mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
Merge pull request #622 from moshekaplan:python2_cleanups
This commit is contained in:
commit
fb04f3a58d
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Utility for measuring python opencv API coverage by samples.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Scans current directory for *.py files and reports
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Affine invariant feature-based image matching sample.
|
||||
@ -21,9 +21,12 @@ USAGE
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import itertools as it
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
# local modules
|
||||
from common import Timer
|
||||
from find_obj import init_feature, filter_matches, explore_match
|
||||
|
||||
@ -85,15 +88,18 @@ def affine_detect(detector, img, mask=None, pool=None):
|
||||
if descrs is None:
|
||||
descrs = []
|
||||
return keypoints, descrs
|
||||
|
||||
keypoints, descrs = [], []
|
||||
if pool is None:
|
||||
ires = it.imap(f, params)
|
||||
else:
|
||||
ires = pool.imap(f, params)
|
||||
|
||||
for i, (k, d) in enumerate(ires):
|
||||
print 'affine sampling: %d / %d\r' % (i+1, len(params)),
|
||||
keypoints.extend(k)
|
||||
descrs.extend(d)
|
||||
|
||||
print
|
||||
return keypoints, np.array(descrs)
|
||||
|
||||
@ -104,7 +110,8 @@ if __name__ == '__main__':
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
|
||||
opts = dict(opts)
|
||||
feature_name = opts.get('--feature', 'sift-flann')
|
||||
try: fn1, fn2 = args
|
||||
try:
|
||||
fn1, fn2 = args
|
||||
except:
|
||||
fn1 = 'data/aero1.jpg'
|
||||
fn2 = 'data/aero3.jpg'
|
||||
@ -112,11 +119,20 @@ if __name__ == '__main__':
|
||||
img1 = cv2.imread(fn1, 0)
|
||||
img2 = cv2.imread(fn2, 0)
|
||||
detector, matcher = init_feature(feature_name)
|
||||
if detector != None:
|
||||
print 'using', feature_name
|
||||
else:
|
||||
|
||||
if img1 is None:
|
||||
print 'Failed to load fn1:', fn1
|
||||
sys.exit(1)
|
||||
|
||||
if img2 is None:
|
||||
print 'Failed to load fn2:', fn2
|
||||
sys.exit(1)
|
||||
|
||||
if detector is None:
|
||||
print 'unknown feature:', feature_name
|
||||
sys.exit(1)
|
||||
|
||||
print 'using', feature_name
|
||||
|
||||
pool=ThreadPool(processes = cv2.getNumberOfCPUs())
|
||||
kp1, desc1 = affine_detect(detector, img1, pool=pool)
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
browse.py
|
||||
@ -14,6 +14,8 @@ browse.py [image filename]
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import sys
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -25,6 +27,10 @@ if __name__ == '__main__':
|
||||
fn = sys.argv[1]
|
||||
print 'loading %s ...' % fn
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
print 'Failed to load fn:', fn
|
||||
sys.exit(1)
|
||||
|
||||
else:
|
||||
sz = 4096
|
||||
print 'generating %dx%d procedural image ...' % (sz, sz)
|
||||
@ -33,6 +39,7 @@ if __name__ == '__main__':
|
||||
track = np.int32(track*10 + (sz/2, sz/2))
|
||||
cv2.polylines(img, [track], 0, 255, 1, cv2.CV_AA)
|
||||
|
||||
|
||||
small = img
|
||||
for i in xrange(3):
|
||||
small = cv2.pyrDown(small)
|
||||
|
@ -1,10 +1,15 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
|
||||
# local modules
|
||||
from common import splitfn
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
|
||||
|
||||
USAGE = '''
|
||||
USAGE: calib.py [--save <filename>] [--debug <output path>] [--square_size] [<image mask>]
|
||||
'''
|
||||
@ -12,13 +17,17 @@ USAGE: calib.py [--save <filename>] [--debug <output path>] [--square_size] [<im
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys, getopt
|
||||
import sys
|
||||
import getopt
|
||||
from glob import glob
|
||||
|
||||
args, img_mask = getopt.getopt(sys.argv[1:], '', ['save=', 'debug=', 'square_size='])
|
||||
args = dict(args)
|
||||
try: img_mask = img_mask[0]
|
||||
except: img_mask = '../cpp/left*.jpg'
|
||||
try:
|
||||
img_mask = img_mask[0]
|
||||
except:
|
||||
img_mask = '../cpp/left*.jpg'
|
||||
|
||||
img_names = glob(img_mask)
|
||||
debug_dir = args.get('--debug')
|
||||
square_size = float(args.get('--square_size', 1.0))
|
||||
@ -34,6 +43,10 @@ if __name__ == '__main__':
|
||||
for fn in img_names:
|
||||
print 'processing %s...' % fn,
|
||||
img = cv2.imread(fn, 0)
|
||||
if img is None:
|
||||
print "Failed to load", fn
|
||||
continue
|
||||
|
||||
h, w = img.shape[:2]
|
||||
found, corners = cv2.findChessboardCorners(img, pattern_size)
|
||||
if found:
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Camshift tracker
|
||||
@ -24,6 +24,8 @@ Keys:
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# local module
|
||||
import video
|
||||
|
||||
|
||||
@ -98,8 +100,10 @@ class App(object):
|
||||
|
||||
if self.show_backproj:
|
||||
vis[:] = prob[...,np.newaxis]
|
||||
try: cv2.ellipse(vis, track_box, (0, 0, 255), 2)
|
||||
except: print track_box
|
||||
try:
|
||||
cv2.ellipse(vis, track_box, (0, 0, 255), 2)
|
||||
except:
|
||||
print track_box
|
||||
|
||||
cv2.imshow('camshift', vis)
|
||||
|
||||
@ -113,8 +117,10 @@ class App(object):
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
print __doc__
|
||||
App(video_src).run()
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Coherence-enhancing filtering example
|
||||
@ -40,8 +40,10 @@ def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = '../cpp/baboon.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/baboon.jpg'
|
||||
|
||||
src = cv2.imread(fn)
|
||||
|
||||
|
@ -1,10 +1,13 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from time import clock
|
||||
import sys
|
||||
|
||||
# built-in modules
|
||||
import sys
|
||||
from time import clock
|
||||
|
||||
# local modules
|
||||
import video
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -24,8 +27,10 @@ if __name__ == '__main__':
|
||||
hist_scale = val
|
||||
cv2.createTrackbar('scale', 'hist', hist_scale, 32, set_scale)
|
||||
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = 0
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 0
|
||||
cam = video.create_capture(fn, fallback='synth:bg=../cpp/baboon.jpg:class=chess:noise=0.05')
|
||||
|
||||
while True:
|
||||
|
@ -1,14 +1,14 @@
|
||||
#/usr/bin/env python
|
||||
|
||||
'''
|
||||
This module contains some common routines used by other samples.
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
import itertools as it
|
||||
from contextlib import contextmanager
|
||||
|
||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
This program illustrates the use of findContours and drawContours.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Wiener deconvolution.
|
||||
@ -32,6 +32,8 @@ Examples:
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# local module
|
||||
from common import nothing
|
||||
|
||||
|
||||
@ -65,12 +67,18 @@ if __name__ == '__main__':
|
||||
import sys, getopt
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['circle', 'angle=', 'd=', 'snr='])
|
||||
opts = dict(opts)
|
||||
try: fn = args[0]
|
||||
except: fn = 'data/licenseplate_motion.jpg'
|
||||
try:
|
||||
fn = args[0]
|
||||
except:
|
||||
fn = 'data/licenseplate_motion.jpg'
|
||||
|
||||
win = 'deconvolution'
|
||||
|
||||
img = cv2.imread(fn, 0)
|
||||
if img is None:
|
||||
print 'Failed to load fn1:', fn1
|
||||
sys.exit(1)
|
||||
|
||||
img = np.float32(img)/255.0
|
||||
cv2.imshow('input', img)
|
||||
|
||||
|
@ -1,15 +1,20 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Sample-launcher application.
|
||||
'''
|
||||
|
||||
import Tkinter as tk
|
||||
from ScrolledText import ScrolledText
|
||||
from glob import glob
|
||||
# local modules
|
||||
from common import splitfn
|
||||
|
||||
# built-in modules
|
||||
import sys
|
||||
import webbrowser
|
||||
import Tkinter as tk
|
||||
from glob import glob
|
||||
from subprocess import Popen
|
||||
from ScrolledText import ScrolledText
|
||||
|
||||
|
||||
#from IPython.Shell import IPShellEmbed
|
||||
#ipshell = IPShellEmbed()
|
||||
@ -136,7 +141,8 @@ class App:
|
||||
count = tk.IntVar()
|
||||
while True:
|
||||
match_index = text.search(pattern, 'matchPos', count=count, regexp=regexp, stopindex='end')
|
||||
if not match_index: break
|
||||
if not match_index:
|
||||
break
|
||||
end_index = text.index( "%s+%sc" % (match_index, count.get()) )
|
||||
text.mark_set('matchPos', end_index)
|
||||
if callable(tag_proc):
|
||||
@ -147,7 +153,7 @@ class App:
|
||||
def on_run(self, *args):
|
||||
cmd = self.cmd_entry.get()
|
||||
print 'running:', cmd
|
||||
Popen("python " + cmd, shell=True)
|
||||
Popen(sys.executable + ' ' + cmd, shell=True)
|
||||
|
||||
def run(self):
|
||||
tk.mainloop()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
SVM and KNearest digit recognition.
|
||||
@ -23,12 +23,19 @@ Usage:
|
||||
digits.py
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
# built-in modules
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from common import clock, mosaic
|
||||
|
||||
import cv2
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
|
||||
# local modules
|
||||
from common import clock, mosaic
|
||||
|
||||
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'data/digits.png'
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Digit recognition adjustment.
|
||||
|
@ -1,17 +1,23 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
import sys
|
||||
|
||||
# local modules
|
||||
import video
|
||||
from common import mosaic
|
||||
|
||||
from digits import *
|
||||
|
||||
def main():
|
||||
try: src = sys.argv[1]
|
||||
except: src = 0
|
||||
try:
|
||||
src = sys.argv[1]
|
||||
except:
|
||||
src = 0
|
||||
cap = video.create_capture(src)
|
||||
|
||||
classifier_fn = 'digits_svm.dat'
|
||||
@ -30,8 +36,10 @@ def main():
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
|
||||
bin = cv2.medianBlur(bin, 3)
|
||||
contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
try: heirs = heirs[0]
|
||||
except: heirs = []
|
||||
try:
|
||||
heirs = heirs[0]
|
||||
except:
|
||||
heirs = []
|
||||
|
||||
for cnt, heir in zip(contours, heirs):
|
||||
_, _, _, outer_i = heir
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Distance transform sample.
|
||||
@ -15,15 +15,22 @@ Keys:
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2.cv as cv
|
||||
|
||||
from common import make_cmap
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = '../cpp/fruits.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
print __doc__
|
||||
|
||||
img = cv2.imread(fn, 0)
|
||||
if img is None:
|
||||
print 'Failed to load fn:', fn
|
||||
sys.exit(1)
|
||||
|
||||
cm = make_cmap('jet')
|
||||
need_update = True
|
||||
voronoi = False
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
This sample demonstrates Canny edge detection.
|
||||
@ -11,15 +11,21 @@ Usage:
|
||||
'''
|
||||
|
||||
import cv2
|
||||
|
||||
# relative module
|
||||
import video
|
||||
|
||||
# built-in module
|
||||
import sys
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = 0
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 0
|
||||
|
||||
def nothing(*arg):
|
||||
pass
|
||||
|
@ -1,8 +1,10 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2.cv as cv
|
||||
|
||||
# local modules
|
||||
from video import create_capture
|
||||
from common import clock, draw_str
|
||||
|
||||
@ -26,8 +28,10 @@ if __name__ == '__main__':
|
||||
print help_message
|
||||
|
||||
args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade='])
|
||||
try: video_src = video_src[0]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = video_src[0]
|
||||
except:
|
||||
video_src = 0
|
||||
args = dict(args)
|
||||
cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml")
|
||||
nested_fn = args.get('--nested-cascade', "../../data/haarcascades/haarcascade_eye.xml")
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Feature homography
|
||||
@ -24,6 +24,8 @@ Select a textured planar object to track by drawing a box with a mouse.
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# local modules
|
||||
import video
|
||||
import common
|
||||
from common import getsize, draw_keypoints
|
||||
@ -85,6 +87,8 @@ if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
App(video_src).run()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Feature-based image matching sample.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Robust line fitting.
|
||||
@ -24,7 +24,11 @@ ESC - exit
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import itertools as it
|
||||
|
||||
# local modules
|
||||
from common import draw_str
|
||||
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Floodfill sample.
|
||||
@ -19,11 +19,17 @@ import cv2
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = '../cpp/fruits.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
print __doc__
|
||||
|
||||
img = cv2.imread(fn, True)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
h, w = img.shape[:2]
|
||||
mask = np.zeros((h+2, w+2), np.uint8)
|
||||
seed_pt = None
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
gabor_threads.py
|
||||
@ -49,10 +49,16 @@ if __name__ == '__main__':
|
||||
from common import Timer
|
||||
|
||||
print __doc__
|
||||
try: img_fn = sys.argv[1]
|
||||
except: img_fn = '../cpp/baboon.jpg'
|
||||
try:
|
||||
img_fn = sys.argv[1]
|
||||
except:
|
||||
img_fn = '../cpp/baboon.jpg'
|
||||
|
||||
img = cv2.imread(img_fn)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', img_fn
|
||||
sys.exit(1)
|
||||
|
||||
filters = build_filters()
|
||||
|
||||
with Timer('running single-threaded'):
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
''' This is a sample for histogram plotting for RGB images and grayscale images for better understanding of colour distribution
|
||||
|
||||
@ -55,11 +55,16 @@ if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
if len(sys.argv)>1:
|
||||
im = cv2.imread(sys.argv[1])
|
||||
fname = sys.argv[1]
|
||||
else :
|
||||
im = cv2.imread('../cpp/lena.jpg')
|
||||
fname = '../cpp/lena.jpg'
|
||||
print "usage : python hist.py <image_file>"
|
||||
|
||||
im = cv2.imread(fname)
|
||||
|
||||
if im is None:
|
||||
print 'Failed to load image file:', fname
|
||||
sys.exit(1)
|
||||
|
||||
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Inpainting sample.
|
||||
@ -21,11 +21,18 @@ from common import Sketcher
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = '../cpp/fruits.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
|
||||
print __doc__
|
||||
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
img_mark = img.copy()
|
||||
mark = np.zeros(img.shape[:2], np.uint8)
|
||||
sketch = Sketcher('img', [img_mark, mark], lambda : ((255, 255, 255), 255))
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
K-means clusterization sample.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
''' An example of Laplacian Pyramid construction and merging.
|
||||
|
||||
@ -40,8 +40,10 @@ if __name__ == '__main__':
|
||||
import sys
|
||||
print __doc__
|
||||
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = 0
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 0
|
||||
cap = video.create_capture(fn)
|
||||
|
||||
leveln = 6
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
The sample demonstrates how to train Random Trees classifier
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Lucas-Kanade homography tracker
|
||||
@ -103,8 +103,10 @@ class App:
|
||||
|
||||
def main():
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
|
||||
print __doc__
|
||||
App(video_src).run()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Lucas-Kanade tracker
|
||||
@ -88,8 +88,10 @@ class App:
|
||||
|
||||
def main():
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
|
||||
print __doc__
|
||||
App(video_src).run()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Morphology operations.
|
||||
@ -23,9 +23,17 @@ if __name__ == '__main__':
|
||||
from itertools import cycle
|
||||
from common import draw_str
|
||||
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = '../cpp/baboon.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/baboon.jpg'
|
||||
|
||||
img = cv2.imread(fn)
|
||||
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
cv2.imshow('original', img)
|
||||
|
||||
modes = cycle(['erode/dilate', 'open/close', 'blackhat/tophat', 'gradient'])
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
MOSSE tracking sample
|
||||
@ -182,7 +182,9 @@ if __name__ == '__main__':
|
||||
import sys, getopt
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['pause'])
|
||||
opts = dict(opts)
|
||||
try: video_src = args[0]
|
||||
except: video_src = '0'
|
||||
try:
|
||||
video_src = args[0]
|
||||
except:
|
||||
video_src = '0'
|
||||
|
||||
App(video_src, paused = '--pause' in opts).run()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
@ -20,8 +20,10 @@ def draw_motion_comp(vis, (x, y, w, h), angle, color):
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
|
||||
cv2.namedWindow('motempl')
|
||||
visuals = ['input', 'frame_diff', 'motion_hist', 'grad_orient']
|
||||
|
@ -1,5 +1,3 @@
|
||||
#/usr/bin/env python
|
||||
|
||||
#!/usr/bin/env python
|
||||
'''
|
||||
mouse_and_match.py [-i path | --input path: default ./]
|
||||
@ -11,12 +9,15 @@ Demonstrate using a mouse to interact with an image:
|
||||
ESC to exit
|
||||
'''
|
||||
import numpy as np
|
||||
from math import *
|
||||
import sys
|
||||
import cv2 as cv
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
import sys
|
||||
import glob
|
||||
import argparse
|
||||
import cv2 as cv
|
||||
from math import *
|
||||
|
||||
|
||||
drag_start = None
|
||||
sel = (0,0,0,0)
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
MSER detector demo
|
||||
@ -20,8 +20,10 @@ import video
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
|
||||
cam = video.create_capture(video_src)
|
||||
mser = cv2.MSER()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
@ -48,8 +48,10 @@ def warp_flow(img, flow):
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
print help_message
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = 0
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 0
|
||||
|
||||
cam = video.create_capture(fn)
|
||||
ret, prev = cam.read()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
@ -36,6 +36,9 @@ if __name__ == '__main__':
|
||||
print fn, ' - ',
|
||||
try:
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
continue
|
||||
except:
|
||||
print 'loading error'
|
||||
continue
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Planar augmented reality
|
||||
@ -100,6 +100,8 @@ if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
App(video_src).run()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Multitarget planar tracking
|
||||
@ -23,7 +23,11 @@ Select a textured planar object to track by drawing a box with a mouse.
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
from collections import namedtuple
|
||||
|
||||
# local modules
|
||||
import video
|
||||
import common
|
||||
|
||||
@ -168,6 +172,8 @@ if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
video_src = 0
|
||||
App(video_src).run()
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Simple "Square Detector" program.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Simple example of stereo image matching and point cloud generation.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Texture flow direction estimation.
|
||||
@ -15,10 +15,16 @@ import cv2
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = 'data/starry_night.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 'data/starry_night.jpg'
|
||||
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img.shape[:2]
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Multiscale Turing Patterns generator
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Video capture sample.
|
||||
@ -30,9 +30,14 @@ Keys:
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from time import clock
|
||||
from numpy import pi, sin, cos
|
||||
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
from time import clock
|
||||
|
||||
# local modules
|
||||
import common
|
||||
|
||||
class VideoSynthBase(object):
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Data matrix detector sample.
|
||||
@ -18,6 +18,8 @@ Keyboard shortcuts:
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
# built-in modules
|
||||
import sys
|
||||
|
||||
def data_matrix_demo(cap):
|
||||
|
@ -1,4 +1,4 @@
|
||||
#/usr/bin/env python
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Multithreaded video processing sample.
|
||||
@ -39,8 +39,10 @@ if __name__ == '__main__':
|
||||
|
||||
print __doc__
|
||||
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = 0
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 0
|
||||
cap = video.create_capture(fn)
|
||||
|
||||
|
||||
|
@ -31,6 +31,9 @@ from common import Sketcher
|
||||
class App:
|
||||
def __init__(self, fn):
|
||||
self.img = cv2.imread(fn)
|
||||
if self.img is None:
|
||||
raise Exception('Failed to load image file: %s' % fn)
|
||||
|
||||
h, w = self.img.shape[:2]
|
||||
self.markers = np.zeros((h, w), np.int32)
|
||||
self.markers_vis = self.img.copy()
|
||||
@ -73,7 +76,9 @@ class App:
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn = sys.argv[1]
|
||||
except: fn = '../cpp/fruits.jpg'
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
print __doc__
|
||||
App(fn).run()
|
||||
|
Loading…
Reference in New Issue
Block a user