VizImpl::setWindowName (const std::string &name)
void cv::viz::Viz3d::VizImpl::setWindowPosition (int x, int y) { window_->SetPosition (x, y); }
void cv::viz::Viz3d::VizImpl::setWindowSize (int xw, int yw) { window_->SetSize (xw, yw); }
bool cv::viz::Viz3d::VizImpl::addPolygonMesh (const Mesh3d& mesh, const Mat& mask, const std::string &id)
bool cv::viz::Viz3d::VizImpl::addPolygonMesh (const Mesh3d& /*mesh*/, const Mat& /*mask*/, const std::string &/*id*/)
{
// CV_Assert(mesh.cloud.type() == CV_32FC3 && mesh.cloud.rows == 1 && !mesh.polygons.empty ());
// CV_Assert(mesh.colors.empty() || (!mesh.colors.empty() && mesh.colors.size() == mesh.cloud.size() && mesh.colors.type() == CV_8UC3));
@ -1205,7 +1205,7 @@ return true;
}
bool cv::viz::Viz3d::VizImpl::updatePolygonMesh (const Mesh3d& mesh, const cv::Mat& mask, const std::string &id)
bool cv::viz::Viz3d::VizImpl::updatePolygonMesh (const Mesh3d& /*mesh*/, const cv::Mat& /*mask*/, const std::string &/*id*/)
{
// CV_Assert(mesh.cloud.type() == CV_32FC3 && mesh.cloud.rows == 1 && !mesh.polygons.empty ());
// CV_Assert(mesh.colors.empty() || (!mesh.colors.empty() && mesh.colors.size() == mesh.cloud.size() && mesh.colors.type() == CV_8UC3));

View File

@ -327,6 +327,31 @@ namespace cv
}
return output;
}
static _Out* copyColor(const Mat& source, _Out* output, const Mat& nan_mask)
{
CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size());
CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4);
CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth());
int s_chs = source.channels();
int m_chs = nan_mask.channels();
for(int y = 0; y < source.rows; ++y)
{
const _Tp* srow = source.ptr<_Tp>(y);
const _Msk* mrow = nan_mask.ptr<_Msk>(y);
for(int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs)
if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2]))
{
*output = _Out(srow);
std::swap((*output)[0], (*output)[2]); // BGR -> RGB
++output;
}
}
return output;
}
};
template<typename _Tp>
@ -339,6 +364,17 @@ namespace cv
return table[nan_mask.depth() - 5](source, output, nan_mask);
}
template<typename _Tp>
static inline Vec<_Tp, 3>* copyColor(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask)
{
CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F);
typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&);
const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copyColor, &NanFilter::Impl<_Tp, double>::copyColor };
return table[nan_mask.depth() - 5](source, output, nan_mask);
}
};
struct ApplyAffine
@ -374,6 +410,63 @@ namespace cv
inline Vec3d vtkpoint(const Point3f& point) { return Vec3d(point.x, point.y, point.z); }
template<typename _Tp> inline _Tp normalized(const _Tp& v) { return v * 1/cv::norm(v); }
struct ConvertToVtkImage
{
struct Impl
{
static void copyImageMultiChannel(const Mat &image, vtkSmartPointer<vtkImageData> output)
{
int i_chs = image.channels();
for (int i = 0; i < image.rows; ++i)
{
const unsigned char * irows = image.ptr<unsigned char>(i);
for (int j = 0; j < image.cols; ++j, irows += i_chs)
{
unsigned char * vrows = static_cast<unsigned char *>(output->GetScalarPointer(j,i,0));
memcpy(vrows, irows, i_chs);
std::swap(vrows[0], vrows[2]); // BGR -> RGB
}
}
output->Modified();
}
static void copyImageSingleChannel(const Mat &image, vtkSmartPointer<vtkImageData> output)
{
for (int i = 0; i < image.rows; ++i)
{
const unsigned char * irows = image.ptr<unsigned char>(i);
for (int j = 0; j < image.cols; ++j, ++irows)
{
unsigned char * vrows = static_cast<unsigned char *>(output->GetScalarPointer(j,i,0));
*vrows = *irows;
}
}
output->Modified();
}
};
static void convert(const Mat &image, vtkSmartPointer<vtkImageData> output)
{
// Create the vtk image
output->SetDimensions(image.cols, image.rows, 1);
output->SetNumberOfScalarComponents(image.channels());
output->SetScalarTypeToUnsignedChar();
output->AllocateScalars();
int i_chs = image.channels();
if (i_chs > 1)
{
// Multi channel images are handled differently because of BGR <-> RGB
Impl::copyImageMultiChannel(image, output);
}
else
{
Impl::copyImageSingleChannel(image, output);
}
}
};
}
}

View File

@ -142,10 +142,6 @@ void cv::viz::Widget3D::setColor(const Color &color)
actor->GetMapper ()->ScalarVisibilityOff ();
actor->GetProperty ()->SetColor (c.val);
actor->GetProperty ()->SetEdgeColor (c.val);
actor->GetProperty ()->SetAmbient (0.8);
actor->GetProperty ()->SetDiffuse (0.8);
actor->GetProperty ()->SetSpecular (0.8);
actor->GetProperty ()->SetLighting (0);
actor->Modified ();
}

View File

@ -43,6 +43,7 @@
#include <opencv2/viz.hpp>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <fstream>
#include <string>
@ -88,9 +89,11 @@ TEST(Viz_viz3d, accuracy)
viz::Color color = viz::Color::black();
viz::LineWidget lw(Point3f(0, 0, 0), Point3f(4.f, 4.f,4.f), viz::Color::green());
viz::PlaneWidget pw(Vec4f(0.0,1.0,2.0,3.0), 5.0);
viz::SphereWidget sw(Point3f(0, 0, 0), 0.5);
viz::ArrowWidget aw(Point3f(0, 0, 0), Point3f(1, 1, 1), viz::Color::red());
viz::PlaneWidget pw(Vec4f(0.0,1.0,2.0,3.0));
viz::PlaneWidget pw2(Vec4f(0.0,1.0,2.0,3.0), 2.0, viz::Color::red());
viz::PlaneWidget pw3(Vec4f(0.0,1.0,2.0,3.0), 3.0, viz::Color::blue());
viz::SphereWidget sw(Point3f(0, 0, 0), 0.2);
viz::ArrowWidget aw(Point3f(0, 0, 0), Point3f(1, 1, 1), 0.01, viz::Color::red());
viz::CircleWidget cw(Point3f(0, 0, 0), 0.5, 0.01, viz::Color::green());
viz::CylinderWidget cyw(Point3f(0, 0, 0), Point3f(-1, -1, -1), 0.5, 30, viz::Color::green());
viz::CubeWidget cuw(Point3f(-2, -2, -2), Point3f(-1, -1, -1));
@ -99,18 +102,20 @@ TEST(Viz_viz3d, accuracy)
viz::CloudWidget pcw(cloud, colors);
viz::CloudWidget pcw2(cloud, viz::Color::magenta());
viz.showWidget("line", lw);
// viz.showWidget("line", lw);
viz.showWidget("plane", pw);
viz.showWidget("sphere", sw);
viz.showWidget("arrow", aw);
viz.showWidget("circle", cw);
viz.showWidget("cylinder", cyw);
viz.showWidget("cube", cuw);
viz.showWidget("plane2", pw2);
viz.showWidget("plane3", pw3);
// viz.showWidget("sphere", sw);
// viz.showWidget("arrow", aw);
// viz.showWidget("circle", cw);
// viz.showWidget("cylinder", cyw);
// viz.showWidget("cube", cuw);
viz.showWidget("coordinateSystem", csw);
viz.showWidget("coordinateSystem2", viz::CoordinateSystemWidget(2.0), Affine3f().translate(Vec3f(2, 0, 0)));
viz.showWidget("text",tw);
viz.showWidget("pcw",pcw);
viz.showWidget("pcw2",pcw2);
// viz.showWidget("coordinateSystem2", viz::CoordinateSystemWidget(2.0), Affine3f().translate(Vec3f(2, 0, 0)));
// viz.showWidget("text",tw);
// viz.showWidget("pcw",pcw);
// viz.showWidget("pcw2",pcw2);
// viz::LineWidget lw2 = lw;
// v.showPointCloud("cld",cloud, colors);
@ -125,13 +130,55 @@ TEST(Viz_viz3d, accuracy)
viz::PolyLineWidget plw(points, viz::Color::green());
viz.showWidget("polyline", plw);
// viz.showWidget("polyline", plw);
// lw = v.getWidget("polyline").cast<viz::LineWidget>();
viz::Mesh3d::Ptr mesh = cv::viz::Mesh3d::loadMesh("horse.ply");
viz::Mesh3d mesh = cv::viz::Mesh3d::loadMesh("horse.ply");
viz::MeshWidget mw(*mesh);
viz.showWidget("mesh", mw);
viz::MeshWidget mw(mesh);
// viz.showWidget("mesh", mw);
Mat img = imread("opencv.png");
// resize(img, img, Size(50,50));
// viz.showWidget("img", viz::ImageOverlayWidget(img, Point2i(50,50)));
Matx33f K(657, 0, 320,
0, 657, 240,
0, 0, 1);
viz::CameraPositionWidget cpw(Vec3f(0.5, 0.5, 3.0), Vec3f(0.0,0.0,0.0), Vec3f(0.0,-1.0,0.0), 0.5);
viz::CameraPositionWidget cpw2(0.5);
viz::CameraPositionWidget frustum(K, 2.0, viz::Color::green());
// viz::CameraPositionWidget frustum2(K, 4.0, viz::Color::red());
viz::CameraPositionWidget frustum2(K, 4.0, viz::Color::red());
viz::CameraPositionWidget frustum3(Vec2f(CV_PI, CV_PI/2), 4.0);
viz::Text3DWidget t3w1("Camera1", Point3f(0.4, 0.6, 3.0), 0.1);
viz::Text3DWidget t3w2("Camera2", Point3f(0,0,0), 0.1);
// viz.showWidget("CameraPositionWidget", cpw);
// viz.showWidget("CameraPositionWidget2", cpw2, Affine3f(0.524, 0, 0, Vec3f(-1.0, 0.5, 0.5)));
// viz.showWidget("camera_label", t3w1);
// viz.showWidget("camera_label2", t3w2, Affine3f(0.524, 0, 0, Vec3f(-1.0, 0.5, 0.5)));
// viz.showWidget("frustrum", frustum, Affine3f(0.524, 0, 0, Vec3f(-1.0, 0.5, 0.5)));
// viz.showWidget("frustrum2", frustum2, Affine3f(0.524, 0, 0, Vec3f(-1.0, 0.5, 0.5)));
// viz.showWidget("frustum3", frustum3, Affine3f(0.524, 0, 0, Vec3f(-1.0, 0.5, 0.5)));
std::vector<Affine3f> trajectory;
trajectory.push_back(Affine3f().translate(Vec3f(0.5,0.5,0.5)));
trajectory.push_back(Affine3f().translate(Vec3f(1.0,0.0,0.0)));
trajectory.push_back(Affine3f().translate(Vec3f(2.0,0.5,0.0)));
trajectory.push_back(Affine3f(0.5, 0.0, 0.0, Vec3f(1.0,0.0,1.0)));
//
viz.showWidget("trajectory1", viz::TrajectoryWidget(trajectory, viz::Color(0,255,255), true, 0.5));
viz.showWidget("trajectory2", viz::TrajectoryWidget(trajectory, K, 1.0, viz::Color(255,0,255)));
// viz.showWidget("trajectory1", viz::TrajectoryWidget(trajectory/*, viz::Color::yellow()*/));
// viz.showWidget("CameraPositionWidget2", cpw2);
// viz.showWidget("CameraPositionWidget3", cpw3);
viz.spin();
@ -156,13 +203,16 @@ TEST(Viz_viz3d, accuracy)
//plw.setColor(viz::Color(col_blue, col_green, col_red));
sw.setPose(cloudPosition);
// sw.setPose(cloudPosition);
// pw.setPose(cloudPosition);
aw.setPose(cloudPosition);
cw.setPose(cloudPosition);
cyw.setPose(cloudPosition);
frustum.setPose(cloudPosition);
// lw.setPose(cloudPosition);
cuw.setPose(cloudPosition);
// cpw.updatePose(Affine3f(0.1,0.0,0.0, cv::Vec3f(0.0,0.0,0.0)));
// cpw.setPose(cloudPosition);
// cnw.setPose(cloudPosition);
// v.showWidget("pcw",pcw, cloudPosition);
// v.showWidget("pcw2",pcw2, cloudPosition2);