mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
* export SVM::trainAuto to python #7224 * workaround for ABI compatibility of SVM::trainAuto * add parameter comments to new SVM::trainAuto function * Export ParamGrid member variables
This commit is contained in:
parent
1857aa22b3
commit
f70cc29edb
@ -104,7 +104,7 @@ enum SampleTypes
|
||||
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate
|
||||
being computed by cross-validation.
|
||||
*/
|
||||
class CV_EXPORTS ParamGrid
|
||||
class CV_EXPORTS_W ParamGrid
|
||||
{
|
||||
public:
|
||||
/** @brief Default constructor */
|
||||
@ -112,8 +112,8 @@ public:
|
||||
/** @brief Constructor with parameters */
|
||||
ParamGrid(double _minVal, double _maxVal, double _logStep);
|
||||
|
||||
double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
|
||||
double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
|
||||
CV_PROP_RW double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
|
||||
CV_PROP_RW double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
|
||||
/** @brief Logarithmic step for iterating the statmodel parameter.
|
||||
|
||||
The grid determines the following iteration sequence of the statmodel parameter values:
|
||||
@ -122,7 +122,15 @@ public:
|
||||
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f]
|
||||
The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.
|
||||
*/
|
||||
double logStep;
|
||||
CV_PROP_RW double logStep;
|
||||
|
||||
/** @brief Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method
|
||||
|
||||
@param minVal minimum value of the parameter grid
|
||||
@param maxVal maximum value of the parameter grid
|
||||
@param logstep Logarithmic step for iterating the statmodel parameter
|
||||
*/
|
||||
CV_WRAP static Ptr<ParamGrid> create(double minVal=0., double maxVal=0., double logstep=1.);
|
||||
};
|
||||
|
||||
/** @brief Class encapsulating training data.
|
||||
@ -691,6 +699,46 @@ public:
|
||||
ParamGrid degreeGrid = getDefaultGrid(DEGREE),
|
||||
bool balanced=false) = 0;
|
||||
|
||||
/** @brief Trains an %SVM with optimal parameters
|
||||
|
||||
@param samples training samples
|
||||
@param layout See ml::SampleTypes.
|
||||
@param responses vector of responses associated with the training samples.
|
||||
@param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
|
||||
subset is used to test the model, the others form the train set. So, the %SVM algorithm is
|
||||
@param Cgrid grid for C
|
||||
@param gammaGrid grid for gamma
|
||||
@param pGrid grid for p
|
||||
@param nuGrid grid for nu
|
||||
@param coeffGrid grid for coeff
|
||||
@param degreeGrid grid for degree
|
||||
@param balanced If true and the problem is 2-class classification then the method creates more
|
||||
balanced cross-validation subsets that is proportions between classes in subsets are close
|
||||
to such proportion in the whole train dataset.
|
||||
|
||||
The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
|
||||
nu, coef0, degree. Parameters are considered optimal when the cross-validation
|
||||
estimate of the test set error is minimal.
|
||||
|
||||
This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
|
||||
offers rudimentary parameter options.
|
||||
|
||||
This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
|
||||
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
|
||||
the usual %SVM with parameters specified in params is executed.
|
||||
*/
|
||||
CV_WRAP bool trainAuto(InputArray samples,
|
||||
int layout,
|
||||
InputArray responses,
|
||||
int kFold = 10,
|
||||
Ptr<ParamGrid> Cgrid = SVM::getDefaultGridPtr(SVM::C),
|
||||
Ptr<ParamGrid> gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA),
|
||||
Ptr<ParamGrid> pGrid = SVM::getDefaultGridPtr(SVM::P),
|
||||
Ptr<ParamGrid> nuGrid = SVM::getDefaultGridPtr(SVM::NU),
|
||||
Ptr<ParamGrid> coeffGrid = SVM::getDefaultGridPtr(SVM::COEF),
|
||||
Ptr<ParamGrid> degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE),
|
||||
bool balanced=false);
|
||||
|
||||
/** @brief Retrieves all the support vectors
|
||||
|
||||
The method returns all the support vectors as a floating-point matrix, where support vectors are
|
||||
@ -733,6 +781,16 @@ public:
|
||||
*/
|
||||
static ParamGrid getDefaultGrid( int param_id );
|
||||
|
||||
/** @brief Generates a grid for %SVM parameters.
|
||||
|
||||
@param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
|
||||
generated for the parameter with this ID.
|
||||
|
||||
The function generates a grid pointer for the specified parameter of the %SVM algorithm.
|
||||
The grid may be passed to the function SVM::trainAuto.
|
||||
*/
|
||||
CV_WRAP static Ptr<ParamGrid> getDefaultGridPtr( int param_id );
|
||||
|
||||
/** Creates empty model.
|
||||
Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
|
||||
find the best parameters for your problem, it can be done with SVM::trainAuto. */
|
||||
|
@ -50,6 +50,10 @@ ParamGrid::ParamGrid(double _minVal, double _maxVal, double _logStep)
|
||||
logStep = std::max(_logStep, 1.);
|
||||
}
|
||||
|
||||
Ptr<ParamGrid> ParamGrid::create(double minval, double maxval, double logstep) {
|
||||
return makePtr<ParamGrid>(minval, maxval, logstep);
|
||||
}
|
||||
|
||||
bool StatModel::empty() const { return !isTrained(); }
|
||||
|
||||
int StatModel::getVarCount() const { return 0; }
|
||||
|
@ -362,6 +362,12 @@ static void sortSamplesByClasses( const Mat& _samples, const Mat& _responses,
|
||||
|
||||
//////////////////////// SVM implementation //////////////////////////////
|
||||
|
||||
Ptr<ParamGrid> SVM::getDefaultGridPtr( int param_id)
|
||||
{
|
||||
ParamGrid grid = getDefaultGrid(param_id); // this is not a nice solution..
|
||||
return makePtr<ParamGrid>(grid.minVal, grid.maxVal, grid.logStep);
|
||||
}
|
||||
|
||||
ParamGrid SVM::getDefaultGrid( int param_id )
|
||||
{
|
||||
ParamGrid grid;
|
||||
@ -1920,6 +1926,24 @@ public:
|
||||
bool returnDFVal;
|
||||
};
|
||||
|
||||
bool trainAuto_(InputArray samples, int layout,
|
||||
InputArray responses, int kfold, Ptr<ParamGrid> Cgrid,
|
||||
Ptr<ParamGrid> gammaGrid, Ptr<ParamGrid> pGrid, Ptr<ParamGrid> nuGrid,
|
||||
Ptr<ParamGrid> coeffGrid, Ptr<ParamGrid> degreeGrid, bool balanced)
|
||||
{
|
||||
Ptr<TrainData> data = TrainData::create(samples, layout, responses);
|
||||
return this->trainAuto(
|
||||
data, kfold,
|
||||
*Cgrid.get(),
|
||||
*gammaGrid.get(),
|
||||
*pGrid.get(),
|
||||
*nuGrid.get(),
|
||||
*coeffGrid.get(),
|
||||
*degreeGrid.get(),
|
||||
balanced);
|
||||
}
|
||||
|
||||
|
||||
float predict( InputArray _samples, OutputArray _results, int flags ) const
|
||||
{
|
||||
float result = 0;
|
||||
@ -2281,6 +2305,19 @@ Mat SVM::getUncompressedSupportVectors() const
|
||||
return this_->getUncompressedSupportVectors_();
|
||||
}
|
||||
|
||||
bool SVM::trainAuto(InputArray samples, int layout,
|
||||
InputArray responses, int kfold, Ptr<ParamGrid> Cgrid,
|
||||
Ptr<ParamGrid> gammaGrid, Ptr<ParamGrid> pGrid, Ptr<ParamGrid> nuGrid,
|
||||
Ptr<ParamGrid> coeffGrid, Ptr<ParamGrid> degreeGrid, bool balanced)
|
||||
{
|
||||
SVMImpl* this_ = dynamic_cast<SVMImpl*>(this);
|
||||
if (!this_) {
|
||||
CV_Error(Error::StsNotImplemented, "the class is not SVMImpl");
|
||||
}
|
||||
return this_->trainAuto_(samples, layout, responses,
|
||||
kfold, Cgrid, gammaGrid, pGrid, nuGrid, coeffGrid, degreeGrid, balanced);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user