mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #1797 from moodoki:bugfix_3344
This commit is contained in:
commit
f7f194e5dd
@ -21,95 +21,8 @@ Code
|
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/features2D/SURF_FlannMatcher.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
void readme();
|
||||
|
||||
/** @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
if( argc != 3 )
|
||||
{ readme(); return -1; }
|
||||
|
||||
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
|
||||
if( !img_1.data || !img_2.data )
|
||||
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
|
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector
|
||||
int minHessian = 400;
|
||||
|
||||
SurfFeatureDetector detector( minHessian );
|
||||
|
||||
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
||||
|
||||
detector.detect( img_1, keypoints_1 );
|
||||
detector.detect( img_2, keypoints_2 );
|
||||
|
||||
//-- Step 2: Calculate descriptors (feature vectors)
|
||||
SurfDescriptorExtractor extractor;
|
||||
|
||||
Mat descriptors_1, descriptors_2;
|
||||
|
||||
extractor.compute( img_1, keypoints_1, descriptors_1 );
|
||||
extractor.compute( img_2, keypoints_2, descriptors_2 );
|
||||
|
||||
//-- Step 3: Matching descriptor vectors using FLANN matcher
|
||||
FlannBasedMatcher matcher;
|
||||
std::vector< DMatch > matches;
|
||||
matcher.match( descriptors_1, descriptors_2, matches );
|
||||
|
||||
double max_dist = 0; double min_dist = 100;
|
||||
|
||||
//-- Quick calculation of max and min distances between keypoints
|
||||
for( int i = 0; i < descriptors_1.rows; i++ )
|
||||
{ double dist = matches[i].distance;
|
||||
if( dist < min_dist ) min_dist = dist;
|
||||
if( dist > max_dist ) max_dist = dist;
|
||||
}
|
||||
|
||||
printf("-- Max dist : %f \n", max_dist );
|
||||
printf("-- Min dist : %f \n", min_dist );
|
||||
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
|
||||
//-- PS.- radiusMatch can also be used here.
|
||||
std::vector< DMatch > good_matches;
|
||||
|
||||
for( int i = 0; i < descriptors_1.rows; i++ )
|
||||
{ if( matches[i].distance <= 2*min_dist )
|
||||
{ good_matches.push_back( matches[i]); }
|
||||
}
|
||||
|
||||
//-- Draw only "good" matches
|
||||
Mat img_matches;
|
||||
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
|
||||
//-- Show detected matches
|
||||
imshow( "Good Matches", img_matches );
|
||||
|
||||
for( int i = 0; i < good_matches.size(); i++ )
|
||||
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
|
||||
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** @function readme */
|
||||
void readme()
|
||||
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }
|
||||
.. literalinclude:: ../../../../samples/cpp/tutorial_code/features2D/SURF_FlannMatcher.cpp
|
||||
:language: cpp
|
||||
|
||||
Explanation
|
||||
============
|
||||
|
@ -65,12 +65,14 @@ int main( int argc, char** argv )
|
||||
printf("-- Max dist : %f \n", max_dist );
|
||||
printf("-- Min dist : %f \n", min_dist );
|
||||
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
|
||||
//-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
|
||||
//-- small)
|
||||
//-- PS.- radiusMatch can also be used here.
|
||||
std::vector< DMatch > good_matches;
|
||||
|
||||
for( int i = 0; i < descriptors_1.rows; i++ )
|
||||
{ if( matches[i].distance <= 2*min_dist )
|
||||
{ if( matches[i].distance <= max(2*min_dist, 0.02) )
|
||||
{ good_matches.push_back( matches[i]); }
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user