mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
add negatives generation
This commit is contained in:
parent
a388884675
commit
f6e3e3f049
@ -102,7 +102,7 @@ private:
|
||||
class Octave : cv::Boost
|
||||
{
|
||||
public:
|
||||
Octave(int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
virtual ~Octave();
|
||||
|
||||
virtual bool train(const Dataset& dataset, const FeaturePool& pool);
|
||||
@ -114,7 +114,9 @@ protected:
|
||||
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
||||
|
||||
void processPositives(const Dataset& dataset, const FeaturePool& pool);
|
||||
void generateNegatives(const Dataset& dataset);
|
||||
private:
|
||||
cv::Rect boundingBox;
|
||||
|
||||
int npositives;
|
||||
int nnegatives;
|
||||
|
@ -58,8 +58,8 @@
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
// ============ Octave ============ //
|
||||
sft::Octave::Octave(int np, int nn, int ls, int shr)
|
||||
: logScale(ls), npositives(np), nnegatives(nn), shrinkage(shr)
|
||||
sft::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
|
||||
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
||||
{
|
||||
int maxSample = npositives + nnegatives;
|
||||
responses.create(maxSample, 1, CV_32FC1);
|
||||
@ -137,41 +137,93 @@ public:
|
||||
}
|
||||
|
||||
// ToDo: parallelize it
|
||||
// ToDo: sunch model size and shrinced model size usage/ Now model size mean already shrinked model
|
||||
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& pool)
|
||||
{
|
||||
Preprocessor prepocessor(shrinkage);
|
||||
|
||||
int cols = (64 * pow(2, logScale) + 1) * (128 * pow(2, logScale) + 1);
|
||||
integrals.create(pool.size(), cols, CV_32SC1);
|
||||
int w = 64 * pow(2, logScale) /shrinkage;
|
||||
int h = 128 * pow(2, logScale) /shrinkage * 10;
|
||||
|
||||
integrals.create(pool.size(), (w + 1) * (h + 1), CV_32SC1);
|
||||
|
||||
int total = 0;
|
||||
|
||||
// float* responce = responce.ptr<float>(0);
|
||||
for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
||||
{
|
||||
const string& curr = *it;
|
||||
|
||||
dprintf("Process candidate positive image %s\n", curr.c_str());
|
||||
|
||||
cv::Mat channels = integrals.col(total).reshape(0, (128 * pow(2, logScale) + 1));
|
||||
|
||||
cv::Mat sample = cv::imread(curr);
|
||||
cv::Mat sample = cv::imread(curr);
|
||||
cv::Mat channels = integrals.col(total).reshape(0, h + 1);
|
||||
prepocessor.apply(sample, channels);
|
||||
|
||||
responses.ptr<float>(total)[0] = 1.f;
|
||||
|
||||
++total;
|
||||
if (total >= npositives) break;
|
||||
if (++total >= npositives) break;
|
||||
}
|
||||
|
||||
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total);
|
||||
|
||||
npositives = total;
|
||||
nnegatives *= total / (float)npositives;
|
||||
npositives = total;
|
||||
nnegatives = cvRound(nnegatives * total / (double)npositives);
|
||||
}
|
||||
|
||||
void sft::Octave::generateNegatives(const Dataset& dataset)
|
||||
{
|
||||
// ToDo: set seed, use offsets
|
||||
sft::Random::engine eng;
|
||||
sft::Random::engine idxEng;
|
||||
|
||||
Preprocessor prepocessor(shrinkage);
|
||||
|
||||
int nimages = (int)dataset.neg.size();
|
||||
sft::Random::uniform iRand(0, nimages - 1);
|
||||
|
||||
int total = 0;
|
||||
Mat sum;
|
||||
for (int i = npositives; i < nnegatives + npositives; ++total)
|
||||
{
|
||||
int curr = iRand(idxEng);
|
||||
|
||||
dprintf("View %d-th sample\n", curr);
|
||||
dprintf("Process %s\n", dataset.neg[curr].c_str());
|
||||
|
||||
Mat frame = cv::imread(dataset.neg[curr]);
|
||||
prepocessor.apply(frame, sum);
|
||||
|
||||
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
||||
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
|
||||
|
||||
sft::Random::uniform wRand(0, maxW);
|
||||
sft::Random::uniform hRand(0, maxH);
|
||||
|
||||
int dx = wRand(eng);
|
||||
int dy = hRand(eng);
|
||||
|
||||
sum = sum(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
||||
|
||||
dprintf("generated %d %d\n", dx, dy);
|
||||
|
||||
if (predict(sum))
|
||||
{
|
||||
responses.ptr<float>(i)[0] = 0.f;
|
||||
sum = sum.reshape(0, 1);
|
||||
sum.copyTo(integrals.col(i));
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
||||
}
|
||||
|
||||
bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool)
|
||||
{
|
||||
// 1. fill integrals and classes
|
||||
processPositives(dataset, pool);
|
||||
generateNegatives(dataset);
|
||||
|
||||
return false;
|
||||
|
||||
}
|
||||
|
@ -59,7 +59,8 @@ int main(int argc, char** argv)
|
||||
cv::Size model(64, 128);
|
||||
std::string path = "/home/kellan/cuda-dev/opencv_extra/testdata/sctrain/rescaled-train-2012-10-27-19-02-52";
|
||||
|
||||
sft::Octave boost(npositives, nnegatives, octave, shrinkage);
|
||||
cv::Rect boundingBox(5, 5 ,16, 32);
|
||||
sft::Octave boost(boundingBox, npositives, nnegatives, octave, shrinkage);
|
||||
|
||||
sft::FeaturePool pool(model, nfeatures);
|
||||
sft::Dataset dataset(path, boost.logScale);
|
||||
|
Loading…
Reference in New Issue
Block a user