Merge pull request #6463 from ohnozzy:ocl-linearpolar-and-logpolar

This commit is contained in:
Vadim Pisarevsky 2016-04-25 12:42:40 +00:00
commit f4e00bd60f
3 changed files with 280 additions and 0 deletions

View File

@ -4599,6 +4599,144 @@ static bool ocl_remap(InputArray _src, OutputArray _dst, InputArray _map1, Input
return k.run(2, globalThreads, NULL, false);
}
static bool ocl_linearPolar(InputArray _src, OutputArray _dst,
Point2f center, double maxRadius, int flags)
{
UMat src_with_border; // don't scope this variable (it holds image data)
UMat mapx, mapy, r, cp_sp;
UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
Size dsize = src.size();
r.create(Size(1, dsize.width), CV_32F);
cp_sp.create(Size(1, dsize.height), CV_32FC2);
mapx.create(dsize, CV_32F);
mapy.create(dsize, CV_32F);
size_t w = dsize.width;
size_t h = dsize.height;
String buildOptions;
unsigned mem_szie = 32;
if (flags & CV_WARP_INVERSE_MAP)
{
buildOptions = "-D InverseMap";
}
else
{
buildOptions = format("-D ForwardMap -D MEM_SIZE=%d", mem_szie);
}
String retval;
ocl::Program p(ocl::imgproc::linearPolar_oclsrc, buildOptions, retval);
ocl::Kernel k("linearPolar", p);
ocl::KernelArg ocl_mapx = ocl::KernelArg::PtrReadWrite(mapx), ocl_mapy = ocl::KernelArg::PtrReadWrite(mapy);
ocl::KernelArg ocl_cp_sp = ocl::KernelArg::PtrReadWrite(cp_sp);
ocl::KernelArg ocl_r = ocl::KernelArg::PtrReadWrite(r);
if (!(flags & CV_WARP_INVERSE_MAP))
{
ocl::Kernel computeAngleRadius_Kernel("computeAngleRadius", p);
float PI2_height = (float) CV_2PI / dsize.height;
float maxRadius_width = (float) maxRadius / dsize.width;
computeAngleRadius_Kernel.args(ocl_cp_sp, ocl_r, maxRadius_width, PI2_height, (unsigned)dsize.width, (unsigned)dsize.height);
size_t max_dim = max(h, w);
computeAngleRadius_Kernel.run(1, &max_dim, NULL, false);
k.args(ocl_mapx, ocl_mapy, ocl_cp_sp, ocl_r, center.x, center.y, (unsigned)dsize.width, (unsigned)dsize.height);
}
else
{
const int ANGLE_BORDER = 1;
cv::copyMakeBorder(src, src_with_border, ANGLE_BORDER, ANGLE_BORDER, 0, 0, BORDER_WRAP);
src = src_with_border;
Size ssize = src_with_border.size();
ssize.height -= 2 * ANGLE_BORDER;
float ascale = ssize.height / ((float)CV_2PI);
float pscale = ssize.width / ((float) maxRadius);
k.args(ocl_mapx, ocl_mapy, ascale, pscale, center.x, center.y, ANGLE_BORDER, (unsigned)dsize.width, (unsigned)dsize.height);
}
size_t globalThreads[2] = { (size_t)dsize.width , (size_t)dsize.height };
size_t localThreads[2] = { mem_szie , mem_szie };
k.run(2, globalThreads, localThreads, false);
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
return true;
}
static bool ocl_logPolar(InputArray _src, OutputArray _dst,
Point2f center, double M, int flags)
{
if (M <= 0)
CV_Error(CV_StsOutOfRange, "M should be >0");
UMat src_with_border; // don't scope this variable (it holds image data)
UMat mapx, mapy, r, cp_sp;
UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
Size dsize = src.size();
r.create(Size(1, dsize.width), CV_32F);
cp_sp.create(Size(1, dsize.height), CV_32FC2);
mapx.create(dsize, CV_32F);
mapy.create(dsize, CV_32F);
size_t w = dsize.width;
size_t h = dsize.height;
String buildOptions;
unsigned mem_szie = 32;
if (flags & CV_WARP_INVERSE_MAP)
{
buildOptions = "-D InverseMap";
}
else
{
buildOptions = format("-D ForwardMap -D MEM_SIZE=%d", mem_szie);
}
String retval;
ocl::Program p(ocl::imgproc::logPolar_oclsrc, buildOptions, retval);
//ocl::Program p(ocl::imgproc::my_linearPolar_oclsrc, buildOptions, retval);
//printf("%s\n", retval);
ocl::Kernel k("logPolar", p);
ocl::KernelArg ocl_mapx = ocl::KernelArg::PtrReadWrite(mapx), ocl_mapy = ocl::KernelArg::PtrReadWrite(mapy);
ocl::KernelArg ocl_cp_sp = ocl::KernelArg::PtrReadWrite(cp_sp);
ocl::KernelArg ocl_r = ocl::KernelArg::PtrReadWrite(r);
if (!(flags & CV_WARP_INVERSE_MAP))
{
ocl::Kernel computeAngleRadius_Kernel("computeAngleRadius", p);
float PI2_height = (float) CV_2PI / dsize.height;
computeAngleRadius_Kernel.args(ocl_cp_sp, ocl_r, (float)M, PI2_height, (unsigned)dsize.width, (unsigned)dsize.height);
size_t max_dim = max(h, w);
computeAngleRadius_Kernel.run(1, &max_dim, NULL, false);
k.args(ocl_mapx, ocl_mapy, ocl_cp_sp, ocl_r, center.x, center.y, (unsigned)dsize.width, (unsigned)dsize.height);
}
else
{
const int ANGLE_BORDER = 1;
cv::copyMakeBorder(src, src_with_border, ANGLE_BORDER, ANGLE_BORDER, 0, 0, BORDER_WRAP);
src = src_with_border;
Size ssize = src_with_border.size();
ssize.height -= 2 * ANGLE_BORDER;
float ascale = ssize.height / ((float)CV_2PI);
k.args(ocl_mapx, ocl_mapy, ascale, (float)M, center.x, center.y, ANGLE_BORDER, (unsigned)dsize.width, (unsigned)dsize.height);
}
size_t globalThreads[2] = { (size_t)dsize.width , (size_t)dsize.height };
size_t localThreads[2] = { mem_szie , mem_szie };
k.run(2, globalThreads, localThreads, false);
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
return true;
}
#endif
#if defined HAVE_IPP && !defined HAVE_IPP_ICV_ONLY && IPP_DISABLE_BLOCK
@ -6639,6 +6777,8 @@ cvLogPolar( const CvArr* srcarr, CvArr* dstarr,
void cv::logPolar( InputArray _src, OutputArray _dst,
Point2f center, double M, int flags )
{
CV_OCL_RUN(_src.isUMat() && _dst.isUMat(),
ocl_logPolar(_src, _dst, center, M, flags));
Mat src_with_border; // don't scope this variable (it holds image data)
Mat mapx, mapy;
@ -6846,6 +6986,8 @@ void cvLinearPolar( const CvArr* srcarr, CvArr* dstarr,
void cv::linearPolar( InputArray _src, OutputArray _dst,
Point2f center, double maxRadius, int flags )
{
CV_OCL_RUN(_src.isUMat() && _dst.isUMat(),
ocl_linearPolar(_src, _dst, center, maxRadius, flags));
Mat src_with_border; // don't scope this variable (it holds image data)
Mat mapx, mapy;

View File

@ -0,0 +1,69 @@
#define CV_2PI 6.283185307179586476925286766559
#ifdef ForwardMap
__kernel void computeAngleRadius(__global float2* cp_sp, __global float* r, float maxRadius_width, float PI2_height, unsigned width, unsigned height)
{
unsigned gid = get_global_id(0);
if (gid < height)
{
float angle = gid * PI2_height;
float2 angle_tri=(float2)(cos(angle), sin(angle));
cp_sp[gid] = angle_tri;
}
if (gid < width)
{
r[gid] = maxRadius_width*gid;
}
}
__kernel void linearPolar(__global float* mx, __global float* my, __global float2* cp_sp, __global float* r, float cx, float cy, unsigned width, unsigned height)
{
__local float l_r[MEM_SIZE];
__local float2 l_double[MEM_SIZE];
unsigned rho = get_global_id(0);
unsigned phi = get_global_id(1);
unsigned local_0 = get_local_id(0);
unsigned local_1 = get_local_id(1);
if (local_1 == 0)
{
unsigned temp_phi=phi + local_0;
if (temp_phi < height)
{
l_double[local_0] = cp_sp[temp_phi];
}
}
if (local_1 == 1 )
{
if (rho < width)
{
l_r[local_0 ] = r[rho];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (rho<width && phi<height)
{
unsigned g_id = rho + phi*width;
float radius = l_r[local_0];
float2 tri= l_double[local_1];
mx[g_id] = fma(radius, tri.x , cx);
my[g_id] = fma(radius, tri.y , cy);
}
}
#elif defined (InverseMap)
__kernel void linearPolar(__global float* mx, __global float* my, float ascale, float pscale, float cx, float cy, int angle_border, unsigned width, unsigned height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if (x < width && y < height)
{
unsigned g_id = x + y*width;
float dx = (float)x - cx;
float dy = (float)y - cy;
float mag = sqrt(dx*dx + dy*dy);
float angle = atan2(dy, dx);
if (angle < 0)
angle = angle + CV_2PI;
mx[g_id] = mag*pscale;
my[g_id] = (angle*ascale) + angle_border;
}
}
#endif

View File

@ -0,0 +1,69 @@
#define CV_2PI 6.283185307179586476925286766559
#ifdef ForwardMap
__kernel void computeAngleRadius(__global float2* cp_sp, __global float* r, float m, float PI2_height, unsigned width, unsigned height)
{
unsigned gid = get_global_id(0);
if (gid < height)
{
float angle = gid * PI2_height;
float2 angle_tri = (float2)(cos(angle), sin(angle));
cp_sp[gid] = angle_tri;
}
if (gid < width)
{
r[gid] = exp(gid/m)-1.0f;
}
}
__kernel void logPolar(__global float* mx, __global float* my, __global float2* cp_sp, __global float* r, float cx, float cy, unsigned width, unsigned height)
{
__local float l_r[MEM_SIZE];
__local float2 l_double[MEM_SIZE];
unsigned rho = get_global_id(0);
unsigned phi = get_global_id(1);
unsigned local_0 = get_local_id(0);
unsigned local_1 = get_local_id(1);
if (local_1 == 0)
{
unsigned temp_phi = phi + local_0;
if (temp_phi < height)
{
l_double[local_0] = cp_sp[temp_phi];
}
}
if (local_1 == 1)
{
if (rho < width)
{
l_r[local_0] = r[rho];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (rho<width && phi<height)
{
unsigned g_id = rho + phi*width;
float radius = l_r[local_0];
float2 tri = l_double[local_1];
mx[g_id] = fma(radius, tri.x , cx);
my[g_id] = fma(radius, tri.y, cy);
}
}
#elif defined (InverseMap)
__kernel void logPolar(__global float* mx, __global float* my, float ascale, float m, float cx, float cy, int angle_border, unsigned width, unsigned height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if (x < width && y < height)
{
unsigned g_id = x + y*width;
float dx = (float)x - cx;
float dy = (float)y - cy;
float mag = log(sqrt(dx*dx + dy*dy)+1.0f);
float angle = atan2(dy, dx);
if (angle < 0)
angle = angle + CV_2PI;
mx[g_id] = mag*m;
my[g_id] = (angle*ascale) + angle_border;
}
}
#endif