Merge pull request #12052 from dkurt:dnn_ie_torch_tests

This commit is contained in:
Vadim Pisarevsky 2018-07-26 09:09:35 +00:00
commit fa466b022d
12 changed files with 309 additions and 159 deletions

View File

@ -201,7 +201,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param[out] outputs allocated output blobs, which will store results of the computation. * @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs * @param[out] internals allocated internal blobs
*/ */
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) = 0; virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
/** @brief Given the @p input blobs, computes the output @p blobs. /** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs. * @param[in] inputs the input blobs.

View File

@ -3071,6 +3071,14 @@ std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs)
return outputs; return outputs;
} }
void Layer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs, outputs, internals);
}
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{ {
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();

View File

@ -196,7 +196,7 @@ public:
virtual bool supportBackend(int backendId) CV_OVERRIDE virtual bool supportBackend(int backendId) CV_OVERRIDE
{ {
return backendId == DNN_BACKEND_OPENCV || return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && !_locPredTransposed; backendId == DNN_BACKEND_INFERENCE_ENGINE && !_locPredTransposed && _bboxesNormalized;
} }
bool getMemoryShapes(const std::vector<MatShape> &inputs, bool getMemoryShapes(const std::vector<MatShape> &inputs,
@ -411,9 +411,12 @@ public:
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && if (_bboxesNormalized)
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), {
forward_ocl(inputs_arr, outputs_arr, internals_arr)) CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
}
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
} }

View File

@ -135,10 +135,17 @@ public:
virtual bool supportBackend(int backendId) CV_OVERRIDE virtual bool supportBackend(int backendId) CV_OVERRIDE
{ {
return backendId == DNN_BACKEND_OPENCV || if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
backendId == DNN_BACKEND_HALIDE && haveHalide() && {
(type == MAX || type == AVE && !pad.width && !pad.height) || if (preferableTarget == DNN_TARGET_MYRIAD)
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && (type == MAX || type == AVE); return type == MAX || type == AVE;
else
return type != STOCHASTIC;
}
else
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_HALIDE && haveHalide() &&
(type == MAX || type == AVE && !pad.width && !pad.height);
} }
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
@ -192,8 +199,11 @@ public:
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), if (type == MAX || type == AVE || type == STOCHASTIC)
forward_ocl(inputs_arr, outputs_arr, internals_arr)) {
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
}
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
} }
@ -238,22 +248,41 @@ public:
#ifdef HAVE_INF_ENGINE #ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp; InferenceEngine::LayerParams lp;
lp.name = name; lp.name = name;
lp.type = "Pooling";
lp.precision = InferenceEngine::Precision::FP32; lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::PoolingLayer> ieLayer(new InferenceEngine::PoolingLayer(lp));
ieLayer->_kernel_x = kernel.width; std::shared_ptr<InferenceEngine::CNNLayer> ieLayer;
ieLayer->_kernel_y = kernel.height; if (type == MAX || type == AVE)
ieLayer->_stride_x = stride.width; {
ieLayer->_stride_y = stride.height; lp.type = "Pooling";
ieLayer->_padding_x = pad.width; InferenceEngine::PoolingLayer* poolLayer = new InferenceEngine::PoolingLayer(lp);
ieLayer->_padding_y = pad.height; poolLayer->_kernel_x = kernel.width;
ieLayer->_exclude_pad = type == AVE && padMode == "SAME"; poolLayer->_kernel_y = kernel.height;
ieLayer->params["rounding-type"] = ceilMode ? "ceil" : "floor"; poolLayer->_stride_x = stride.width;
if (type == MAX) poolLayer->_stride_y = stride.height;
ieLayer->_type = InferenceEngine::PoolingLayer::PoolType::MAX; poolLayer->_padding_x = pad.width;
else if (type == AVE) poolLayer->_padding_y = pad.height;
ieLayer->_type = InferenceEngine::PoolingLayer::PoolType::AVG; poolLayer->_exclude_pad = type == AVE && padMode == "SAME";
poolLayer->params["rounding-type"] = ceilMode ? "ceil" : "floor";
poolLayer->_type = type == MAX ? InferenceEngine::PoolingLayer::PoolType::MAX :
InferenceEngine::PoolingLayer::PoolType::AVG;
ieLayer = std::shared_ptr<InferenceEngine::CNNLayer>(poolLayer);
}
else if (type == ROI)
{
lp.type = "ROIPooling";
ieLayer = std::shared_ptr<InferenceEngine::CNNLayer>(new InferenceEngine::CNNLayer(lp));
ieLayer->params["pooled_w"] = format("%d", pooledSize.width);
ieLayer->params["pooled_h"] = format("%d", pooledSize.height);
ieLayer->params["spatial_scale"] = format("%f", spatialScale);
}
else if (type == PSROI)
{
lp.type = "PSROIPooling";
ieLayer = std::shared_ptr<InferenceEngine::CNNLayer>(new InferenceEngine::CNNLayer(lp));
ieLayer->params["output_dim"] = format("%d", psRoiOutChannels);
ieLayer->params["group_size"] = format("%d", pooledSize.width);
ieLayer->params["spatial_scale"] = format("%f", spatialScale);
}
else else
CV_Error(Error::StsNotImplemented, "Unsupported pooling type"); CV_Error(Error::StsNotImplemented, "Unsupported pooling type");

View File

@ -6,6 +6,7 @@
// Third party copyrights are property of their respective owners. // Third party copyrights are property of their respective owners.
#include "../precomp.hpp" #include "../precomp.hpp"
#include "layers_common.hpp" #include "layers_common.hpp"
#include "../op_inf_engine.hpp"
namespace cv { namespace dnn { namespace cv { namespace dnn {
@ -16,14 +17,14 @@ public:
{ {
setParamsFrom(params); setParamsFrom(params);
uint32_t featStride = params.get<uint32_t>("feat_stride", 16); featStride = params.get<uint32_t>("feat_stride", 16);
uint32_t baseSize = params.get<uint32_t>("base_size", 16); baseSize = params.get<uint32_t>("base_size", 16);
// uint32_t minSize = params.get<uint32_t>("min_size", 16); // uint32_t minSize = params.get<uint32_t>("min_size", 16);
uint32_t keepTopBeforeNMS = params.get<uint32_t>("pre_nms_topn", 6000); keepTopBeforeNMS = params.get<uint32_t>("pre_nms_topn", 6000);
keepTopAfterNMS = params.get<uint32_t>("post_nms_topn", 300); keepTopAfterNMS = params.get<uint32_t>("post_nms_topn", 300);
float nmsThreshold = params.get<float>("nms_thresh", 0.7); nmsThreshold = params.get<float>("nms_thresh", 0.7);
DictValue ratios = params.get("ratio"); ratios = params.get("ratio");
DictValue scales = params.get("scale"); scales = params.get("scale");
{ {
LayerParams lp; LayerParams lp;
@ -83,6 +84,12 @@ public:
} }
} }
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && preferableTarget != DNN_TARGET_MYRIAD;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs, bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs, const int requiredOutputs,
std::vector<MatShape> &outputs, std::vector<MatShape> &outputs,
@ -312,6 +319,38 @@ public:
outputs[i].rowRange(numDets, keepTopAfterNMS).setTo(0); outputs[i].rowRange(numDets, keepTopAfterNMS).setTo(0);
} }
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "Proposal";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
ieLayer->params["base_size"] = format("%d", baseSize);
ieLayer->params["feat_stride"] = format("%d", featStride);
ieLayer->params["min_size"] = "16";
ieLayer->params["nms_thresh"] = format("%f", nmsThreshold);
ieLayer->params["post_nms_topn"] = format("%d", keepTopAfterNMS);
ieLayer->params["pre_nms_topn"] = format("%d", keepTopBeforeNMS);
if (ratios.size())
{
ieLayer->params["ratio"] = format("%f", ratios.get<float>(0));
for (int i = 1; i < ratios.size(); ++i)
ieLayer->params["ratio"] += format(",%f", ratios.get<float>(i));
}
if (scales.size())
{
ieLayer->params["scale"] = format("%f", scales.get<float>(0));
for (int i = 1; i < scales.size(); ++i)
ieLayer->params["scale"] += format(",%f", scales.get<float>(i));
}
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
private: private:
// A first half of channels are background scores. We need only a second one. // A first half of channels are background scores. We need only a second one.
static Mat getObjectScores(const Mat& m) static Mat getObjectScores(const Mat& m)
@ -342,8 +381,10 @@ private:
Ptr<PermuteLayer> deltasPermute; Ptr<PermuteLayer> deltasPermute;
Ptr<PermuteLayer> scoresPermute; Ptr<PermuteLayer> scoresPermute;
uint32_t keepTopAfterNMS; uint32_t keepTopBeforeNMS, keepTopAfterNMS, featStride, baseSize;
Mat fakeImageBlob; Mat fakeImageBlob;
float nmsThreshold;
DictValue ratios, scales;
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
UMat umat_fakeImageBlob; UMat umat_fakeImageBlob;
#endif #endif

View File

@ -183,8 +183,9 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
ocl::Kernel oclk_sto_pool_forward( ocl::Kernel oclk_sto_pool_forward(
kname.c_str(), kname.c_str(),
ocl::dnn::ocl4dnn_pooling_oclsrc, ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d" format(" -D Dtype=%s -D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d", " -D STRIDE_W=%d -D STRIDE_H=%d",
(use_half) ? "half" : "float",
kernel_w_, kernel_h_, kernel_w_, kernel_h_,
stride_w_, stride_h_ stride_w_, stride_h_
)); ));

View File

@ -104,7 +104,7 @@ __kernel void
#elif defined KERNEL_AVE_POOL #elif defined KERNEL_AVE_POOL
__kernel void TEMPLATE(ave_pool_forward, Dtype)( __kernel void TEMPLATE(ave_pool_forward, Dtype)(
const int nthreads, __global const Dtype* const bottom_data, const int nthreads, __global const Dtype* bottom_data,
const int channels, const int height, const int width, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, const int pooled_height, const int pooled_width,
__global Dtype* top_data) __global Dtype* top_data)
@ -150,7 +150,7 @@ __kernel void TEMPLATE(ave_pool_forward, Dtype)(
#elif defined KERNEL_STO_POOL #elif defined KERNEL_STO_POOL
__kernel void TEMPLATE(sto_pool_forward_test,Dtype)( __kernel void TEMPLATE(sto_pool_forward_test,Dtype)(
const int nthreads, __global const Dtype* const bottom_data, const int nthreads, __global const Dtype* bottom_data,
const int channels, const int height, const int width, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, const int pooled_height, const int pooled_width,
__global Dtype* top_data) __global Dtype* top_data)

View File

@ -938,6 +938,16 @@ struct TorchImporter
layerParams.set("end", DictValue::arrayInt<int*>(&ends[0], 4)); layerParams.set("end", DictValue::arrayInt<int*>(&ends[0], 4));
curModule->modules.push_back(newModule); curModule->modules.push_back(newModule);
} }
else if (nnName == "SpatialUpSamplingNearest")
{
readTorchTable(scalarParams, tensorParams);
CV_Assert(scalarParams.has("scale_factor"));
int scale_factor = scalarParams.get<int>("scale_factor");
newModule->apiType = "Resize";
layerParams.set("interpolation", "nearest");
layerParams.set("zoom_factor", scale_factor);
curModule->modules.push_back(newModule);
}
else else
{ {
// Importer does not know how to map Torch's layer type to an OpenCV's one. // Importer does not know how to map Torch's layer type to an OpenCV's one.

View File

@ -51,6 +51,33 @@ static std::string _tf(TString filename)
return (getOpenCVExtraDir() + "/dnn/") + filename; return (getOpenCVExtraDir() + "/dnn/") + filename;
} }
class Test_Caffe_nets : public DNNTestLayer
{
public:
void testFaster(const std::string& proto, const std::string& model, const Mat& ref,
double scoreDiff = 0.0, double iouDiff = 0.0)
{
checkBackend();
Net net = readNetFromCaffe(findDataFile("dnn/" + proto, false),
findDataFile("dnn/" + model, false));
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat img = imread(findDataFile("dnn/dog416.png", false));
resize(img, img, Size(800, 600));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
net.setInput(blob, "data");
net.setInput(imInfo, "im_info");
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
scoreDiff = scoreDiff ? scoreDiff : default_l1;
iouDiff = iouDiff ? iouDiff : default_lInf;
normAssertDetections(ref, out, ("model name: " + model).c_str(), 0.8, scoreDiff, iouDiff);
}
};
TEST(Test_Caffe, memory_read) TEST(Test_Caffe, memory_read)
{ {
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false); const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false);
@ -344,9 +371,15 @@ TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
} }
// https://github.com/richzhang/colorization // https://github.com/richzhang/colorization
TEST(Reproducibility_Colorization, Accuracy) TEST_P(Test_Caffe_nets, Colorization)
{ {
const float l1 = 3e-5; checkBackend();
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
const float l1 = 4e-4;
const float lInf = 3e-3; const float lInf = 3e-3;
Mat inp = blobFromNPY(_tf("colorization_inp.npy")); Mat inp = blobFromNPY(_tf("colorization_inp.npy"));
@ -356,7 +389,8 @@ TEST(Reproducibility_Colorization, Accuracy)
const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false); const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false);
const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false); const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false);
Net net = readNetFromCaffe(proto, model); Net net = readNetFromCaffe(proto, model);
net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel); net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel);
net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606)); net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606));
@ -447,39 +481,40 @@ INSTANTIATE_TEST_CASE_P(Test_Caffe, opencv_face_detector,
) )
); );
TEST(Test_Caffe, FasterRCNN_and_RFCN) TEST_P(Test_Caffe_nets, FasterRCNN_vgg16)
{ {
std::string models[] = {"VGG16_faster_rcnn_final.caffemodel", "ZF_faster_rcnn_final.caffemodel", if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) ||
"resnet50_rfcn_final.caffemodel"}; (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
std::string protos[] = {"faster_rcnn_vgg16.prototxt", "faster_rcnn_zf.prototxt", throw SkipTestException("");
"rfcn_pascal_voc_resnet50.prototxt"}; static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849,
Mat refs[] = {(Mat_<float>(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849, 0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953,
0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953, 0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166);
0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166), testFaster("faster_rcnn_vgg16.prototxt", "VGG16_faster_rcnn_final.caffemodel", ref);
(Mat_<float>(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395,
0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762,
0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176),
(Mat_<float>(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234,
0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16)};
for (int i = 0; i < 3; ++i)
{
std::string proto = findDataFile("dnn/" + protos[i], false);
std::string model = findDataFile("dnn/" + models[i], false);
Net net = readNetFromCaffe(proto, model);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat img = imread(findDataFile("dnn/dog416.png", false));
resize(img, img, Size(800, 600));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
net.setInput(blob, "data");
net.setInput(imInfo, "im_info");
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
normAssertDetections(refs[i], out, ("model name: " + models[i]).c_str(), 0.8);
}
} }
TEST_P(Test_Caffe_nets, FasterRCNN_zf)
{
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395,
0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762,
0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176);
testFaster("faster_rcnn_zf.prototxt", "ZF_faster_rcnn_final.caffemodel", ref);
}
TEST_P(Test_Caffe_nets, RFCN)
{
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
static Mat ref = (Mat_<float>(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234,
0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16);
testFaster("rfcn_pascal_voc_resnet50.prototxt", "resnet50_rfcn_final.caffemodel", ref);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_nets, dnnBackendsAndTargets());
}} // namespace }} // namespace

View File

@ -1205,14 +1205,6 @@ public:
} }
} }
void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs, outputs, internals);
}
private: private:
int outWidth, outHeight, zoomFactor; int outWidth, outHeight, zoomFactor;
}; };
@ -1225,7 +1217,7 @@ TEST_P(Test_Caffe_layers, DISABLED_Interp) // requires patched protobuf (availa
{ {
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
throw SkipTestException(""); throw SkipTestException("");
// Test a cusom layer. // Test a custom layer.
CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer); CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer);
try try
{ {

View File

@ -69,100 +69,119 @@ TEST(Torch_Importer, simple_read)
ASSERT_FALSE(net.empty()); ASSERT_FALSE(net.empty());
} }
static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String outLayerName = "", class Test_Torch_layers : public DNNTestLayer
bool check2ndBlob = false, bool isBinary = false)
{ {
String suffix = (isBinary) ? ".dat" : ".txt"; public:
void runTorchNet(const String& prefix, String outLayerName = "",
Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary); bool check2ndBlob = false, bool isBinary = false,
ASSERT_FALSE(net.empty()); double l1 = 0.0, double lInf = 0.0)
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(targetId);
Mat inp, outRef;
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
net.setInput(inp);
std::vector<Mat> outBlobs;
net.forward(outBlobs, outLayerName);
normAssert(outRef, outBlobs[0]);
if (check2ndBlob)
{ {
Mat out2 = outBlobs[1]; String suffix = (isBinary) ? ".dat" : ".txt";
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2);
}
}
typedef testing::TestWithParam<Target> Test_Torch_layers; Mat inp, outRef;
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
checkBackend(backend, target, &inp, &outRef);
Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
net.setInput(inp);
std::vector<Mat> outBlobs;
net.forward(outBlobs, outLayerName);
l1 = l1 ? l1 : default_l1;
lInf = lInf ? lInf : default_lInf;
normAssert(outRef, outBlobs[0], "", l1, lInf);
if (check2ndBlob && backend != DNN_BACKEND_INFERENCE_ENGINE)
{
Mat out2 = outBlobs[1];
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2, "", l1, lInf);
}
}
};
TEST_P(Test_Torch_layers, run_convolution) TEST_P(Test_Torch_layers, run_convolution)
{ {
runTorchNet("net_conv", GetParam(), "", false, true); if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
runTorchNet("net_conv", "", false, true);
} }
TEST_P(Test_Torch_layers, run_pool_max) TEST_P(Test_Torch_layers, run_pool_max)
{ {
runTorchNet("net_pool_max", GetParam(), "", true); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("");
runTorchNet("net_pool_max", "", true);
} }
TEST_P(Test_Torch_layers, run_pool_ave) TEST_P(Test_Torch_layers, run_pool_ave)
{ {
runTorchNet("net_pool_ave", GetParam()); runTorchNet("net_pool_ave");
} }
TEST_P(Test_Torch_layers, run_reshape) TEST_P(Test_Torch_layers, run_reshape)
{ {
int targetId = GetParam(); runTorchNet("net_reshape");
runTorchNet("net_reshape", targetId); runTorchNet("net_reshape_batch");
runTorchNet("net_reshape_batch", targetId); runTorchNet("net_reshape_channels", "", false, true);
runTorchNet("net_reshape_single_sample", targetId); }
runTorchNet("net_reshape_channels", targetId, "", false, true);
TEST_P(Test_Torch_layers, run_reshape_single_sample)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("");
runTorchNet("net_reshape_single_sample", "", false, false,
(target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.0052 : 0.0);
} }
TEST_P(Test_Torch_layers, run_linear) TEST_P(Test_Torch_layers, run_linear)
{ {
runTorchNet("net_linear_2d", GetParam()); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("");
runTorchNet("net_linear_2d");
} }
TEST_P(Test_Torch_layers, run_concat) TEST_P(Test_Torch_layers, run_concat)
{ {
int targetId = GetParam(); runTorchNet("net_concat", "l5_torchMerge");
runTorchNet("net_concat", targetId, "l5_torchMerge"); runTorchNet("net_depth_concat", "", false, true, 0.0,
runTorchNet("net_depth_concat", targetId, "", false, true); target == DNN_TARGET_OPENCL_FP16 ? 0.021 : 0.0);
} }
TEST_P(Test_Torch_layers, run_deconv) TEST_P(Test_Torch_layers, run_deconv)
{ {
runTorchNet("net_deconv", GetParam()); runTorchNet("net_deconv");
} }
TEST_P(Test_Torch_layers, run_batch_norm) TEST_P(Test_Torch_layers, run_batch_norm)
{ {
runTorchNet("net_batch_norm", GetParam(), "", false, true); runTorchNet("net_batch_norm", "", false, true);
} }
TEST_P(Test_Torch_layers, net_prelu) TEST_P(Test_Torch_layers, net_prelu)
{ {
runTorchNet("net_prelu", GetParam()); runTorchNet("net_prelu");
} }
TEST_P(Test_Torch_layers, net_cadd_table) TEST_P(Test_Torch_layers, net_cadd_table)
{ {
runTorchNet("net_cadd_table", GetParam()); runTorchNet("net_cadd_table");
} }
TEST_P(Test_Torch_layers, net_softmax) TEST_P(Test_Torch_layers, net_softmax)
{ {
int targetId = GetParam(); runTorchNet("net_softmax");
runTorchNet("net_softmax", targetId); runTorchNet("net_softmax_spatial");
runTorchNet("net_softmax_spatial", targetId);
} }
TEST_P(Test_Torch_layers, net_logsoftmax) TEST_P(Test_Torch_layers, net_logsoftmax)
@ -173,40 +192,55 @@ TEST_P(Test_Torch_layers, net_logsoftmax)
TEST_P(Test_Torch_layers, net_lp_pooling) TEST_P(Test_Torch_layers, net_lp_pooling)
{ {
int targetId = GetParam(); runTorchNet("net_lp_pooling_square", "", false, true);
runTorchNet("net_lp_pooling_square", targetId, "", false, true); runTorchNet("net_lp_pooling_power", "", false, true);
runTorchNet("net_lp_pooling_power", targetId, "", false, true);
} }
TEST_P(Test_Torch_layers, net_conv_gemm_lrn) TEST_P(Test_Torch_layers, net_conv_gemm_lrn)
{ {
runTorchNet("net_conv_gemm_lrn", GetParam(), "", false, true); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
throw SkipTestException("");
runTorchNet("net_conv_gemm_lrn", "", false, true,
target == DNN_TARGET_OPENCL_FP16 ? 0.046 : 0.0,
target == DNN_TARGET_OPENCL_FP16 ? 0.023 : 0.0);
} }
TEST_P(Test_Torch_layers, net_inception_block) TEST_P(Test_Torch_layers, net_inception_block)
{ {
runTorchNet("net_inception_block", GetParam(), "", false, true); runTorchNet("net_inception_block", "", false, true);
} }
TEST_P(Test_Torch_layers, net_normalize) TEST_P(Test_Torch_layers, net_normalize)
{ {
runTorchNet("net_normalize", GetParam(), "", false, true); runTorchNet("net_normalize", "", false, true);
} }
TEST_P(Test_Torch_layers, net_padding) TEST_P(Test_Torch_layers, net_padding)
{ {
int targetId = GetParam(); runTorchNet("net_padding", "", false, true);
runTorchNet("net_padding", targetId, "", false, true); runTorchNet("net_spatial_zero_padding", "", false, true);
runTorchNet("net_spatial_zero_padding", targetId, "", false, true); runTorchNet("net_spatial_reflection_padding", "", false, true);
runTorchNet("net_spatial_reflection_padding", targetId, "", false, true);
} }
TEST_P(Test_Torch_layers, net_non_spatial) TEST_P(Test_Torch_layers, net_non_spatial)
{ {
runTorchNet("net_non_spatial", GetParam(), "", false, true); if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
runTorchNet("net_non_spatial", "", false, true);
} }
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, availableDnnTargets()); TEST_P(Test_Torch_layers, run_paralel)
{
if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU)
throw SkipTestException("");
runTorchNet("net_parallel", "l5_torchMerge");
}
TEST_P(Test_Torch_layers, net_residual)
{
runTorchNet("net_residual", "", false, true);
}
typedef testing::TestWithParam<Target> Test_Torch_nets; typedef testing::TestWithParam<Target> Test_Torch_nets;
@ -313,21 +347,6 @@ TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy)
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_nets, availableDnnTargets()); INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_nets, availableDnnTargets());
// TODO: fix OpenCL and add to the rest of tests
TEST(Torch_Importer, run_paralel)
{
runTorchNet("net_parallel", DNN_TARGET_CPU, "l5_torchMerge");
}
TEST(Torch_Importer, DISABLED_run_paralel)
{
runTorchNet("net_parallel", DNN_TARGET_OPENCL, "l5_torchMerge");
}
TEST(Torch_Importer, net_residual)
{
runTorchNet("net_residual", DNN_TARGET_CPU, "", false, true);
}
// Test a custom layer // Test a custom layer
// https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialUpSamplingNearest // https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialUpSamplingNearest
@ -374,17 +393,29 @@ public:
} }
} }
virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {}
private: private:
int scale; int scale;
}; };
TEST(Torch_Importer, upsampling_nearest) TEST_P(Test_Torch_layers, upsampling_nearest)
{ {
// Test a custom layer.
CV_DNN_REGISTER_LAYER_CLASS(SpatialUpSamplingNearest, SpatialUpSamplingNearestLayer); CV_DNN_REGISTER_LAYER_CLASS(SpatialUpSamplingNearest, SpatialUpSamplingNearestLayer);
runTorchNet("net_spatial_upsampling_nearest", DNN_TARGET_CPU, "", false, true); try
{
runTorchNet("net_spatial_upsampling_nearest", "", false, true);
}
catch (...)
{
LayerFactory::unregisterLayer("SpatialUpSamplingNearest");
throw;
}
LayerFactory::unregisterLayer("SpatialUpSamplingNearest"); LayerFactory::unregisterLayer("SpatialUpSamplingNearest");
// Test an implemented layer.
runTorchNet("net_spatial_upsampling_nearest", "", false, true);
} }
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, dnnBackendsAndTargets());
} }

View File

@ -190,7 +190,7 @@ while cv.waitKey(1) < 0:
net.setInput(blob) net.setInput(blob)
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
frame = cv.resize(frame, (inpWidth, inpHeight)) frame = cv.resize(frame, (inpWidth, inpHeight))
net.setInput(np.array([inpHeight, inpWidth, 1.6], dtype=np.float32), 'im_info') net.setInput(np.array([[inpHeight, inpWidth, 1.6]], dtype=np.float32), 'im_info')
outs = net.forward(getOutputsNames(net)) outs = net.forward(getOutputsNames(net))
postprocess(frame, outs) postprocess(frame, outs)