mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 04:12:52 +08:00
Merge pull request #10492 from pengli:dnn
This commit is contained in:
commit
f46eff4eb0
@ -148,11 +148,89 @@ public:
|
||||
deltasPermute->finalize(layerInputs, layerOutputs);
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
||||
{
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
std::vector<UMat> internals;
|
||||
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
internals_.getUMatVector(internals);
|
||||
|
||||
CV_Assert(inputs.size() == 3);
|
||||
CV_Assert(internals.size() == 3);
|
||||
const UMat& scores = inputs[0];
|
||||
const UMat& bboxDeltas = inputs[1];
|
||||
const UMat& imInfo = inputs[2];
|
||||
UMat& priorBoxes = internals[0];
|
||||
UMat& permuttedScores = internals[1];
|
||||
UMat& permuttedDeltas = internals[2];
|
||||
|
||||
CV_Assert(imInfo.total() >= 2);
|
||||
// We've chosen the smallest data type because we need just a shape from it.
|
||||
Mat szMat;
|
||||
imInfo.copyTo(szMat);
|
||||
int rows = (int)szMat.at<float>(0);
|
||||
int cols = (int)szMat.at<float>(1);
|
||||
umat_fakeImageBlob.create(shape(1, 1, rows, cols), CV_8UC1);
|
||||
umat_fakeImageBlob.setTo(0);
|
||||
|
||||
// Generate prior boxes.
|
||||
std::vector<UMat> layerInputs(2), layerOutputs(1, priorBoxes);
|
||||
layerInputs[0] = scores;
|
||||
layerInputs[1] = umat_fakeImageBlob;
|
||||
priorBoxLayer->forward(layerInputs, layerOutputs, internals);
|
||||
|
||||
// Permute scores.
|
||||
layerInputs.assign(1, getObjectScores(scores));
|
||||
layerOutputs.assign(1, permuttedScores);
|
||||
scoresPermute->forward(layerInputs, layerOutputs, internals);
|
||||
|
||||
// Permute deltas.
|
||||
layerInputs.assign(1, bboxDeltas);
|
||||
layerOutputs.assign(1, permuttedDeltas);
|
||||
deltasPermute->forward(layerInputs, layerOutputs, internals);
|
||||
|
||||
// Sort predictions by scores and apply NMS. DetectionOutputLayer allocates
|
||||
// output internally because of different number of objects after NMS.
|
||||
layerInputs.resize(4);
|
||||
layerInputs[0] = permuttedDeltas;
|
||||
layerInputs[1] = permuttedScores;
|
||||
layerInputs[2] = priorBoxes;
|
||||
layerInputs[3] = umat_fakeImageBlob;
|
||||
|
||||
layerOutputs[0] = UMat();
|
||||
detectionOutputLayer->forward(layerInputs, layerOutputs, internals);
|
||||
|
||||
// DetectionOutputLayer produces 1x1xNx7 output where N might be less or
|
||||
// equal to keepTopAfterNMS. We fill the rest by zeros.
|
||||
const int numDets = layerOutputs[0].total() / 7;
|
||||
CV_Assert(numDets <= keepTopAfterNMS);
|
||||
|
||||
MatShape s = shape(numDets, 7);
|
||||
UMat src = layerOutputs[0].reshape(1, s.size(), &s[0]).colRange(3, 7);
|
||||
UMat dst = outputs[0].rowRange(0, numDets);
|
||||
src.copyTo(dst.colRange(1, 5));
|
||||
dst.col(0).setTo(0); // First column are batch ids. Keep it zeros too.
|
||||
|
||||
if (numDets < keepTopAfterNMS)
|
||||
outputs[0].rowRange(numDets, keepTopAfterNMS).setTo(0);
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||
}
|
||||
|
||||
@ -226,6 +304,20 @@ private:
|
||||
return slice(m, Range::all(), Range(channels / 2, channels));
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
static UMat getObjectScores(const UMat& m)
|
||||
{
|
||||
CV_Assert(m.dims == 4);
|
||||
CV_Assert(m.size[0] == 1);
|
||||
int channels = m.size[1];
|
||||
CV_Assert((channels & 1) == 0);
|
||||
|
||||
Range r = Range(channels / 2, channels);
|
||||
Range ranges[4] = { Range::all(), r, Range::all(), Range::all() };
|
||||
return m(&ranges[0]);
|
||||
}
|
||||
#endif
|
||||
|
||||
Ptr<PriorBoxLayer> priorBoxLayer;
|
||||
Ptr<DetectionOutputLayer> detectionOutputLayer;
|
||||
|
||||
@ -233,6 +325,9 @@ private:
|
||||
Ptr<PermuteLayer> scoresPermute;
|
||||
uint32_t keepTopAfterNMS;
|
||||
Mat fakeImageBlob;
|
||||
#ifdef HAVE_OPENCL
|
||||
UMat umat_fakeImageBlob;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
|
@ -30,6 +30,7 @@ const char* params
|
||||
"{ model | | model weights (res10_300x300_ssd_iter_140000.caffemodel) }"
|
||||
"{ camera_device | 0 | camera device number }"
|
||||
"{ video | | video or image for detection }"
|
||||
"{ opencl | false | enable OpenCL }"
|
||||
"{ min_confidence | 0.5 | min confidence }";
|
||||
|
||||
int main(int argc, char** argv)
|
||||
@ -62,6 +63,11 @@ int main(int argc, char** argv)
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if (parser.get<bool>("opencl"))
|
||||
{
|
||||
net.setPreferableTarget(DNN_TARGET_OPENCL);
|
||||
}
|
||||
|
||||
VideoCapture cap;
|
||||
if (parser.get<String>("video").empty())
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user