export SVM::trainAuto to python #7224 (#8373)

* export SVM::trainAuto to python #7224

* workaround for ABI compatibility of SVM::trainAuto

* add parameter comments to new SVM::trainAuto function

* Export ParamGrid member variables
This commit is contained in:
Julian Tanke 2017-03-23 14:00:19 +01:00 committed by Vadim Pisarevsky
parent 1857aa22b3
commit f70cc29edb
3 changed files with 103 additions and 4 deletions

View File

@ -104,7 +104,7 @@ enum SampleTypes
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate
being computed by cross-validation.
*/
class CV_EXPORTS ParamGrid
class CV_EXPORTS_W ParamGrid
{
public:
/** @brief Default constructor */
@ -112,8 +112,8 @@ public:
/** @brief Constructor with parameters */
ParamGrid(double _minVal, double _maxVal, double _logStep);
double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
CV_PROP_RW double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
CV_PROP_RW double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
/** @brief Logarithmic step for iterating the statmodel parameter.
The grid determines the following iteration sequence of the statmodel parameter values:
@ -122,7 +122,15 @@ public:
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f]
The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.
*/
double logStep;
CV_PROP_RW double logStep;
/** @brief Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method
@param minVal minimum value of the parameter grid
@param maxVal maximum value of the parameter grid
@param logstep Logarithmic step for iterating the statmodel parameter
*/
CV_WRAP static Ptr<ParamGrid> create(double minVal=0., double maxVal=0., double logstep=1.);
};
/** @brief Class encapsulating training data.
@ -691,6 +699,46 @@ public:
ParamGrid degreeGrid = getDefaultGrid(DEGREE),
bool balanced=false) = 0;
/** @brief Trains an %SVM with optimal parameters
@param samples training samples
@param layout See ml::SampleTypes.
@param responses vector of responses associated with the training samples.
@param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
subset is used to test the model, the others form the train set. So, the %SVM algorithm is
@param Cgrid grid for C
@param gammaGrid grid for gamma
@param pGrid grid for p
@param nuGrid grid for nu
@param coeffGrid grid for coeff
@param degreeGrid grid for degree
@param balanced If true and the problem is 2-class classification then the method creates more
balanced cross-validation subsets that is proportions between classes in subsets are close
to such proportion in the whole train dataset.
The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
nu, coef0, degree. Parameters are considered optimal when the cross-validation
estimate of the test set error is minimal.
This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
offers rudimentary parameter options.
This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
the usual %SVM with parameters specified in params is executed.
*/
CV_WRAP bool trainAuto(InputArray samples,
int layout,
InputArray responses,
int kFold = 10,
Ptr<ParamGrid> Cgrid = SVM::getDefaultGridPtr(SVM::C),
Ptr<ParamGrid> gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA),
Ptr<ParamGrid> pGrid = SVM::getDefaultGridPtr(SVM::P),
Ptr<ParamGrid> nuGrid = SVM::getDefaultGridPtr(SVM::NU),
Ptr<ParamGrid> coeffGrid = SVM::getDefaultGridPtr(SVM::COEF),
Ptr<ParamGrid> degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE),
bool balanced=false);
/** @brief Retrieves all the support vectors
The method returns all the support vectors as a floating-point matrix, where support vectors are
@ -733,6 +781,16 @@ public:
*/
static ParamGrid getDefaultGrid( int param_id );
/** @brief Generates a grid for %SVM parameters.
@param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
generated for the parameter with this ID.
The function generates a grid pointer for the specified parameter of the %SVM algorithm.
The grid may be passed to the function SVM::trainAuto.
*/
CV_WRAP static Ptr<ParamGrid> getDefaultGridPtr( int param_id );
/** Creates empty model.
Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
find the best parameters for your problem, it can be done with SVM::trainAuto. */

View File

@ -50,6 +50,10 @@ ParamGrid::ParamGrid(double _minVal, double _maxVal, double _logStep)
logStep = std::max(_logStep, 1.);
}
Ptr<ParamGrid> ParamGrid::create(double minval, double maxval, double logstep) {
return makePtr<ParamGrid>(minval, maxval, logstep);
}
bool StatModel::empty() const { return !isTrained(); }
int StatModel::getVarCount() const { return 0; }

View File

@ -362,6 +362,12 @@ static void sortSamplesByClasses( const Mat& _samples, const Mat& _responses,
//////////////////////// SVM implementation //////////////////////////////
Ptr<ParamGrid> SVM::getDefaultGridPtr( int param_id)
{
ParamGrid grid = getDefaultGrid(param_id); // this is not a nice solution..
return makePtr<ParamGrid>(grid.minVal, grid.maxVal, grid.logStep);
}
ParamGrid SVM::getDefaultGrid( int param_id )
{
ParamGrid grid;
@ -1920,6 +1926,24 @@ public:
bool returnDFVal;
};
bool trainAuto_(InputArray samples, int layout,
InputArray responses, int kfold, Ptr<ParamGrid> Cgrid,
Ptr<ParamGrid> gammaGrid, Ptr<ParamGrid> pGrid, Ptr<ParamGrid> nuGrid,
Ptr<ParamGrid> coeffGrid, Ptr<ParamGrid> degreeGrid, bool balanced)
{
Ptr<TrainData> data = TrainData::create(samples, layout, responses);
return this->trainAuto(
data, kfold,
*Cgrid.get(),
*gammaGrid.get(),
*pGrid.get(),
*nuGrid.get(),
*coeffGrid.get(),
*degreeGrid.get(),
balanced);
}
float predict( InputArray _samples, OutputArray _results, int flags ) const
{
float result = 0;
@ -2281,6 +2305,19 @@ Mat SVM::getUncompressedSupportVectors() const
return this_->getUncompressedSupportVectors_();
}
bool SVM::trainAuto(InputArray samples, int layout,
InputArray responses, int kfold, Ptr<ParamGrid> Cgrid,
Ptr<ParamGrid> gammaGrid, Ptr<ParamGrid> pGrid, Ptr<ParamGrid> nuGrid,
Ptr<ParamGrid> coeffGrid, Ptr<ParamGrid> degreeGrid, bool balanced)
{
SVMImpl* this_ = dynamic_cast<SVMImpl*>(this);
if (!this_) {
CV_Error(Error::StsNotImplemented, "the class is not SVMImpl");
}
return this_->trainAuto_(samples, layout, responses,
kfold, Cgrid, gammaGrid, pGrid, nuGrid, coeffGrid, degreeGrid, balanced);
}
}
}