mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 01:13:28 +08:00
Tutorial Sobel Derivatives
This commit is contained in:
parent
3250f11f0c
commit
f7d85bfed8
@ -1,13 +1,16 @@
|
||||
Sobel Derivatives {#tutorial_sobel_derivatives}
|
||||
=================
|
||||
|
||||
@prev_tutorial{tutorial_copyMakeBorder}
|
||||
@next_tutorial{tutorial_laplace_operator}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
- Use the OpenCV function @ref cv::Sobel to calculate the derivatives from an image.
|
||||
- Use the OpenCV function @ref cv::Scharr to calculate a more accurate derivative for a kernel of
|
||||
- Use the OpenCV function **Sobel()** to calculate the derivatives from an image.
|
||||
- Use the OpenCV function **Scharr()** to calculate a more accurate derivative for a kernel of
|
||||
size \f$3 \cdot 3\f$
|
||||
|
||||
Theory
|
||||
@ -83,7 +86,7 @@ Assuming that the image to be operated is \f$I\f$:
|
||||
@note
|
||||
When the size of the kernel is `3`, the Sobel kernel shown above may produce noticeable
|
||||
inaccuracies (after all, Sobel is only an approximation of the derivative). OpenCV addresses
|
||||
this inaccuracy for kernels of size 3 by using the @ref cv::Scharr function. This is as fast
|
||||
this inaccuracy for kernels of size 3 by using the **Scharr()** function. This is as fast
|
||||
but more accurate than the standar Sobel function. It implements the following kernels:
|
||||
\f[G_{x} = \begin{bmatrix}
|
||||
-3 & 0 & +3 \\
|
||||
@ -95,9 +98,9 @@ Assuming that the image to be operated is \f$I\f$:
|
||||
+3 & +10 & +3
|
||||
\end{bmatrix}\f]
|
||||
@note
|
||||
You can check out more information of this function in the OpenCV reference (@ref cv::Scharr ).
|
||||
Also, in the sample code below, you will notice that above the code for @ref cv::Sobel function
|
||||
there is also code for the @ref cv::Scharr function commented. Uncommenting it (and obviously
|
||||
You can check out more information of this function in the OpenCV reference - **Scharr()** .
|
||||
Also, in the sample code below, you will notice that above the code for **Sobel()** function
|
||||
there is also code for the **Scharr()** function commented. Uncommenting it (and obviously
|
||||
commenting the Sobel stuff) should give you an idea of how this function works.
|
||||
|
||||
Code
|
||||
@ -107,28 +110,55 @@ Code
|
||||
- Applies the *Sobel Operator* and generates as output an image with the detected *edges*
|
||||
bright on a darker background.
|
||||
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
|
||||
-# The tutorial code's is shown lines below.
|
||||
|
||||
@add_toggle_cpp
|
||||
You can also download it from
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
You can also download it from
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/ImgTrans/SobelDemo/SobelDemo.java)
|
||||
@include samples/java/tutorial_code/ImgTrans/SobelDemo/SobelDemo.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
You can also download it from
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/ImgTrans/SobelDemo/sobel_demo.py)
|
||||
@include samples/python/tutorial_code/ImgTrans/SobelDemo/sobel_demo.py
|
||||
@end_toggle
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# First we declare the variables we are going to use:
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp variables
|
||||
-# As usual we load our source image *src*:
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp load
|
||||
-# First, we apply a @ref cv::GaussianBlur to our image to reduce the noise ( kernel size = 3 )
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp reduce_noise
|
||||
-# Now we convert our filtered image to grayscale:
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp convert_to_gray
|
||||
-# Second, we calculate the "*derivatives*" in *x* and *y* directions. For this, we use the
|
||||
function @ref cv::Sobel as shown below:
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp sobel
|
||||
#### Declare variables
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp variables
|
||||
|
||||
#### Load source image
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp load
|
||||
|
||||
#### Reduce noise
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp reduce_noise
|
||||
|
||||
#### Grayscale
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp convert_to_gray
|
||||
|
||||
#### Sobel Operator
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp sobel
|
||||
|
||||
- We calculate the "derivatives" in *x* and *y* directions. For this, we use the
|
||||
function **Sobel()** as shown below:
|
||||
The function takes the following arguments:
|
||||
|
||||
- *src_gray*: In our example, the input image. Here it is *CV_8U*
|
||||
- *grad_x*/*grad_y*: The output image.
|
||||
- *grad_x* / *grad_y* : The output image.
|
||||
- *ddepth*: The depth of the output image. We set it to *CV_16S* to avoid overflow.
|
||||
- *x_order*: The order of the derivative in **x** direction.
|
||||
- *y_order*: The order of the derivative in **y** direction.
|
||||
@ -137,13 +167,20 @@ Explanation
|
||||
Notice that to calculate the gradient in *x* direction we use: \f$x_{order}= 1\f$ and
|
||||
\f$y_{order} = 0\f$. We do analogously for the *y* direction.
|
||||
|
||||
-# We convert our partial results back to *CV_8U*:
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp convert
|
||||
-# Finally, we try to approximate the *gradient* by adding both directional gradients (note that
|
||||
this is not an exact calculation at all! but it is good for our purposes).
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp blend
|
||||
-# Finally, we show our result:
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp display
|
||||
#### Convert output to a CV_8U image
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp convert
|
||||
|
||||
#### Gradient
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp blend
|
||||
|
||||
We try to approximate the *gradient* by adding both directional gradients (note that
|
||||
this is not an exact calculation at all! but it is good for our purposes).
|
||||
|
||||
#### Show results
|
||||
|
||||
@snippet cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp display
|
||||
|
||||
Results
|
||||
-------
|
||||
|
@ -91,6 +91,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_sobel_derivatives
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
|
@ -30,6 +30,7 @@ int main( int argc, char** argv )
|
||||
cout << "\nPress 'ESC' to exit program.\nPress 'R' to reset values ( ksize will be -1 equal to Scharr function )";
|
||||
|
||||
//![variables]
|
||||
// First we declare the variables we are going to use
|
||||
Mat image,src, src_gray;
|
||||
Mat grad;
|
||||
const String window_name = "Sobel Demo - Simple Edge Detector";
|
||||
@ -40,11 +41,14 @@ int main( int argc, char** argv )
|
||||
//![variables]
|
||||
|
||||
//![load]
|
||||
String imageName = parser.get<String>("@input"); // by default
|
||||
String imageName = parser.get<String>("@input");
|
||||
// As usual we load our source image (src)
|
||||
image = imread( imageName, IMREAD_COLOR ); // Load an image
|
||||
|
||||
// Check if image is loaded fine
|
||||
if( image.empty() )
|
||||
{
|
||||
printf("Error opening image: %s\n", imageName.c_str());
|
||||
return 1;
|
||||
}
|
||||
//![load]
|
||||
@ -52,10 +56,12 @@ int main( int argc, char** argv )
|
||||
for (;;)
|
||||
{
|
||||
//![reduce_noise]
|
||||
// Remove noise by blurring with a Gaussian filter ( kernel size = 3 )
|
||||
GaussianBlur(image, src, Size(3, 3), 0, 0, BORDER_DEFAULT);
|
||||
//![reduce_noise]
|
||||
|
||||
//![convert_to_gray]
|
||||
// Convert the image to grayscale
|
||||
cvtColor(src, src_gray, COLOR_BGR2GRAY);
|
||||
//![convert_to_gray]
|
||||
|
||||
@ -72,6 +78,7 @@ int main( int argc, char** argv )
|
||||
//![sobel]
|
||||
|
||||
//![convert]
|
||||
// converting back to CV_8U
|
||||
convertScaleAbs(grad_x, abs_grad_x);
|
||||
convertScaleAbs(grad_y, abs_grad_y);
|
||||
//![convert]
|
||||
|
94
samples/java/tutorial_code/ImgTrans/SobelDemo/SobelDemo.java
Normal file
94
samples/java/tutorial_code/ImgTrans/SobelDemo/SobelDemo.java
Normal file
@ -0,0 +1,94 @@
|
||||
/**
|
||||
* @file SobelDemo.java
|
||||
* @brief Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
|
||||
*/
|
||||
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
class SobelDemoRun {
|
||||
|
||||
public void run(String[] args) {
|
||||
|
||||
//! [declare_variables]
|
||||
// First we declare the variables we are going to use
|
||||
Mat src, src_gray = new Mat();
|
||||
Mat grad = new Mat();
|
||||
String window_name = "Sobel Demo - Simple Edge Detector";
|
||||
int scale = 1;
|
||||
int delta = 0;
|
||||
int ddepth = CvType.CV_16S;
|
||||
//! [declare_variables]
|
||||
|
||||
//! [load]
|
||||
// As usual we load our source image (src)
|
||||
// Check number of arguments
|
||||
if (args.length == 0){
|
||||
System.out.println("Not enough parameters!");
|
||||
System.out.println("Program Arguments: [image_path]");
|
||||
System.exit(-1);
|
||||
}
|
||||
|
||||
// Load the image
|
||||
src = Imgcodecs.imread(args[0]);
|
||||
|
||||
// Check if image is loaded fine
|
||||
if( src.empty() ) {
|
||||
System.out.println("Error opening image: " + args[0]);
|
||||
System.exit(-1);
|
||||
}
|
||||
//! [load]
|
||||
|
||||
//! [reduce_noise]
|
||||
// Remove noise by blurring with a Gaussian filter ( kernel size = 3 )
|
||||
Imgproc.GaussianBlur( src, src, new Size(3, 3), 0, 0, Core.BORDER_DEFAULT );
|
||||
//! [reduce_noise]
|
||||
|
||||
//! [convert_to_gray]
|
||||
// Convert the image to grayscale
|
||||
Imgproc.cvtColor( src, src_gray, Imgproc.COLOR_RGB2GRAY );
|
||||
//! [convert_to_gray]
|
||||
|
||||
//! [sobel]
|
||||
/// Generate grad_x and grad_y
|
||||
Mat grad_x = new Mat(), grad_y = new Mat();
|
||||
Mat abs_grad_x = new Mat(), abs_grad_y = new Mat();
|
||||
|
||||
/// Gradient X
|
||||
//Imgproc.Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, Core.BORDER_DEFAULT );
|
||||
Imgproc.Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, Core.BORDER_DEFAULT );
|
||||
|
||||
/// Gradient Y
|
||||
//Imgproc.Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, Core.BORDER_DEFAULT );
|
||||
Imgproc.Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, Core.BORDER_DEFAULT );
|
||||
//! [sobel]
|
||||
|
||||
//![convert]
|
||||
// converting back to CV_8U
|
||||
Core.convertScaleAbs( grad_x, abs_grad_x );
|
||||
Core.convertScaleAbs( grad_y, abs_grad_y );
|
||||
//![convert]
|
||||
|
||||
//! [add_weighted]
|
||||
/// Total Gradient (approximate)
|
||||
Core.addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );
|
||||
//! [add_weighted]
|
||||
|
||||
//! [display]
|
||||
HighGui.imshow( window_name, grad );
|
||||
HighGui.waitKey(0);
|
||||
//! [display]
|
||||
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class SobelDemo {
|
||||
public static void main(String[] args) {
|
||||
// Load the native library.
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new SobelDemoRun().run(args);
|
||||
}
|
||||
}
|
@ -0,0 +1,74 @@
|
||||
"""
|
||||
@file sobel_demo.py
|
||||
@brief Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
|
||||
"""
|
||||
import sys
|
||||
import cv2
|
||||
|
||||
|
||||
def main(argv):
|
||||
## [variables]
|
||||
# First we declare the variables we are going to use
|
||||
window_name = ('Sobel Demo - Simple Edge Detector')
|
||||
scale = 1
|
||||
delta = 0
|
||||
ddepth = cv2.CV_16S
|
||||
## [variables]
|
||||
|
||||
## [load]
|
||||
# As usual we load our source image (src)
|
||||
# Check number of arguments
|
||||
if len(argv) < 1:
|
||||
print ('Not enough parameters')
|
||||
print ('Usage:\nmorph_lines_detection.py < path_to_image >')
|
||||
return -1
|
||||
|
||||
# Load the image
|
||||
src = cv2.imread(argv[0], cv2.IMREAD_COLOR)
|
||||
|
||||
# Check if image is loaded fine
|
||||
if src is None:
|
||||
print ('Error opening image: ' + argv[0])
|
||||
return -1
|
||||
## [load]
|
||||
|
||||
## [reduce_noise]
|
||||
# Remove noise by blurring with a Gaussian filter ( kernel size = 3 )
|
||||
src = cv2.GaussianBlur(src, (3, 3), 0)
|
||||
## [reduce_noise]
|
||||
|
||||
## [convert_to_gray]
|
||||
# Convert the image to grayscale
|
||||
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
## [convert_to_gray]
|
||||
|
||||
## [sobel]
|
||||
# Gradient-X
|
||||
# grad_x = cv2.Scharr(gray,ddepth,1,0)
|
||||
grad_x = cv2.Sobel(gray, ddepth, 1, 0, ksize=3, scale=scale, delta=delta, borderType=cv2.BORDER_DEFAULT)
|
||||
|
||||
# Gradient-Y
|
||||
# grad_y = cv2.Scharr(gray,ddepth,0,1)
|
||||
grad_y = cv2.Sobel(gray, ddepth, 0, 1, ksize=3, scale=scale, delta=delta, borderType=cv2.BORDER_DEFAULT)
|
||||
## [sobel]
|
||||
|
||||
## [convert]
|
||||
# converting back to uint8
|
||||
abs_grad_x = cv2.convertScaleAbs(grad_x)
|
||||
abs_grad_y = cv2.convertScaleAbs(grad_y)
|
||||
## [convert]
|
||||
|
||||
## [blend]
|
||||
## Total Gradient (approximate)
|
||||
grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
|
||||
## [blend]
|
||||
|
||||
## [display]
|
||||
cv2.imshow(window_name, grad)
|
||||
cv2.waitKey(0)
|
||||
## [display]
|
||||
|
||||
return 0
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv[1:])
|
Loading…
Reference in New Issue
Block a user