mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
add results verification to facedetect and hog samples
This commit is contained in:
parent
036b0579f1
commit
fad96b95ad
@ -1,5 +1,3 @@
|
||||
//This sample is inherited from facedetect.cpp in smaple/c
|
||||
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
@ -9,78 +7,84 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
#define LOOP_NUM 10
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates the cascade recognizer.\n"
|
||||
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
|
||||
"Usage:\n"
|
||||
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
|
||||
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
|
||||
" [filename|camera_index]\n\n"
|
||||
"see facedetect.cmd for one call:\n"
|
||||
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --scale=1.3 \n"
|
||||
"Hit any key to quit.\n"
|
||||
"Using OpenCV version " << CV_VERSION << "\n" << endl;
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
|
||||
static void workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
static void workEnd()
|
||||
{
|
||||
work_end += (getTickCount() - work_begin);
|
||||
}
|
||||
static double getTime(){
|
||||
return work_end /((double)cvGetTickFrequency() * 1000.);
|
||||
}
|
||||
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
||||
void detectAndDraw( Mat& img,
|
||||
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier& nestedCascade,
|
||||
double scale);
|
||||
|
||||
String cascadeName = "../../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
cv::ocl::OclCascadeClassifierBuf& cascade,
|
||||
double scale, bool calTime);
|
||||
|
||||
void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
CascadeClassifier& cascade,
|
||||
double scale, bool calTime);
|
||||
|
||||
void Draw(Mat& img, vector<Rect>& faces, double scale);
|
||||
|
||||
// This function test if gpu_rst matches cpu_rst.
|
||||
// If the two vectors are not equal, it will return the difference in vector size
|
||||
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
double checkRectSimilarity(Size sz, std::vector<Rect>& cpu_rst, std::vector<Rect>& gpu_rst);
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ i | input | | specify input image }"
|
||||
"{ t | template | ../../../data/haarcascades/haarcascade_frontalface_alt.xml | specify template file }"
|
||||
"{ c | scale | 1.0 | scale image }"
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
CvCapture* capture = 0;
|
||||
Mat frame, frameCopy, image;
|
||||
const String scaleOpt = "--scale=";
|
||||
size_t scaleOptLen = scaleOpt.length();
|
||||
const String cascadeOpt = "--cascade=";
|
||||
size_t cascadeOptLen = cascadeOpt.length();
|
||||
String inputName;
|
||||
|
||||
help();
|
||||
cv::ocl::OclCascadeClassifier cascade;
|
||||
CascadeClassifier nestedCascade;
|
||||
double scale = 1;
|
||||
bool useCPU = cmd.get<bool>("s");
|
||||
string inputName = cmd.get<string>("i");
|
||||
string cascadeName = cmd.get<string>("t");
|
||||
double scale = cmd.get<double>("c");
|
||||
cv::ocl::OclCascadeClassifierBuf cascade;
|
||||
CascadeClassifier cpu_cascade;
|
||||
|
||||
for( int i = 1; i < argc; i++ )
|
||||
{
|
||||
cout << "Processing " << i << " " << argv[i] << endl;
|
||||
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
|
||||
{
|
||||
cascadeName.assign( argv[i] + cascadeOptLen );
|
||||
cout << " from which we have cascadeName= " << cascadeName << endl;
|
||||
}
|
||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
||||
{
|
||||
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
|
||||
scale = 1;
|
||||
cout << " from which we read scale = " << scale << endl;
|
||||
}
|
||||
else if( argv[i][0] == '-' )
|
||||
{
|
||||
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
|
||||
}
|
||||
else
|
||||
inputName.assign( argv[i] );
|
||||
}
|
||||
|
||||
if( !cascade.load( cascadeName ) )
|
||||
if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
|
||||
{
|
||||
cerr << "ERROR: Could not load classifier cascade" << endl;
|
||||
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n"
|
||||
" [--scale[=<image scale>\n"
|
||||
" [filename|camera_index]\n" << endl ;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
||||
if( inputName.empty() )
|
||||
{
|
||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
|
||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
|
||||
capture = cvCaptureFromCAM(0);
|
||||
if(!capture)
|
||||
cout << "Capture from CAM 0 didn't work" << endl;
|
||||
}
|
||||
else if( inputName.size() )
|
||||
{
|
||||
@ -88,26 +92,30 @@ int main( int argc, const char** argv )
|
||||
if( image.empty() )
|
||||
{
|
||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
||||
if(!capture)
|
||||
cout << "Capture from AVI didn't work" << endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
image = imread( "lena.jpg", 1 );
|
||||
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
|
||||
if(image.empty())
|
||||
cout << "Couldn't read lena.jpg" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
cvNamedWindow( "result", 1 );
|
||||
std::vector<cv::ocl::Info> oclinfo;
|
||||
int devnums = cv::ocl::getDevice(oclinfo);
|
||||
if(devnums<1)
|
||||
if( devnums < 1 )
|
||||
{
|
||||
std::cout << "no device found\n";
|
||||
return -1;
|
||||
}
|
||||
//if you want to use undefault device, set it here
|
||||
//setDevice(oclinfo[0]);
|
||||
//setBinpath(CLBINPATH);
|
||||
ocl::setBinpath("./");
|
||||
if( capture )
|
||||
{
|
||||
cout << "In capture ..." << endl;
|
||||
@ -115,15 +123,20 @@ int main( int argc, const char** argv )
|
||||
{
|
||||
IplImage* iplImg = cvQueryFrame( capture );
|
||||
frame = iplImg;
|
||||
vector<Rect> faces;
|
||||
if( frame.empty() )
|
||||
break;
|
||||
if( iplImg->origin == IPL_ORIGIN_TL )
|
||||
frame.copyTo( frameCopy );
|
||||
else
|
||||
flip( frame, frameCopy, 0 );
|
||||
|
||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale );
|
||||
|
||||
if(useCPU){
|
||||
detectCPU(frameCopy, faces, cpu_cascade, scale, false);
|
||||
}
|
||||
else{
|
||||
detect(frameCopy, faces, cascade, scale, false);
|
||||
}
|
||||
Draw(frameCopy, faces, scale);
|
||||
if( waitKey( 10 ) >= 0 )
|
||||
goto _cleanup_;
|
||||
}
|
||||
@ -136,42 +149,34 @@ _cleanup_:
|
||||
else
|
||||
{
|
||||
cout << "In image read" << endl;
|
||||
if( !image.empty() )
|
||||
vector<Rect> faces;
|
||||
vector<Rect> ref_rst;
|
||||
double accuracy = 0.;
|
||||
for(int i = 0; i <= LOOP_NUM;i ++)
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale );
|
||||
waitKey(0);
|
||||
}
|
||||
else if( !inputName.empty() )
|
||||
{
|
||||
/* assume it is a text file containing the
|
||||
list of the image filenames to be processed - one per line */
|
||||
FILE* f = fopen( inputName.c_str(), "rt" );
|
||||
if( f )
|
||||
cout << "loop" << i << endl;
|
||||
if(useCPU){
|
||||
detectCPU(image, faces, cpu_cascade, scale, i==0?false:true);
|
||||
}
|
||||
else{
|
||||
detect(image, faces, cascade, scale, i==0?false:true);
|
||||
if(i == 0){
|
||||
detectCPU(image, ref_rst, cpu_cascade, scale, false);
|
||||
accuracy = checkRectSimilarity(image.size(), ref_rst, faces);
|
||||
}
|
||||
}
|
||||
if (i == LOOP_NUM)
|
||||
{
|
||||
char buf[1000+1];
|
||||
while( fgets( buf, 1000, f ) )
|
||||
{
|
||||
int len = (int)strlen(buf), c;
|
||||
while( len > 0 && isspace(buf[len-1]) )
|
||||
len--;
|
||||
buf[len] = '\0';
|
||||
cout << "file " << buf << endl;
|
||||
image = imread( buf, 1 );
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale );
|
||||
c = waitKey(0);
|
||||
if( c == 27 || c == 'q' || c == 'Q' )
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "Aw snap, couldn't read image " << buf << endl;
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
if (useCPU)
|
||||
cout << "average CPU time (noCamera) : ";
|
||||
else
|
||||
cout << "average GPU time (noCamera) : ";
|
||||
cout << getTime() / LOOP_NUM << " ms" << endl;
|
||||
cout << "accuracy value: " << accuracy <<endl;
|
||||
}
|
||||
}
|
||||
Draw(image, faces, scale);
|
||||
waitKey(0);
|
||||
}
|
||||
|
||||
cvDestroyWindow("result");
|
||||
@ -179,44 +184,44 @@ _cleanup_:
|
||||
return 0;
|
||||
}
|
||||
|
||||
void detectAndDraw( Mat& img,
|
||||
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier&,
|
||||
double scale)
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
cv::ocl::OclCascadeClassifierBuf& cascade,
|
||||
double scale, bool calTime)
|
||||
{
|
||||
int i = 0;
|
||||
double t = 0;
|
||||
vector<Rect> faces;
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
cv::ocl::oclMat image(img);
|
||||
cv::ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
|
||||
if(calTime) workBegin();
|
||||
cv::ocl::cvtColor( image, gray, CV_BGR2GRAY );
|
||||
cv::ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
cv::ocl::equalizeHist( smallImg, smallImg );
|
||||
|
||||
CvSeq* _objects;
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
t = (double)cvGetTickCount();
|
||||
_objects = cascade.oclHaarDetectObjects( smallImg, storage, 1.1,
|
||||
cascade.detectMultiScale( smallImg, faces, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
faces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
|
||||
t = (double)cvGetTickCount() - t;
|
||||
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||||
if(calTime) workEnd();
|
||||
}
|
||||
|
||||
void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
CascadeClassifier& cascade,
|
||||
double scale, bool calTime)
|
||||
{
|
||||
if(calTime) workBegin();
|
||||
Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
cvtColor(img, cpu_gray, CV_BGR2GRAY);
|
||||
resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR);
|
||||
equalizeHist(cpu_smallImg, cpu_smallImg);
|
||||
cascade.detectMultiScale(cpu_smallImg, faces, 1.1,
|
||||
3, 0 | CV_HAAR_SCALE_IMAGE,
|
||||
Size(30, 30), Size(0, 0));
|
||||
if(calTime) workEnd();
|
||||
}
|
||||
|
||||
void Draw(Mat& img, vector<Rect>& faces, double scale)
|
||||
{
|
||||
int i = 0;
|
||||
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
Point center;
|
||||
Scalar color = colors[i%8];
|
||||
int radius;
|
||||
@ -227,3 +232,42 @@ void detectAndDraw( Mat& img,
|
||||
}
|
||||
cv::imshow( "result", img );
|
||||
}
|
||||
|
||||
double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& ob2)
|
||||
{
|
||||
double final_test_result = 0.0;
|
||||
size_t sz1 = ob1.size();
|
||||
size_t sz2 = ob2.size();
|
||||
|
||||
if(sz1 != sz2)
|
||||
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
|
||||
else
|
||||
{
|
||||
cv::Mat cpu_result(sz, CV_8UC1);
|
||||
cpu_result.setTo(0);
|
||||
|
||||
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
|
||||
{
|
||||
cv::Mat cpu_result_roi(cpu_result, *r);
|
||||
cpu_result_roi.setTo(1);
|
||||
cpu_result.copyTo(cpu_result);
|
||||
}
|
||||
int cpu_area = cv::countNonZero(cpu_result > 0);
|
||||
|
||||
cv::Mat gpu_result(sz, CV_8UC1);
|
||||
gpu_result.setTo(0);
|
||||
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
|
||||
{
|
||||
cv::Mat gpu_result_roi(gpu_result, *r2);
|
||||
gpu_result_roi.setTo(1);
|
||||
gpu_result.copyTo(gpu_result);
|
||||
}
|
||||
|
||||
cv::Mat result_;
|
||||
multiply(cpu_result, gpu_result, result_);
|
||||
int result = cv::countNonZero(result_ > 0);
|
||||
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
}
|
||||
return final_test_result;
|
||||
}
|
||||
|
@ -45,7 +45,6 @@ public:
|
||||
bool gamma_corr;
|
||||
};
|
||||
|
||||
|
||||
class App
|
||||
{
|
||||
public:
|
||||
@ -64,6 +63,13 @@ public:
|
||||
|
||||
string message() const;
|
||||
|
||||
// This function test if gpu_rst matches cpu_rst.
|
||||
// If the two vectors are not equal, it will return the difference in vector size
|
||||
// Else if will return
|
||||
// (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
double checkRectSimilarity(Size sz,
|
||||
std::vector<Rect>& cpu_rst,
|
||||
std::vector<Rect>& gpu_rst);
|
||||
private:
|
||||
App operator=(App&);
|
||||
|
||||
@ -290,6 +296,7 @@ void App::run()
|
||||
ocl::oclMat gpu_img;
|
||||
|
||||
// Iterate over all frames
|
||||
bool verify = false;
|
||||
while (running && !frame.empty())
|
||||
{
|
||||
workBegin();
|
||||
@ -316,7 +323,18 @@ void App::run()
|
||||
gpu_img.upload(img);
|
||||
gpu_hog.detectMultiScale(gpu_img, found, hit_threshold, win_stride,
|
||||
Size(0, 0), scale, gr_threshold);
|
||||
}
|
||||
if (!verify)
|
||||
{
|
||||
// verify if GPU output same objects with CPU at 1st run
|
||||
verify = true;
|
||||
vector<Rect> ref_rst;
|
||||
cvtColor(img, img, CV_BGRA2BGR);
|
||||
cpu_hog.detectMultiScale(img, ref_rst, hit_threshold, win_stride,
|
||||
Size(0, 0), scale, gr_threshold-2);
|
||||
double accuracy = checkRectSimilarity(img.size(), ref_rst, found);
|
||||
cout << "\naccuracy value: " << accuracy << endl;
|
||||
}
|
||||
}
|
||||
else cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride,
|
||||
Size(0, 0), scale, gr_threshold);
|
||||
hogWorkEnd();
|
||||
@ -457,3 +475,45 @@ inline string App::workFps() const
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
double App::checkRectSimilarity(Size sz,
|
||||
std::vector<Rect>& ob1,
|
||||
std::vector<Rect>& ob2)
|
||||
{
|
||||
double final_test_result = 0.0;
|
||||
size_t sz1 = ob1.size();
|
||||
size_t sz2 = ob2.size();
|
||||
|
||||
if(sz1 != sz2)
|
||||
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
|
||||
else
|
||||
{
|
||||
cv::Mat cpu_result(sz, CV_8UC1);
|
||||
cpu_result.setTo(0);
|
||||
|
||||
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
|
||||
{
|
||||
cv::Mat cpu_result_roi(cpu_result, *r);
|
||||
cpu_result_roi.setTo(1);
|
||||
cpu_result.copyTo(cpu_result);
|
||||
}
|
||||
int cpu_area = cv::countNonZero(cpu_result > 0);
|
||||
|
||||
cv::Mat gpu_result(sz, CV_8UC1);
|
||||
gpu_result.setTo(0);
|
||||
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
|
||||
{
|
||||
cv::Mat gpu_result_roi(gpu_result, *r2);
|
||||
gpu_result_roi.setTo(1);
|
||||
gpu_result.copyTo(gpu_result);
|
||||
}
|
||||
|
||||
cv::Mat result_;
|
||||
multiply(cpu_result, gpu_result, result_);
|
||||
int result = cv::countNonZero(result_ > 0);
|
||||
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
}
|
||||
return final_test_result;
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user