mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
fb61f88b9c
@ -68,6 +68,9 @@ if(POLICY CMP0075)
|
||||
cmake_policy(SET CMP0075 NEW) # CMake 3.12+: Include file check macros honor `CMAKE_REQUIRED_LIBRARIES`
|
||||
endif()
|
||||
|
||||
if(POLICY CMP0077)
|
||||
cmake_policy(SET CMP0077 NEW) # CMake 3.13+: option() honors normal variables.
|
||||
endif()
|
||||
|
||||
#
|
||||
# Configure OpenCV CMake hooks
|
||||
|
@ -17,7 +17,7 @@ You'll find answers for the following questions:
|
||||
|
||||
Source code
|
||||
-----------
|
||||
|
||||
@add_toggle_cpp
|
||||
You can [download this from here
|
||||
](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/core/file_input_output/file_input_output.cpp) or find it in the
|
||||
`samples/cpp/tutorial_code/core/file_input_output/file_input_output.cpp` of the OpenCV source code
|
||||
@ -26,13 +26,25 @@ library.
|
||||
Here's a sample code of how to achieve all the stuff enumerated at the goal list.
|
||||
|
||||
@include cpp/tutorial_code/core/file_input_output/file_input_output.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
You can [download this from here
|
||||
](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/core/file_input_output/file_input_output.py) or find it in the
|
||||
`samples/python/tutorial_code/core/file_input_output/file_input_output.py` of the OpenCV source code
|
||||
library.
|
||||
|
||||
Here's a sample code of how to achieve all the stuff enumerated at the goal list.
|
||||
|
||||
@include python/tutorial_code/core/file_input_output/file_input_output.py
|
||||
@end_toggle
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
Here we talk only about XML and YAML file inputs. Your output (and its respective input) file may
|
||||
have only one of these extensions and the structure coming from this. They are two kinds of data
|
||||
structures you may serialize: *mappings* (like the STL map) and *element sequence* (like the STL
|
||||
structures you may serialize: *mappings* (like the STL map and the Python dictionary) and *element sequence* (like the STL
|
||||
vector). The difference between these is that in a map every element has a unique name through what
|
||||
you may access it. For sequences you need to go through them to query a specific item.
|
||||
|
||||
@ -40,12 +52,12 @@ you may access it. For sequences you need to go through them to query a specific
|
||||
and at the end to close it. The XML/YAML data structure in OpenCV is @ref cv::FileStorage . To
|
||||
specify that this structure to which file binds on your hard drive you can use either its
|
||||
constructor or the *open()* function of this:
|
||||
@code{.cpp}
|
||||
string filename = "I.xml";
|
||||
FileStorage fs(filename, FileStorage::WRITE);
|
||||
//...
|
||||
fs.open(filename, FileStorage::READ);
|
||||
@endcode
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp open
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py open
|
||||
@end_toggle
|
||||
Either one of this you use the second argument is a constant specifying the type of operations
|
||||
you'll be able to on them: WRITE, READ or APPEND. The extension specified in the file name also
|
||||
determinates the output format that will be used. The output may be even compressed if you
|
||||
@ -53,75 +65,83 @@ you may access it. For sequences you need to go through them to query a specific
|
||||
|
||||
The file automatically closes when the @ref cv::FileStorage objects is destroyed. However, you
|
||||
may explicitly call for this by using the *release* function:
|
||||
@code{.cpp}
|
||||
fs.release(); // explicit close
|
||||
@endcode
|
||||
-# **Input and Output of text and numbers.** The data structure uses the same \<\< output operator
|
||||
that the STL library. For outputting any type of data structure we need first to specify its
|
||||
name. We do this by just simply printing out the name of this. For basic types you may follow
|
||||
this with the print of the value :
|
||||
@code{.cpp}
|
||||
fs << "iterationNr" << 100;
|
||||
@endcode
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp close
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py close
|
||||
@end_toggle
|
||||
-# **Input and Output of text and numbers.** In C++, the data structure uses the \<\< output
|
||||
operator in the STL library. In Python, @ref cv::FileStorage.write() is used instead. For
|
||||
outputting any type of data structure we need first to specify its name. We do this by just
|
||||
simply pushing the name of this to the stream in C++. In Python, the first parameter for the
|
||||
write function is the name. For basic types you may follow this with the print of the value :
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp writeNum
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py writeNum
|
||||
@end_toggle
|
||||
Reading in is a simple addressing (via the [] operator) and casting operation or a read via
|
||||
the \>\> operator :
|
||||
@code{.cpp}
|
||||
int itNr;
|
||||
fs["iterationNr"] >> itNr;
|
||||
itNr = (int) fs["iterationNr"];
|
||||
@endcode
|
||||
the \>\> operator. In Python, we address with getNode() and use real() :
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp readNum
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp readNum
|
||||
@end_toggle
|
||||
-# **Input/Output of OpenCV Data structures.** Well these behave exactly just as the basic C++
|
||||
types:
|
||||
@code{.cpp}
|
||||
Mat R = Mat_<uchar >::eye (3, 3),
|
||||
T = Mat_<double>::zeros(3, 1);
|
||||
|
||||
fs << "R" << R; // Write cv::Mat
|
||||
fs << "T" << T;
|
||||
|
||||
fs["R"] >> R; // Read cv::Mat
|
||||
fs["T"] >> T;
|
||||
@endcode
|
||||
and Python types:
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp iomati
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp iomatw
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp iomat
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py iomati
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py iomatw
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py iomat
|
||||
@end_toggle
|
||||
-# **Input/Output of vectors (arrays) and associative maps.** As I mentioned beforehand, we can
|
||||
output maps and sequences (array, vector) too. Again we first print the name of the variable and
|
||||
then we have to specify if our output is either a sequence or map.
|
||||
|
||||
For sequence before the first element print the "[" character and after the last one the "]"
|
||||
character:
|
||||
@code{.cpp}
|
||||
fs << "strings" << "["; // text - string sequence
|
||||
fs << "image1.jpg" << "Awesomeness" << "baboon.jpg";
|
||||
fs << "]"; // close sequence
|
||||
@endcode
|
||||
character. With Python, the "]" character could be written with the name of the sequence or
|
||||
the last element of the sequence depending on the number of elements:
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp writeStr
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py writeStr
|
||||
@end_toggle
|
||||
For maps the drill is the same however now we use the "{" and "}" delimiter characters:
|
||||
@code{.cpp}
|
||||
fs << "Mapping"; // text - mapping
|
||||
fs << "{" << "One" << 1;
|
||||
fs << "Two" << 2 << "}";
|
||||
@endcode
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp writeMap
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py writeMap
|
||||
@end_toggle
|
||||
To read from these we use the @ref cv::FileNode and the @ref cv::FileNodeIterator data
|
||||
structures. The [] operator of the @ref cv::FileStorage class returns a @ref cv::FileNode data
|
||||
structures. The [] operator of the @ref cv::FileStorage class (or the getNode() function in Python) returns a @ref cv::FileNode data
|
||||
type. If the node is sequential we can use the @ref cv::FileNodeIterator to iterate through the
|
||||
items:
|
||||
@code{.cpp}
|
||||
FileNode n = fs["strings"]; // Read string sequence - Get node
|
||||
if (n.type() != FileNode::SEQ)
|
||||
{
|
||||
cerr << "strings is not a sequence! FAIL" << endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
|
||||
for (; it != it_end; ++it)
|
||||
cout << (string)*it << endl;
|
||||
@endcode
|
||||
For maps you can use the [] operator again to access the given item (or the \>\> operator too):
|
||||
@code{.cpp}
|
||||
n = fs["Mapping"]; // Read mappings from a sequence
|
||||
cout << "Two " << (int)(n["Two"]) << "; ";
|
||||
cout << "One " << (int)(n["One"]) << endl << endl;
|
||||
@endcode
|
||||
items. In Python, the at() function can be used to address elements of the sequence and the
|
||||
size() function returns the length of the sequence:
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp readStr
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py readStr
|
||||
@end_toggle
|
||||
For maps you can use the [] operator (at() function in Python) again to access the given item (or the \>\> operator too):
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp readMap
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py readMap
|
||||
@end_toggle
|
||||
-# **Read and write your own data structures.** Suppose you have a data structure such as:
|
||||
@add_toggle_cpp
|
||||
@code{.cpp}
|
||||
class MyData
|
||||
{
|
||||
@ -133,53 +153,52 @@ you may access it. For sequences you need to go through them to query a specific
|
||||
string id;
|
||||
};
|
||||
@endcode
|
||||
It's possible to serialize this through the OpenCV I/O XML/YAML interface (just as in case of
|
||||
the OpenCV data structures) by adding a read and a write function inside and outside of your
|
||||
class. For the inside part:
|
||||
@code{.cpp}
|
||||
void write(FileStorage& fs) const //Write serialization for this class
|
||||
{
|
||||
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
|
||||
}
|
||||
|
||||
void read(const FileNode& node) //Read serialization for this class
|
||||
{
|
||||
A = (int)node["A"];
|
||||
X = (double)node["X"];
|
||||
id = (string)node["id"];
|
||||
}
|
||||
@endcode
|
||||
Then you need to add the following functions definitions outside the class:
|
||||
@code{.cpp}
|
||||
void write(FileStorage& fs, const std::string&, const MyData& x)
|
||||
{
|
||||
x.write(fs);
|
||||
}
|
||||
|
||||
void read(const FileNode& node, MyData& x, const MyData& default_value = MyData())
|
||||
{
|
||||
if(node.empty())
|
||||
x = default_value;
|
||||
else
|
||||
x.read(node);
|
||||
}
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@code{.py}
|
||||
class MyData:
|
||||
def __init__(self):
|
||||
self.A = self.X = 0
|
||||
self.name = ''
|
||||
@endcode
|
||||
@end_toggle
|
||||
In C++, it's possible to serialize this through the OpenCV I/O XML/YAML interface (just as
|
||||
in case of the OpenCV data structures) by adding a read and a write function inside and outside of your
|
||||
class. In Python, you can get close to this by implementing a read and write function inside
|
||||
the class. For the inside part:
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp inside
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py inside
|
||||
@end_toggle
|
||||
@add_toggle_cpp
|
||||
In C++, you need to add the following functions definitions outside the class:
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp outside
|
||||
@end_toggle
|
||||
Here you can observe that in the read section we defined what happens if the user tries to read
|
||||
a non-existing node. In this case we just return the default initialization value, however a
|
||||
more verbose solution would be to return for instance a minus one value for an object ID.
|
||||
|
||||
Once you added these four functions use the \>\> operator for write and the \<\< operator for
|
||||
read:
|
||||
@code{.cpp}
|
||||
MyData m(1);
|
||||
fs << "MyData" << m; // your own data structures
|
||||
fs["MyData"] >> m; // Read your own structure_
|
||||
@endcode
|
||||
read (or the defined input/output functions for Python):
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp customIOi
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp customIOw
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp customIO
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py customIOi
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py customIOw
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py customIO
|
||||
@end_toggle
|
||||
Or to try out reading a non-existing read:
|
||||
@code{.cpp}
|
||||
fs["NonExisting"] >> m; // Do not add a fs << "NonExisting" << m command for this to work
|
||||
cout << endl << "NonExisting = " << endl << m << endl;
|
||||
@endcode
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/core/file_input_output/file_input_output.cpp nonexist
|
||||
@end_toggle
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/file_input_output/file_input_output.py nonexist
|
||||
@end_toggle
|
||||
|
||||
Result
|
||||
------
|
||||
|
@ -57,6 +57,14 @@ low light, low light values are discarded using **cv.inRange()** function.
|
||||
@include samples/python/tutorial_code/video/meanshift/meanshift.py
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/video/meanshift/MeanshiftDemo.java)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/java/tutorial_code/video/meanshift/MeanshiftDemo.java
|
||||
@end_toggle
|
||||
|
||||
Three frames in a video I used is given below:
|
||||
|
||||
![image](images/meanshift_result.jpg)
|
||||
@ -98,6 +106,14 @@ parameters (used to be passed as search window in next iteration). See the code
|
||||
@include samples/python/tutorial_code/video/meanshift/camshift.py
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/video/meanshift/CamshiftDemo.java)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/java/tutorial_code/video/meanshift/CamshiftDemo.java
|
||||
@end_toggle
|
||||
|
||||
Three frames of the result is shown below:
|
||||
|
||||
![image](images/camshift_result.jpg)
|
||||
|
@ -109,6 +109,15 @@ below:
|
||||
@include samples/python/tutorial_code/video/optical_flow/optical_flow.py
|
||||
@end_toggle
|
||||
|
||||
|
||||
@add_toggle_java
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/video/optical_flow/OpticalFlowDemo.java)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/java/tutorial_code/video/optical_flow/OpticalFlowDemo.java
|
||||
@end_toggle
|
||||
|
||||
(This code doesn't check how correct are the next keypoints. So even if any feature point disappears
|
||||
in image, there is a chance that optical flow finds the next point which may look close to it. So
|
||||
actually for a robust tracking, corner points should be detected in particular intervals. OpenCV
|
||||
@ -151,6 +160,15 @@ corresponds to Value plane. See the code below:
|
||||
@end_toggle
|
||||
|
||||
|
||||
@add_toggle_java
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/video/optical_flow/OpticalFlowDenseDemo.java)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/java/tutorial_code/video/optical_flow/OpticalFlowDenseDemo.java
|
||||
@end_toggle
|
||||
|
||||
|
||||
See the result below:
|
||||
|
||||
![image](images/opticalfb.jpg)
|
||||
|
@ -17,12 +17,12 @@ tracking and foreground extractions.
|
||||
|
||||
- @subpage tutorial_meanshift
|
||||
|
||||
*Languages:* C++, Python
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
Learn how to use the Meanshift and Camshift algorithms to track objects in videos.
|
||||
|
||||
- @subpage tutorial_optical_flow
|
||||
|
||||
*Languages:* C++, Python
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
We will learn how to use optical flow methods to track sparse features or to create a dense representation.
|
||||
|
@ -99,6 +99,7 @@ enum StoreMode
|
||||
|
||||
}
|
||||
|
||||
// TODO FIXIT: Don't use "God" traits. Split on separate cases.
|
||||
template<typename _Tp> struct V_TypeTraits
|
||||
{
|
||||
};
|
||||
@ -130,21 +131,51 @@ template<typename _Tp> struct V_TypeTraits
|
||||
} \
|
||||
}
|
||||
|
||||
#define CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(type, int_type_, uint_type_, abs_type_, w_type_, sum_type_, nlanes128_) \
|
||||
template<> struct V_TypeTraits<type> \
|
||||
{ \
|
||||
typedef type value_type; \
|
||||
typedef int_type_ int_type; \
|
||||
typedef abs_type_ abs_type; \
|
||||
typedef uint_type_ uint_type; \
|
||||
typedef w_type_ w_type; \
|
||||
typedef sum_type_ sum_type; \
|
||||
enum { nlanes128 = nlanes128_ }; \
|
||||
\
|
||||
static inline int_type reinterpret_int(type x) \
|
||||
{ \
|
||||
union { type l; int_type i; } v; \
|
||||
v.l = x; \
|
||||
return v.i; \
|
||||
} \
|
||||
\
|
||||
static inline type reinterpret_from_int(int_type x) \
|
||||
{ \
|
||||
union { type l; int_type i; } v; \
|
||||
v.i = x; \
|
||||
return v.l; \
|
||||
} \
|
||||
}
|
||||
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(uchar, schar, uchar, uchar, ushort, unsigned, unsigned, 16);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(schar, schar, uchar, uchar, short, int, int, 16);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(ushort, short, ushort, ushort, unsigned, uint64, unsigned, 8);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(short, short, ushort, ushort, int, int64, int, 8);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(unsigned, int, unsigned, unsigned, uint64, void, unsigned, 4);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(int, int, unsigned, unsigned, int64, void, int, 4);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(float, int, unsigned, float, double, void, float, 4);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(uint64, int64, uint64, uint64, void, void, uint64, 2);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(int64, int64, uint64, uint64, void, void, int64, 2);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS(double, int64, uint64, double, void, void, double, 2);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(unsigned, int, unsigned, unsigned, uint64, unsigned, 4);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(int, int, unsigned, unsigned, int64, int, 4);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(float, int, unsigned, float, double, float, 4);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(uint64, int64, uint64, uint64, void, uint64, 2);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(int64, int64, uint64, uint64, void, int64, 2);
|
||||
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(double, int64, uint64, double, void, double, 2);
|
||||
|
||||
#ifndef CV_DOXYGEN
|
||||
|
||||
#ifndef CV_CPU_OPTIMIZATION_HAL_NAMESPACE
|
||||
#ifdef CV_CPU_DISPATCH_MODE
|
||||
#ifdef CV_FORCE_SIMD128_CPP
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_EMULATOR_CPP
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_EMULATOR_CPP {
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
|
||||
#elif defined(CV_CPU_DISPATCH_MODE)
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE __CV_CAT(hal_, CV_CPU_DISPATCH_MODE)
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace __CV_CAT(hal_, CV_CPU_DISPATCH_MODE) {
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
|
||||
@ -197,7 +228,6 @@ using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
|
||||
|
||||
#else
|
||||
|
||||
#define CV_SIMD128_CPP 1
|
||||
#include "opencv2/core/hal/intrin_cpp.hpp"
|
||||
|
||||
#endif
|
||||
@ -242,6 +272,10 @@ CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
|
||||
#define CV_SIMD128 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD128_CPP
|
||||
#define CV_SIMD128_CPP 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD128_64F
|
||||
#define CV_SIMD128_64F 0
|
||||
#endif
|
||||
@ -346,7 +380,7 @@ template<typename _Tp> struct V_RegTraits
|
||||
CV_DEF_REG_TRAITS(v, v_int16x8, short, s16, v_uint16x8, v_int32x4, v_int64x2, v_int16x8, void);
|
||||
CV_DEF_REG_TRAITS(v, v_uint32x4, unsigned, u32, v_uint32x4, v_uint64x2, void, v_int32x4, void);
|
||||
CV_DEF_REG_TRAITS(v, v_int32x4, int, s32, v_uint32x4, v_int64x2, void, v_int32x4, void);
|
||||
#if CV_SIMD128_64F
|
||||
#if CV_SIMD128_64F || CV_SIMD128_CPP
|
||||
CV_DEF_REG_TRAITS(v, v_float32x4, float, f32, v_float32x4, v_float64x2, void, v_int32x4, v_int32x4);
|
||||
#else
|
||||
CV_DEF_REG_TRAITS(v, v_float32x4, float, f32, v_float32x4, void, void, v_int32x4, v_int32x4);
|
||||
@ -433,7 +467,11 @@ namespace CV__SIMD_NAMESPACE {
|
||||
} // namespace
|
||||
using namespace CV__SIMD_NAMESPACE;
|
||||
#elif (CV_SIMD128 || CV_SIMD128_CPP) && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 128)
|
||||
#if defined CV_SIMD128_CPP
|
||||
#define CV__SIMD_NAMESPACE simd128_cpp
|
||||
#else
|
||||
#define CV__SIMD_NAMESPACE simd128
|
||||
#endif
|
||||
namespace CV__SIMD_NAMESPACE {
|
||||
#define CV_SIMD CV_SIMD128
|
||||
#define CV_SIMD_64F CV_SIMD128_64F
|
||||
|
@ -50,6 +50,14 @@
|
||||
#include <algorithm>
|
||||
#include "opencv2/core/saturate.hpp"
|
||||
|
||||
//! @cond IGNORED
|
||||
#define CV_SIMD128_CPP 1
|
||||
#if defined(CV_FORCE_SIMD128_CPP) || defined(CV_DOXYGEN)
|
||||
#define CV_SIMD128 1
|
||||
#define CV_SIMD128_64F 1
|
||||
#endif
|
||||
//! @endcond
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
@ -402,50 +410,102 @@ typedef v_reg<uint64, 2> v_uint64x2;
|
||||
/** @brief Two 64-bit signed integer values */
|
||||
typedef v_reg<int64, 2> v_int64x2;
|
||||
|
||||
//! @brief Helper macro
|
||||
//! @ingroup core_hal_intrin_impl
|
||||
#define OPENCV_HAL_IMPL_BIN_OP(bin_op) \
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n> \
|
||||
operator bin_op (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
/** @brief Add values
|
||||
|
||||
For all types. */
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator+(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator+=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
/** @brief Subtract values
|
||||
|
||||
For all types. */
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator-(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator-=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
/** @brief Multiply values
|
||||
|
||||
For 16- and 32-bit integer types and floating types. */
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator*(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator*=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
/** @brief Divide values
|
||||
|
||||
For floating types only. */
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator/(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator/=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
|
||||
/** @brief Bitwise AND
|
||||
|
||||
Only for integer types. */
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator&(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator&=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
/** @brief Bitwise OR
|
||||
|
||||
Only for integer types. */
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator|(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator|=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
/** @brief Bitwise XOR
|
||||
|
||||
Only for integer types.*/
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator^(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator^=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
|
||||
|
||||
/** @brief Bitwise NOT
|
||||
|
||||
Only for integer types.*/
|
||||
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator~(const v_reg<_Tp, n>& a);
|
||||
|
||||
|
||||
#ifndef CV_DOXYGEN
|
||||
|
||||
#define CV__HAL_INTRIN_EXPAND_WITH_INTEGER_TYPES(macro_name, ...) \
|
||||
__CV_EXPAND(macro_name(uchar, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(schar, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(ushort, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(short, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(unsigned, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(int, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(uint64, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(int64, __VA_ARGS__)) \
|
||||
|
||||
#define CV__HAL_INTRIN_EXPAND_WITH_FP_TYPES(macro_name, ...) \
|
||||
__CV_EXPAND(macro_name(float, __VA_ARGS__)) \
|
||||
__CV_EXPAND(macro_name(double, __VA_ARGS__)) \
|
||||
|
||||
#define CV__HAL_INTRIN_EXPAND_WITH_ALL_TYPES(macro_name, ...) \
|
||||
CV__HAL_INTRIN_EXPAND_WITH_INTEGER_TYPES(macro_name, __VA_ARGS__) \
|
||||
CV__HAL_INTRIN_EXPAND_WITH_FP_TYPES(macro_name, __VA_ARGS__) \
|
||||
|
||||
#define CV__HAL_INTRIN_IMPL_BIN_OP_(_Tp, bin_op) \
|
||||
template<int n> inline \
|
||||
v_reg<_Tp, n> operator bin_op (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
{ \
|
||||
v_reg<_Tp, n> c; \
|
||||
for( int i = 0; i < n; i++ ) \
|
||||
c.s[i] = saturate_cast<_Tp>(a.s[i] bin_op b.s[i]); \
|
||||
return c; \
|
||||
} \
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n>& \
|
||||
operator bin_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
template<int n> inline \
|
||||
v_reg<_Tp, n>& operator bin_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
{ \
|
||||
for( int i = 0; i < n; i++ ) \
|
||||
a.s[i] = saturate_cast<_Tp>(a.s[i] bin_op b.s[i]); \
|
||||
return a; \
|
||||
}
|
||||
|
||||
/** @brief Add values
|
||||
#define CV__HAL_INTRIN_IMPL_BIN_OP(bin_op) CV__HAL_INTRIN_EXPAND_WITH_ALL_TYPES(CV__HAL_INTRIN_IMPL_BIN_OP_, bin_op)
|
||||
|
||||
For all types. */
|
||||
OPENCV_HAL_IMPL_BIN_OP(+)
|
||||
CV__HAL_INTRIN_IMPL_BIN_OP(+)
|
||||
CV__HAL_INTRIN_IMPL_BIN_OP(-)
|
||||
CV__HAL_INTRIN_IMPL_BIN_OP(*)
|
||||
CV__HAL_INTRIN_EXPAND_WITH_FP_TYPES(CV__HAL_INTRIN_IMPL_BIN_OP_, /)
|
||||
|
||||
/** @brief Subtract values
|
||||
|
||||
For all types. */
|
||||
OPENCV_HAL_IMPL_BIN_OP(-)
|
||||
|
||||
/** @brief Multiply values
|
||||
|
||||
For 16- and 32-bit integer types and floating types. */
|
||||
OPENCV_HAL_IMPL_BIN_OP(*)
|
||||
|
||||
/** @brief Divide values
|
||||
|
||||
For floating types only. */
|
||||
OPENCV_HAL_IMPL_BIN_OP(/)
|
||||
|
||||
//! @brief Helper macro
|
||||
//! @ingroup core_hal_intrin_impl
|
||||
#define OPENCV_HAL_IMPL_BIT_OP(bit_op) \
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n> operator bit_op \
|
||||
(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
#define CV__HAL_INTRIN_IMPL_BIT_OP_(_Tp, bit_op) \
|
||||
template<int n> CV_INLINE \
|
||||
v_reg<_Tp, n> operator bit_op (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
{ \
|
||||
v_reg<_Tp, n> c; \
|
||||
typedef typename V_TypeTraits<_Tp>::int_type itype; \
|
||||
@ -454,8 +514,8 @@ template<typename _Tp, int n> inline v_reg<_Tp, n> operator bit_op \
|
||||
V_TypeTraits<_Tp>::reinterpret_int(b.s[i]))); \
|
||||
return c; \
|
||||
} \
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n>& operator \
|
||||
bit_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
template<int n> CV_INLINE \
|
||||
v_reg<_Tp, n>& operator bit_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
|
||||
{ \
|
||||
typedef typename V_TypeTraits<_Tp>::int_type itype; \
|
||||
for( int i = 0; i < n; i++ ) \
|
||||
@ -464,33 +524,29 @@ template<typename _Tp, int n> inline v_reg<_Tp, n>& operator \
|
||||
return a; \
|
||||
}
|
||||
|
||||
/** @brief Bitwise AND
|
||||
#define CV__HAL_INTRIN_IMPL_BIT_OP(bit_op) \
|
||||
CV__HAL_INTRIN_EXPAND_WITH_INTEGER_TYPES(CV__HAL_INTRIN_IMPL_BIT_OP_, bit_op) \
|
||||
CV__HAL_INTRIN_EXPAND_WITH_FP_TYPES(CV__HAL_INTRIN_IMPL_BIT_OP_, bit_op) /* TODO: FIXIT remove this after masks refactoring */
|
||||
|
||||
Only for integer types. */
|
||||
OPENCV_HAL_IMPL_BIT_OP(&)
|
||||
|
||||
/** @brief Bitwise OR
|
||||
CV__HAL_INTRIN_IMPL_BIT_OP(&)
|
||||
CV__HAL_INTRIN_IMPL_BIT_OP(|)
|
||||
CV__HAL_INTRIN_IMPL_BIT_OP(^)
|
||||
|
||||
Only for integer types. */
|
||||
OPENCV_HAL_IMPL_BIT_OP(|)
|
||||
#define CV__HAL_INTRIN_IMPL_BITWISE_NOT_(_Tp, dummy) \
|
||||
template<int n> CV_INLINE \
|
||||
v_reg<_Tp, n> operator ~ (const v_reg<_Tp, n>& a) \
|
||||
{ \
|
||||
v_reg<_Tp, n> c; \
|
||||
for( int i = 0; i < n; i++ ) \
|
||||
c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int(~V_TypeTraits<_Tp>::reinterpret_int(a.s[i])); \
|
||||
return c; \
|
||||
} \
|
||||
|
||||
/** @brief Bitwise XOR
|
||||
CV__HAL_INTRIN_EXPAND_WITH_INTEGER_TYPES(CV__HAL_INTRIN_IMPL_BITWISE_NOT_, ~)
|
||||
|
||||
Only for integer types.*/
|
||||
OPENCV_HAL_IMPL_BIT_OP(^)
|
||||
#endif // !CV_DOXYGEN
|
||||
|
||||
/** @brief Bitwise NOT
|
||||
|
||||
Only for integer types.*/
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n> operator ~ (const v_reg<_Tp, n>& a)
|
||||
{
|
||||
v_reg<_Tp, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int(~V_TypeTraits<_Tp>::reinterpret_int(a.s[i]));
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
//! @brief Helper macro
|
||||
//! @ingroup core_hal_intrin_impl
|
||||
@ -503,6 +559,27 @@ template<typename _Tp, int n> inline v_reg<_Tp2, n> func(const v_reg<_Tp, n>& a)
|
||||
return c; \
|
||||
}
|
||||
|
||||
//! @brief Helper macro
|
||||
//! @ingroup core_hal_intrin_impl
|
||||
#define OPENCV_HAL_IMPL_MATH_FUNC_FLOAT(func, cfunc) \
|
||||
inline v_reg<int, 4> func(const v_reg<float, 4>& a) \
|
||||
{ \
|
||||
v_reg<int, 4> c; \
|
||||
for( int i = 0; i < 4; i++ ) \
|
||||
c.s[i] = cfunc(a.s[i]); \
|
||||
return c; \
|
||||
} \
|
||||
inline v_reg<int, 4> func(const v_reg<double, 2>& a) \
|
||||
{ \
|
||||
v_reg<int, 4> c; \
|
||||
for( int i = 0; i < 2; i++ ) \
|
||||
{ \
|
||||
c.s[i] = cfunc(a.s[i]); \
|
||||
c.s[i + 2] = 0; \
|
||||
} \
|
||||
return c; \
|
||||
}
|
||||
|
||||
/** @brief Square root of elements
|
||||
|
||||
Only for floating point types.*/
|
||||
@ -524,22 +601,22 @@ OPENCV_HAL_IMPL_MATH_FUNC(v_abs, (typename V_TypeTraits<_Tp>::abs_type)std::abs,
|
||||
/** @brief Round elements
|
||||
|
||||
Only for floating point types.*/
|
||||
OPENCV_HAL_IMPL_MATH_FUNC(v_round, cvRound, int)
|
||||
OPENCV_HAL_IMPL_MATH_FUNC_FLOAT(v_round, cvRound)
|
||||
|
||||
/** @brief Floor elements
|
||||
|
||||
Only for floating point types.*/
|
||||
OPENCV_HAL_IMPL_MATH_FUNC(v_floor, cvFloor, int)
|
||||
OPENCV_HAL_IMPL_MATH_FUNC_FLOAT(v_floor, cvFloor)
|
||||
|
||||
/** @brief Ceil elements
|
||||
|
||||
Only for floating point types.*/
|
||||
OPENCV_HAL_IMPL_MATH_FUNC(v_ceil, cvCeil, int)
|
||||
OPENCV_HAL_IMPL_MATH_FUNC_FLOAT(v_ceil, cvCeil)
|
||||
|
||||
/** @brief Truncate elements
|
||||
|
||||
Only for floating point types.*/
|
||||
OPENCV_HAL_IMPL_MATH_FUNC(v_trunc, int, int)
|
||||
OPENCV_HAL_IMPL_MATH_FUNC_FLOAT(v_trunc, int)
|
||||
|
||||
//! @brief Helper macro
|
||||
//! @ingroup core_hal_intrin_impl
|
||||
@ -1083,9 +1160,8 @@ OPENCV_HAL_IMPL_SHIFT_OP(<< )
|
||||
For 16-, 32- and 64-bit integer values. */
|
||||
OPENCV_HAL_IMPL_SHIFT_OP(>> )
|
||||
|
||||
/** @brief Element shift left among vector
|
||||
|
||||
For all type */
|
||||
//! @brief Helper macro
|
||||
//! @ingroup core_hal_intrin_impl
|
||||
#define OPENCV_HAL_IMPL_ROTATE_SHIFT_OP(suffix,opA,opB) \
|
||||
template<int imm, typename _Tp, int n> inline v_reg<_Tp, n> v_rotate_##suffix(const v_reg<_Tp, n>& a) \
|
||||
{ \
|
||||
@ -1127,7 +1203,14 @@ template<int imm, typename _Tp, int n> inline v_reg<_Tp, n> v_rotate_##suffix(co
|
||||
return c; \
|
||||
}
|
||||
|
||||
/** @brief Element shift left among vector
|
||||
|
||||
For all type */
|
||||
OPENCV_HAL_IMPL_ROTATE_SHIFT_OP(left, -, +)
|
||||
|
||||
/** @brief Element shift right among vector
|
||||
|
||||
For all type */
|
||||
OPENCV_HAL_IMPL_ROTATE_SHIFT_OP(right, +, -)
|
||||
|
||||
/** @brief Sum packed values
|
||||
@ -1389,6 +1472,7 @@ similar to cv::v_load, but source memory block should be aligned (to 16-byte bou
|
||||
template<typename _Tp>
|
||||
inline v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> v_load_aligned(const _Tp* ptr)
|
||||
{
|
||||
CV_Assert(isAligned<sizeof(v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128>)>(ptr));
|
||||
return v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128>(ptr);
|
||||
}
|
||||
|
||||
@ -1620,6 +1704,12 @@ inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a)
|
||||
ptr[i] = a.s[i];
|
||||
}
|
||||
|
||||
template<typename _Tp, int n>
|
||||
inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a, hal::StoreMode /*mode*/)
|
||||
{
|
||||
v_store(ptr, a);
|
||||
}
|
||||
|
||||
/** @brief Store data to memory (lower half)
|
||||
|
||||
Store lower half of register contents to memory.
|
||||
@ -1659,22 +1749,22 @@ Pointer __should__ be aligned by 16-byte boundary. */
|
||||
template<typename _Tp, int n>
|
||||
inline void v_store_aligned(_Tp* ptr, const v_reg<_Tp, n>& a)
|
||||
{
|
||||
for( int i = 0; i < n; i++ )
|
||||
ptr[i] = a.s[i];
|
||||
CV_Assert(isAligned<sizeof(v_reg<_Tp, n>)>(ptr));
|
||||
v_store(ptr, a);
|
||||
}
|
||||
|
||||
template<typename _Tp, int n>
|
||||
inline void v_store_aligned_nocache(_Tp* ptr, const v_reg<_Tp, n>& a)
|
||||
{
|
||||
for( int i = 0; i < n; i++ )
|
||||
ptr[i] = a.s[i];
|
||||
CV_Assert(isAligned<sizeof(v_reg<_Tp, n>)>(ptr));
|
||||
v_store(ptr, a);
|
||||
}
|
||||
|
||||
template<typename _Tp, int n>
|
||||
inline void v_store_aligned(_Tp* ptr, const v_reg<_Tp, n>& a, hal::StoreMode /*mode*/)
|
||||
{
|
||||
for( int i = 0; i < n; i++ )
|
||||
ptr[i] = a.s[i];
|
||||
CV_Assert(isAligned<sizeof(v_reg<_Tp, n>)>(ptr));
|
||||
v_store(ptr, a);
|
||||
}
|
||||
|
||||
/** @brief Combine vector from first elements of two vectors
|
||||
@ -1940,6 +2030,17 @@ template<int n> inline v_reg<float, n> v_cvt_f32(const v_reg<int, n>& a)
|
||||
return c;
|
||||
}
|
||||
|
||||
template<int n> inline v_reg<float, n*2> v_cvt_f32(const v_reg<double, n>& a)
|
||||
{
|
||||
v_reg<float, n*2> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
c.s[i] = (float)a.s[i];
|
||||
c.s[i+n] = 0;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
template<int n> inline v_reg<float, n*2> v_cvt_f32(const v_reg<double, n>& a, const v_reg<double, n>& b)
|
||||
{
|
||||
v_reg<float, n*2> c;
|
||||
@ -1954,36 +2055,76 @@ template<int n> inline v_reg<float, n*2> v_cvt_f32(const v_reg<double, n>& a, co
|
||||
/** @brief Convert to double
|
||||
|
||||
Supported input type is cv::v_int32x4. */
|
||||
template<int n> inline v_reg<double, n> v_cvt_f64(const v_reg<int, n*2>& a)
|
||||
CV_INLINE v_reg<double, 2> v_cvt_f64(const v_reg<int, 4>& a)
|
||||
{
|
||||
enum { n = 2 };
|
||||
v_reg<double, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
c.s[i] = (double)a.s[i];
|
||||
return c;
|
||||
}
|
||||
|
||||
/** @brief Convert to double high part of vector
|
||||
|
||||
Supported input type is cv::v_int32x4. */
|
||||
CV_INLINE v_reg<double, 2> v_cvt_f64_high(const v_reg<int, 4>& a)
|
||||
{
|
||||
enum { n = 2 };
|
||||
v_reg<double, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
c.s[i] = (double)a.s[i + 2];
|
||||
return c;
|
||||
}
|
||||
|
||||
/** @brief Convert to double
|
||||
|
||||
Supported input type is cv::v_float32x4. */
|
||||
template<int n> inline v_reg<double, n> v_cvt_f64(const v_reg<float, n*2>& a)
|
||||
CV_INLINE v_reg<double, 2> v_cvt_f64(const v_reg<float, 4>& a)
|
||||
{
|
||||
enum { n = 2 };
|
||||
v_reg<double, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
c.s[i] = (double)a.s[i];
|
||||
return c;
|
||||
}
|
||||
|
||||
/** @brief Convert to double high part of vector
|
||||
|
||||
Supported input type is cv::v_float32x4. */
|
||||
CV_INLINE v_reg<double, 2> v_cvt_f64_high(const v_reg<float, 4>& a)
|
||||
{
|
||||
enum { n = 2 };
|
||||
v_reg<double, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
c.s[i] = (double)a.s[i + 2];
|
||||
return c;
|
||||
}
|
||||
|
||||
/** @brief Convert to double
|
||||
|
||||
Supported input type is cv::v_int64x2. */
|
||||
template<int n> inline v_reg<double, n> v_cvt_f64(const v_reg<int64, n>& a)
|
||||
CV_INLINE v_reg<double, 2> v_cvt_f64(const v_reg<int64, 2>& a)
|
||||
{
|
||||
enum { n = 2 };
|
||||
v_reg<double, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
c.s[i] = (double)a.s[i];
|
||||
return c;
|
||||
}
|
||||
|
||||
/** @brief Convert to double high part of vector
|
||||
|
||||
Supported input type is cv::v_int64x2. */
|
||||
CV_INLINE v_reg<double, 2> v_cvt_f64_high(const v_reg<int64, 2>& a)
|
||||
{
|
||||
enum { n = 2 };
|
||||
v_reg<double, n> c;
|
||||
for( int i = 0; i < n; i++ )
|
||||
c.s[i] = (double)a.s[i];
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
template<typename _Tp> inline v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> v_lut(const _Tp* tab, const int* idx)
|
||||
{
|
||||
v_reg<_Tp, V_TypeTraits<_Tp>::nlanes128> c;
|
||||
@ -2038,6 +2179,28 @@ template<int n> inline v_reg<double, n> v_lut(const double* tab, const v_reg<int
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
inline v_int32x4 v_lut(const int* tab, const v_int32x4& idxvec)
|
||||
{
|
||||
return v_lut(tab, idxvec.s);
|
||||
}
|
||||
|
||||
inline v_uint32x4 v_lut(const unsigned* tab, const v_int32x4& idxvec)
|
||||
{
|
||||
return v_lut(tab, idxvec.s);
|
||||
}
|
||||
|
||||
inline v_float32x4 v_lut(const float* tab, const v_int32x4& idxvec)
|
||||
{
|
||||
return v_lut(tab, idxvec.s);
|
||||
}
|
||||
|
||||
inline v_float64x2 v_lut(const double* tab, const v_int32x4& idxvec)
|
||||
{
|
||||
return v_lut(tab, idxvec.s);
|
||||
}
|
||||
|
||||
|
||||
template<int n> inline void v_lut_deinterleave(const float* tab, const v_reg<int, n>& idx,
|
||||
v_reg<float, n>& x, v_reg<float, n>& y)
|
||||
{
|
||||
@ -2062,7 +2225,7 @@ template<int n> inline void v_lut_deinterleave(const double* tab, const v_reg<in
|
||||
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n> v_interleave_pairs(const v_reg<_Tp, n>& vec)
|
||||
{
|
||||
v_reg<float, n> c;
|
||||
v_reg<_Tp, n> c;
|
||||
for (int i = 0; i < n/4; i++)
|
||||
{
|
||||
c.s[4*i ] = vec.s[4*i ];
|
||||
@ -2075,7 +2238,7 @@ template<typename _Tp, int n> inline v_reg<_Tp, n> v_interleave_pairs(const v_re
|
||||
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n> v_interleave_quads(const v_reg<_Tp, n>& vec)
|
||||
{
|
||||
v_reg<float, n> c;
|
||||
v_reg<_Tp, n> c;
|
||||
for (int i = 0; i < n/8; i++)
|
||||
{
|
||||
c.s[8*i ] = vec.s[8*i ];
|
||||
@ -2092,7 +2255,7 @@ template<typename _Tp, int n> inline v_reg<_Tp, n> v_interleave_quads(const v_re
|
||||
|
||||
template<typename _Tp, int n> inline v_reg<_Tp, n> v_pack_triplets(const v_reg<_Tp, n>& vec)
|
||||
{
|
||||
v_reg<float, n> c;
|
||||
v_reg<_Tp, n> c;
|
||||
for (int i = 0; i < n/4; i++)
|
||||
{
|
||||
c.s[3*i ] = vec.s[4*i ];
|
||||
@ -2523,6 +2686,17 @@ inline v_float32x4 v_matmuladd(const v_float32x4& v, const v_float32x4& m0,
|
||||
v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + m3.s[3]);
|
||||
}
|
||||
|
||||
|
||||
inline v_float64x2 v_dotprod_expand(const v_int32x4& a, const v_int32x4& b)
|
||||
{ return v_fma(v_cvt_f64(a), v_cvt_f64(b), v_cvt_f64_high(a) * v_cvt_f64_high(b)); }
|
||||
inline v_float64x2 v_dotprod_expand(const v_int32x4& a, const v_int32x4& b, const v_float64x2& c)
|
||||
{ return v_fma(v_cvt_f64(a), v_cvt_f64(b), v_fma(v_cvt_f64_high(a), v_cvt_f64_high(b), c)); }
|
||||
|
||||
inline v_float64x2 v_dotprod_expand_fast(const v_int32x4& a, const v_int32x4& b)
|
||||
{ return v_dotprod_expand(a, b); }
|
||||
inline v_float64x2 v_dotprod_expand_fast(const v_int32x4& a, const v_int32x4& b, const v_float64x2& c)
|
||||
{ return v_dotprod_expand(a, b, c); }
|
||||
|
||||
////// FP16 support ///////
|
||||
|
||||
inline v_reg<float, V_TypeTraits<float>::nlanes128>
|
||||
@ -2537,7 +2711,7 @@ v_load_expand(const float16_t* ptr)
|
||||
}
|
||||
|
||||
inline void
|
||||
v_pack_store(float16_t* ptr, v_reg<float, V_TypeTraits<float>::nlanes128>& v)
|
||||
v_pack_store(float16_t* ptr, const v_reg<float, V_TypeTraits<float>::nlanes128>& v)
|
||||
{
|
||||
for( int i = 0; i < v.nlanes; i++ )
|
||||
{
|
||||
|
@ -1492,7 +1492,8 @@ struct InRange_SIMD<float>
|
||||
v_float32 low2 = vx_load(src2 + x + v_float32::nlanes);
|
||||
v_float32 high2 = vx_load(src3 + x + v_float32::nlanes);
|
||||
|
||||
v_pack_store(dst + x, v_pack(v_reinterpret_as_u32((values1 >= low1) & (high1 >= values1)), v_reinterpret_as_u32((values2 >= low2) & (high2 >= values2))));
|
||||
v_pack_store(dst + x, v_pack(v_reinterpret_as_u32(values1 >= low1) & v_reinterpret_as_u32(high1 >= values1),
|
||||
v_reinterpret_as_u32(values2 >= low2) & v_reinterpret_as_u32(high2 >= values2)));
|
||||
}
|
||||
vx_cleanup();
|
||||
return x;
|
||||
|
@ -1576,7 +1576,7 @@ struct op_div_scale
|
||||
}
|
||||
static inline Tvec pre(const Tvec& denom, const Tvec& res)
|
||||
{
|
||||
const Tvec v_zero = Tvec();
|
||||
const Tvec v_zero = vx_setall<typename Tvec::lane_type>(0);
|
||||
return v_select(denom == v_zero, v_zero, res);
|
||||
}
|
||||
static inline T1 r(T1 a, T1 denom, const T2* scalar)
|
||||
@ -1826,7 +1826,7 @@ struct op_recip
|
||||
}
|
||||
static inline Tvec pre(const Tvec& denom, const Tvec& res)
|
||||
{
|
||||
const Tvec v_zero = Tvec();
|
||||
const Tvec v_zero = vx_setall<typename Tvec::lane_type>(0);
|
||||
return v_select(denom == v_zero, v_zero, res);
|
||||
}
|
||||
static inline T1 r(T1 denom, const T2* scalar)
|
||||
|
@ -916,8 +916,9 @@ double cv::invert( InputArray _src, OutputArray _dst, int method )
|
||||
result = true;
|
||||
d = 1./d;
|
||||
#if CV_SIMD128
|
||||
static const float CV_DECL_ALIGNED(16) inv[4] = { 0.f,-0.f,-0.f,0.f };
|
||||
v_float32x4 s0 = (v_load_halves((const float*)srcdata, (const float*)(srcdata + srcstep)) * v_setall_f32((float)d)) ^ v_load((const float *)inv);//0123//3120
|
||||
const float d_32f = (float)d;
|
||||
const v_float32x4 d_vec(d_32f, -d_32f, -d_32f, d_32f);
|
||||
v_float32x4 s0 = v_load_halves((const float*)srcdata, (const float*)(srcdata + srcstep)) * d_vec;//0123//3120
|
||||
s0 = v_extract<3>(s0, v_combine_low(v_rotate_right<1>(s0), s0));
|
||||
v_store_low((float*)dstdata, s0);
|
||||
v_store_high((float*)(dstdata + dststep), s0);
|
||||
@ -946,7 +947,7 @@ double cv::invert( InputArray _src, OutputArray _dst, int method )
|
||||
v_float64x2 s0 = v_load((const double*)srcdata) * det;
|
||||
v_float64x2 s1 = v_load((const double*)(srcdata+srcstep)) * det;
|
||||
v_float64x2 sm = v_extract<1>(s1, s0);//30
|
||||
v_float64x2 ss = v_extract<1>(s0, s1) ^ v_setall_f64(-0.);//12
|
||||
v_float64x2 ss = v_setall<double>(0) - v_extract<1>(s0, s1);//12
|
||||
v_store((double*)dstdata, v_combine_low(sm, ss));//31
|
||||
v_store((double*)(dstdata + dststep), v_combine_high(ss, sm));//20
|
||||
#else
|
||||
|
@ -725,7 +725,7 @@ void log32f( const float *_x, float *y, int n )
|
||||
|
||||
yf0 = v_fma(v_cvt_f32(yi0), vln2, yf0);
|
||||
|
||||
v_float32 delta = v_reinterpret_as_f32(h0 == vx_setall_s32(510)) & vshift;
|
||||
v_float32 delta = v_select(v_reinterpret_as_f32(h0 == vx_setall_s32(510)), vshift, vx_setall<float>(0));
|
||||
xf0 = v_fma((v_reinterpret_as_f32(xi0) - v1), xf0, delta);
|
||||
|
||||
v_float32 zf0 = v_fma(xf0, vA0, vA1);
|
||||
|
@ -8,6 +8,7 @@
|
||||
// OpenVX related functions
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/utils/tls.hpp"
|
||||
#include "opencv2/core/ovx.hpp"
|
||||
#include "opencv2/core/openvx/ovx_defs.hpp"
|
||||
|
||||
|
@ -3,22 +3,14 @@
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
// see "opencv2/core/hal/intrin.hpp"
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_EMULATOR_CPP
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_EMULATOR_CPP {
|
||||
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
|
||||
|
||||
// see "opencv2/core/private/cv_cpu_include_simd_declarations.hpp"
|
||||
//#define CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
#define CV_FORCE_SIMD128_CPP
|
||||
#undef CV_FORCE_SIMD128_CPP
|
||||
#define CV_FORCE_SIMD128_CPP 1
|
||||
#undef CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
#undef CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
#define CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN namespace opt_EMULATOR_CPP {
|
||||
#define CV_CPU_OPTIMIZATION_NAMESPACE_END }
|
||||
#include "test_intrin128.simd.hpp"
|
||||
#undef CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
#undef CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
#undef CV_CPU_DISPATCH_MODE
|
||||
#undef CV_FORCE_SIMD128_CPP
|
||||
|
||||
// tests implementation is in test_intrin_utils.hpp
|
||||
|
@ -222,7 +222,10 @@ template <typename R> std::ostream & operator<<(std::ostream & out, const Data<R
|
||||
return out;
|
||||
}
|
||||
|
||||
template<typename T> static inline void EXPECT_COMPARE_EQ_(const T a, const T b);
|
||||
template<typename T> static inline void EXPECT_COMPARE_EQ_(const T a, const T b)
|
||||
{
|
||||
EXPECT_EQ(a, b);
|
||||
}
|
||||
template<> inline void EXPECT_COMPARE_EQ_<float>(const float a, const float b)
|
||||
{
|
||||
EXPECT_FLOAT_EQ( a, b );
|
||||
@ -742,11 +745,11 @@ template<typename R> struct TheTest
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((double)dataA[i*2] * (double)dataA[i*2] +
|
||||
EXPECT_COMPARE_EQ((double)dataA[i*2] * (double)dataA[i*2] +
|
||||
(double)dataA[i*2 + 1] * (double)dataA[i*2 + 1], resA[i]);
|
||||
EXPECT_EQ((double)dataB[i*2] * (double)dataB[i*2] +
|
||||
EXPECT_COMPARE_EQ((double)dataB[i*2] * (double)dataB[i*2] +
|
||||
(double)dataB[i*2 + 1] * (double)dataB[i*2 + 1], resB[i]);
|
||||
EXPECT_EQ((double)dataA[i*2] * (double)dataB[i*2] +
|
||||
EXPECT_COMPARE_EQ((double)dataA[i*2] * (double)dataB[i*2] +
|
||||
(double)dataA[i*2 + 1] * (double)dataB[i*2 + 1] + dataC[i], resC[i]);
|
||||
}
|
||||
#endif
|
||||
|
@ -950,6 +950,7 @@ void sortByExecutionOrder(tensorflow::GraphDef& net)
|
||||
for (int i = 0; i < net.node_size(); ++i)
|
||||
{
|
||||
const tensorflow::NodeDef& node = net.node(i);
|
||||
int numInputsInGraph = 0;
|
||||
for (int j = 0; j < node.input_size(); ++j)
|
||||
{
|
||||
std::string inpName = node.input(j);
|
||||
@ -957,22 +958,25 @@ void sortByExecutionOrder(tensorflow::GraphDef& net)
|
||||
inpName = inpName.substr(inpName.find('^') + 1);
|
||||
|
||||
nodesMapIt = nodesMap.find(inpName);
|
||||
CV_Assert(nodesMapIt != nodesMap.end());
|
||||
if (nodesMapIt != nodesMap.end())
|
||||
{
|
||||
edges[nodesMapIt->second].push_back(i);
|
||||
numInputsInGraph += 1;
|
||||
}
|
||||
if (node.input_size() == 0)
|
||||
}
|
||||
if (numInputsInGraph == 0)
|
||||
nodesToAdd.push_back(i);
|
||||
else
|
||||
{
|
||||
if (node.op() == "Merge" || node.op() == "RefMerge")
|
||||
{
|
||||
int numControlEdges = 0;
|
||||
for (int j = 0; j < node.input_size(); ++j)
|
||||
for (int j = 0; j < numInputsInGraph; ++j)
|
||||
numControlEdges += node.input(j)[0] == '^';
|
||||
numRefsToAdd[i] = numControlEdges + 1;
|
||||
}
|
||||
else
|
||||
numRefsToAdd[i] = node.input_size();
|
||||
numRefsToAdd[i] = numInputsInGraph;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -715,6 +715,10 @@ void TFImporter::populateNet(Net dstNet)
|
||||
simplifySubgraphs(netBin);
|
||||
sortByExecutionOrder(netBin);
|
||||
}
|
||||
else
|
||||
{
|
||||
sortByExecutionOrder(netTxt);
|
||||
}
|
||||
|
||||
std::set<String> layers_to_ignore;
|
||||
|
||||
|
@ -303,7 +303,8 @@ int cornerScore<8>(const uchar* ptr, const int pixel[], int threshold)
|
||||
for (k = 0; k < N; k++)
|
||||
d[k] = (short)(v - ptr[pixel[k]]);
|
||||
|
||||
#if CV_SIMD128
|
||||
#if CV_SIMD128 \
|
||||
&& (!defined(CV_SIMD128_CPP) || (!defined(__GNUC__) || __GNUC__ != 5)) // "movdqa" bug on "v_load(d + 1)" line (Ubuntu 16.04 + GCC 5.4)
|
||||
if (true)
|
||||
{
|
||||
v_int16x8 v0 = v_load(d + 1);
|
||||
|
@ -56,65 +56,65 @@ int validateToInt(size_t sz)
|
||||
#define cG (int)(0.587*(1 << SCALE) + 0.5)
|
||||
#define cB ((1 << SCALE) - cR - cG)
|
||||
|
||||
void icvCvt_BGR2Gray_8u_C3C1R( const uchar* rgb, int rgb_step,
|
||||
void icvCvt_BGR2Gray_8u_C3C1R( const uchar* bgr, int bgr_step,
|
||||
uchar* gray, int gray_step,
|
||||
Size size, int _swap_rb )
|
||||
{
|
||||
int i;
|
||||
for( ; size.height--; gray += gray_step )
|
||||
{
|
||||
short cRGB0 = cR;
|
||||
short cRGB2 = cB;
|
||||
if (_swap_rb) std::swap(cRGB0, cRGB2);
|
||||
for( i = 0; i < size.width; i++, rgb += 3 )
|
||||
short cBGR0 = cB;
|
||||
short cBGR2 = cR;
|
||||
if (_swap_rb) std::swap(cBGR0, cBGR2);
|
||||
for( i = 0; i < size.width; i++, bgr += 3 )
|
||||
{
|
||||
int t = descale( rgb[0]*cRGB0 + rgb[1]*cG + rgb[2]*cRGB2, SCALE );
|
||||
int t = descale( bgr[0]*cBGR0 + bgr[1]*cG + bgr[2]*cBGR2, SCALE );
|
||||
gray[i] = (uchar)t;
|
||||
}
|
||||
|
||||
rgb += rgb_step - size.width*3;
|
||||
bgr += bgr_step - size.width*3;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void icvCvt_BGRA2Gray_16u_CnC1R( const ushort* rgb, int rgb_step,
|
||||
void icvCvt_BGRA2Gray_16u_CnC1R( const ushort* bgr, int bgr_step,
|
||||
ushort* gray, int gray_step,
|
||||
Size size, int ncn, int _swap_rb )
|
||||
{
|
||||
int i;
|
||||
for( ; size.height--; gray += gray_step )
|
||||
{
|
||||
short cRGB0 = cR;
|
||||
short cRGB2 = cB;
|
||||
if (_swap_rb) std::swap(cRGB0, cRGB2);
|
||||
for( i = 0; i < size.width; i++, rgb += ncn )
|
||||
short cBGR0 = cB;
|
||||
short cBGR2 = cR;
|
||||
if (_swap_rb) std::swap(cBGR0, cBGR2);
|
||||
for( i = 0; i < size.width; i++, bgr += ncn )
|
||||
{
|
||||
int t = descale( rgb[0]*cRGB0 + rgb[1]*cG + rgb[2]*cRGB2, SCALE );
|
||||
int t = descale( bgr[0]*cBGR0 + bgr[1]*cG + bgr[2]*cBGR2, SCALE );
|
||||
gray[i] = (ushort)t;
|
||||
}
|
||||
|
||||
rgb += rgb_step - size.width*ncn;
|
||||
bgr += bgr_step - size.width*ncn;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void icvCvt_BGRA2Gray_8u_C4C1R( const uchar* rgba, int rgba_step,
|
||||
void icvCvt_BGRA2Gray_8u_C4C1R( const uchar* bgra, int rgba_step,
|
||||
uchar* gray, int gray_step,
|
||||
Size size, int _swap_rb )
|
||||
{
|
||||
int i;
|
||||
for( ; size.height--; gray += gray_step )
|
||||
{
|
||||
short cRGB0 = cR;
|
||||
short cRGB2 = cB;
|
||||
if (_swap_rb) std::swap(cRGB0, cRGB2);
|
||||
for( i = 0; i < size.width; i++, rgba += 4 )
|
||||
short cBGR0 = cB;
|
||||
short cBGR2 = cR;
|
||||
if (_swap_rb) std::swap(cBGR0, cBGR2);
|
||||
for( i = 0; i < size.width; i++, bgra += 4 )
|
||||
{
|
||||
int t = descale( rgba[0]*cRGB0 + rgba[1]*cG + rgba[2]*cRGB2, SCALE );
|
||||
int t = descale( bgra[0]*cBGR0 + bgra[1]*cG + bgra[2]*cBGR2, SCALE );
|
||||
gray[i] = (uchar)t;
|
||||
}
|
||||
|
||||
rgba += rgba_step - size.width*4;
|
||||
bgra += rgba_step - size.width*4;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -42,6 +42,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#undef CV_FORCE_SIMD128_CPP // expected AVX implementation only
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
#include "corner.hpp"
|
||||
|
||||
|
@ -1109,23 +1109,29 @@ resizeNN( const Mat& src, Mat& dst, double fx, double fy )
|
||||
|
||||
struct VResizeNoVec
|
||||
{
|
||||
int operator()(const uchar**, uchar*, const uchar*, int ) const { return 0; }
|
||||
template<typename WT, typename T, typename BT>
|
||||
int operator()(const WT**, T*, const BT*, int ) const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
struct HResizeNoVec
|
||||
{
|
||||
int operator()(const uchar**, uchar**, int, const int*,
|
||||
const uchar*, int, int, int, int, int) const { return 0; }
|
||||
template<typename T, typename WT, typename AT> inline
|
||||
int operator()(const T**, WT**, int, const int*,
|
||||
const AT*, int, int, int, int, int) const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
#if CV_SIMD
|
||||
|
||||
struct VResizeLinearVec_32s8u
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* dst, const uchar* _beta, int width ) const
|
||||
int operator()(const int** src, uchar* dst, const short* beta, int width) const
|
||||
{
|
||||
const int** src = (const int**)_src;
|
||||
const short* beta = (const short*)_beta;
|
||||
const int *S0 = src[0], *S1 = src[1];
|
||||
int x = 0;
|
||||
v_int16 b0 = vx_setall_s16(beta[0]), b1 = vx_setall_s16(beta[1]);
|
||||
@ -1153,12 +1159,9 @@ struct VResizeLinearVec_32s8u
|
||||
|
||||
struct VResizeLinearVec_32f16u
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, ushort* dst, const float* beta, int width) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1];
|
||||
ushort* dst = (ushort*)_dst;
|
||||
int x = 0;
|
||||
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]);
|
||||
@ -1183,12 +1186,9 @@ struct VResizeLinearVec_32f16u
|
||||
|
||||
struct VResizeLinearVec_32f16s
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, short* dst, const float* beta, int width) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1];
|
||||
short* dst = (short*)_dst;
|
||||
int x = 0;
|
||||
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]);
|
||||
@ -1213,12 +1213,9 @@ struct VResizeLinearVec_32f16s
|
||||
|
||||
struct VResizeLinearVec_32f
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, float* dst, const float* beta, int width) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1];
|
||||
float* dst = (float*)_dst;
|
||||
int x = 0;
|
||||
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]);
|
||||
@ -1237,10 +1234,8 @@ struct VResizeLinearVec_32f
|
||||
|
||||
struct VResizeCubicVec_32s8u
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* dst, const uchar* _beta, int width ) const
|
||||
int operator()(const int** src, uchar* dst, const short* beta, int width) const
|
||||
{
|
||||
const int** src = (const int**)_src;
|
||||
const short* beta = (const short*)_beta;
|
||||
const int *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
|
||||
int x = 0;
|
||||
float scale = 1.f/(INTER_RESIZE_COEF_SCALE*INTER_RESIZE_COEF_SCALE);
|
||||
@ -1274,12 +1269,9 @@ struct VResizeCubicVec_32s8u
|
||||
|
||||
struct VResizeCubicVec_32f16u
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, ushort* dst, const float* beta, int width) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
|
||||
ushort* dst = (ushort*)_dst;
|
||||
int x = 0;
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]),
|
||||
b2 = vx_setall_f32(beta[2]), b3 = vx_setall_f32(beta[3]);
|
||||
@ -1300,12 +1292,9 @@ struct VResizeCubicVec_32f16u
|
||||
|
||||
struct VResizeCubicVec_32f16s
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, short* dst, const float* beta, int width) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
|
||||
short* dst = (short*)_dst;
|
||||
int x = 0;
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]),
|
||||
b2 = vx_setall_f32(beta[2]), b3 = vx_setall_f32(beta[3]);
|
||||
@ -1326,12 +1315,9 @@ struct VResizeCubicVec_32f16s
|
||||
|
||||
struct VResizeCubicVec_32f
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, float* dst, const float* beta, int width) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
|
||||
float* dst = (float*)_dst;
|
||||
int x = 0;
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]),
|
||||
b2 = vx_setall_f32(beta[2]), b3 = vx_setall_f32(beta[3]);
|
||||
@ -1351,10 +1337,12 @@ struct VResizeCubicVec_32f
|
||||
|
||||
struct VResizeLanczos4Vec_32f16u
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, ushort* dst, const float* beta, int width) const
|
||||
{
|
||||
if (CV_CPU_HAS_SUPPORT_SSE4_1) return opt_SSE4_1::VResizeLanczos4Vec_32f16u_SSE41(_src, _dst, _beta, width);
|
||||
else return 0;
|
||||
if (CV_CPU_HAS_SUPPORT_SSE4_1)
|
||||
return opt_SSE4_1::VResizeLanczos4Vec_32f16u_SSE41(src, dst, beta, width);
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
@ -1362,13 +1350,10 @@ struct VResizeLanczos4Vec_32f16u
|
||||
|
||||
struct VResizeLanczos4Vec_32f16u
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, ushort* dst, const float* beta, int width ) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
|
||||
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
|
||||
ushort * dst = (ushort*)_dst;
|
||||
int x = 0;
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]),
|
||||
b2 = vx_setall_f32(beta[2]), b3 = vx_setall_f32(beta[3]),
|
||||
@ -1401,13 +1386,10 @@ struct VResizeLanczos4Vec_32f16u
|
||||
|
||||
struct VResizeLanczos4Vec_32f16s
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, short* dst, const float* beta, int width ) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
|
||||
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
|
||||
short * dst = (short*)_dst;
|
||||
int x = 0;
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]),
|
||||
b2 = vx_setall_f32(beta[2]), b3 = vx_setall_f32(beta[3]),
|
||||
@ -1438,13 +1420,10 @@ struct VResizeLanczos4Vec_32f16s
|
||||
|
||||
struct VResizeLanczos4Vec_32f
|
||||
{
|
||||
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
|
||||
int operator()(const float** src, float* dst, const float* beta, int width ) const
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
|
||||
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
|
||||
float* dst = (float*)_dst;
|
||||
int x = 0;
|
||||
|
||||
v_float32 b0 = vx_setall_f32(beta[0]), b1 = vx_setall_f32(beta[1]),
|
||||
@ -1489,12 +1468,9 @@ typedef VResizeNoVec VResizeLanczos4Vec_32f;
|
||||
template<typename ST, typename DT, typename AT, typename DVT>
|
||||
struct HResizeLinearVec_X4
|
||||
{
|
||||
int operator()(const uchar** _src, uchar** _dst, int count, const int* xofs,
|
||||
const uchar* _alpha, int, int, int cn, int, int xmax) const
|
||||
int operator()(const ST** src, DT** dst, int count, const int* xofs,
|
||||
const AT* alpha, int, int, int cn, int, int xmax) const
|
||||
{
|
||||
const ST **src = (const ST**)_src;
|
||||
const AT *alpha = (const AT*)_alpha;
|
||||
DT **dst = (DT**)_dst;
|
||||
const int nlanes = 4;
|
||||
const int len0 = xmax & -nlanes;
|
||||
int dx = 0, k = 0;
|
||||
@ -1549,11 +1525,9 @@ struct HResizeLinearVec_X4
|
||||
|
||||
struct HResizeLinearVecU8_X4
|
||||
{
|
||||
int operator()(const uchar** src, uchar** _dst, int count, const int* xofs,
|
||||
const uchar* _alpha, int smax, int, int cn, int, int xmax) const
|
||||
int operator()(const uchar** src, int** dst, int count, const int* xofs,
|
||||
const short* alpha/*[xmax]*/, int smax, int /*dmax*/, int cn, int /*xmin*/, int xmax) const
|
||||
{
|
||||
const short *alpha = (const short*)_alpha;
|
||||
int **dst = (int**)_dst;
|
||||
int dx = 0, k = 0;
|
||||
|
||||
if(cn == 1)
|
||||
@ -1827,8 +1801,8 @@ struct HResizeLinear
|
||||
int dx, k;
|
||||
VecOp vecOp;
|
||||
|
||||
int dx0 = vecOp((const uchar**)src, (uchar**)dst, count,
|
||||
xofs, (const uchar*)alpha, swidth, dwidth, cn, xmin, xmax );
|
||||
int dx0 = vecOp(src, dst, count,
|
||||
xofs, alpha, swidth, dwidth, cn, xmin, xmax );
|
||||
|
||||
for( k = 0; k <= count - 2; k+=2 )
|
||||
{
|
||||
@ -1881,7 +1855,7 @@ struct VResizeLinear
|
||||
CastOp castOp;
|
||||
VecOp vecOp;
|
||||
|
||||
int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
|
||||
int x = vecOp(src, dst, beta, width);
|
||||
#if CV_ENABLE_UNROLLED
|
||||
for( ; x <= width - 4; x += 4 )
|
||||
{
|
||||
@ -1912,7 +1886,7 @@ struct VResizeLinear<uchar, int, short, FixedPtCast<int, uchar, INTER_RESIZE_COE
|
||||
const buf_type *S0 = src[0], *S1 = src[1];
|
||||
VResizeLinearVec_32s8u vecOp;
|
||||
|
||||
int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
|
||||
int x = vecOp(src, dst, beta, width);
|
||||
#if CV_ENABLE_UNROLLED
|
||||
for( ; x <= width - 4; x += 4 )
|
||||
{
|
||||
@ -1994,7 +1968,7 @@ struct VResizeCubic
|
||||
CastOp castOp;
|
||||
VecOp vecOp;
|
||||
|
||||
int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
|
||||
int x = vecOp(src, dst, beta, width);
|
||||
for( ; x < width; x++ )
|
||||
dst[x] = castOp(S0[x]*b0 + S1[x]*b1 + S2[x]*b2 + S3[x]*b3);
|
||||
}
|
||||
@ -2066,7 +2040,7 @@ struct VResizeLanczos4
|
||||
{
|
||||
CastOp castOp;
|
||||
VecOp vecOp;
|
||||
int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
|
||||
int x = vecOp(src, dst, beta, width);
|
||||
#if CV_ENABLE_UNROLLED
|
||||
for( ; x <= width - 4; x += 4 )
|
||||
{
|
||||
|
@ -67,7 +67,7 @@ namespace opt_SSE4_1
|
||||
void resizeNN2_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
|
||||
void resizeNN4_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
|
||||
|
||||
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width);
|
||||
int VResizeLanczos4Vec_32f16u_SSE41(const float** src, ushort* dst, const float* beta, int width);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
@ -186,13 +186,10 @@ void resizeNN4_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs,
|
||||
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
|
||||
}
|
||||
|
||||
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width)
|
||||
int VResizeLanczos4Vec_32f16u_SSE41(const float** src, ushort* dst, const float* beta, int width)
|
||||
{
|
||||
const float** src = (const float**)_src;
|
||||
const float* beta = (const float*)_beta;
|
||||
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
|
||||
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
|
||||
short * dst = (short*)_dst;
|
||||
int x = 0;
|
||||
__m128 v_b0 = _mm_set1_ps(beta[0]), v_b1 = _mm_set1_ps(beta[1]),
|
||||
v_b2 = _mm_set1_ps(beta[2]), v_b3 = _mm_set1_ps(beta[3]),
|
||||
|
@ -4,7 +4,7 @@
|
||||
QR code detect and decode pipeline.
|
||||
===============================================================================
|
||||
'''
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
@ -12,7 +12,7 @@ from tests_common import NewOpenCVTests
|
||||
|
||||
class qrcode_detector_test(NewOpenCVTests):
|
||||
def test_detect_and_decode(self):
|
||||
img = cv.imread(self.extraTestDataPath + '/cv/qrcode/link_ocv.jpg')
|
||||
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
|
||||
detector = cv.QRCodeDetector()
|
||||
retval, points, straight_qrcode = detector.detectAndDecode(img)
|
||||
self.assertEqual(retval, "https://opencv.org/");
|
||||
|
@ -25,6 +25,7 @@ public:
|
||||
{}
|
||||
explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") // explicit to avoid implicit conversion
|
||||
{}
|
||||
//! [inside]
|
||||
void write(FileStorage& fs) const //Write serialization for this class
|
||||
{
|
||||
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
|
||||
@ -35,6 +36,7 @@ public:
|
||||
X = (double)node["X"];
|
||||
id = (string)node["id"];
|
||||
}
|
||||
//! [inside]
|
||||
public: // Data Members
|
||||
int A;
|
||||
double X;
|
||||
@ -42,6 +44,7 @@ public: // Data Members
|
||||
};
|
||||
|
||||
//These write and read functions must be defined for the serialization in FileStorage to work
|
||||
//! [outside]
|
||||
static void write(FileStorage& fs, const std::string&, const MyData& x)
|
||||
{
|
||||
x.write(fs);
|
||||
@ -52,6 +55,7 @@ static void read(const FileNode& node, MyData& x, const MyData& default_value =
|
||||
else
|
||||
x.read(node);
|
||||
}
|
||||
//! [outside]
|
||||
|
||||
// This function will print our custom class to the console
|
||||
static ostream& operator<<(ostream& out, const MyData& m)
|
||||
@ -72,27 +76,48 @@ int main(int ac, char** av)
|
||||
|
||||
string filename = av[1];
|
||||
{ //write
|
||||
//! [iomati]
|
||||
Mat R = Mat_<uchar>::eye(3, 3),
|
||||
T = Mat_<double>::zeros(3, 1);
|
||||
//! [iomati]
|
||||
//! [customIOi]
|
||||
MyData m(1);
|
||||
//! [customIOi]
|
||||
|
||||
//! [open]
|
||||
FileStorage fs(filename, FileStorage::WRITE);
|
||||
// or:
|
||||
// FileStorage fs;
|
||||
// fs.open(filename, FileStorage::WRITE);
|
||||
//! [open]
|
||||
|
||||
//! [writeNum]
|
||||
fs << "iterationNr" << 100;
|
||||
//! [writeNum]
|
||||
//! [writeStr]
|
||||
fs << "strings" << "["; // text - string sequence
|
||||
fs << "image1.jpg" << "Awesomeness" << "../data/baboon.jpg";
|
||||
fs << "]"; // close sequence
|
||||
//! [writeStr]
|
||||
|
||||
//! [writeMap]
|
||||
fs << "Mapping"; // text - mapping
|
||||
fs << "{" << "One" << 1;
|
||||
fs << "Two" << 2 << "}";
|
||||
//! [writeMap]
|
||||
|
||||
//! [iomatw]
|
||||
fs << "R" << R; // cv::Mat
|
||||
fs << "T" << T;
|
||||
//! [iomatw]
|
||||
|
||||
//! [customIOw]
|
||||
fs << "MyData" << m; // your own data structures
|
||||
//! [customIOw]
|
||||
|
||||
//! [close]
|
||||
fs.release(); // explicit close
|
||||
//! [close]
|
||||
cout << "Write Done." << endl;
|
||||
}
|
||||
|
||||
@ -101,9 +126,11 @@ int main(int ac, char** av)
|
||||
FileStorage fs;
|
||||
fs.open(filename, FileStorage::READ);
|
||||
|
||||
//! [readNum]
|
||||
int itNr;
|
||||
//fs["iterationNr"] >> itNr;
|
||||
itNr = (int) fs["iterationNr"];
|
||||
//! [readNum]
|
||||
cout << itNr;
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
@ -112,6 +139,7 @@ int main(int ac, char** av)
|
||||
return 1;
|
||||
}
|
||||
|
||||
//! [readStr]
|
||||
FileNode n = fs["strings"]; // Read string sequence - Get node
|
||||
if (n.type() != FileNode::SEQ)
|
||||
{
|
||||
@ -122,19 +150,26 @@ int main(int ac, char** av)
|
||||
FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
|
||||
for (; it != it_end; ++it)
|
||||
cout << (string)*it << endl;
|
||||
//! [readStr]
|
||||
|
||||
|
||||
//! [readMap]
|
||||
n = fs["Mapping"]; // Read mappings from a sequence
|
||||
cout << "Two " << (int)(n["Two"]) << "; ";
|
||||
cout << "One " << (int)(n["One"]) << endl << endl;
|
||||
//! [readMap]
|
||||
|
||||
|
||||
MyData m;
|
||||
Mat R, T;
|
||||
|
||||
//! [iomat]
|
||||
fs["R"] >> R; // Read cv::Mat
|
||||
fs["T"] >> T;
|
||||
//! [iomat]
|
||||
//! [customIO]
|
||||
fs["MyData"] >> m; // Read your own structure_
|
||||
//! [customIO]
|
||||
|
||||
cout << endl
|
||||
<< "R = " << R << endl;
|
||||
@ -142,9 +177,11 @@ int main(int ac, char** av)
|
||||
cout << "MyData = " << endl << m << endl << endl;
|
||||
|
||||
//Show default behavior for non existing nodes
|
||||
//! [nonexist]
|
||||
cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
|
||||
fs["NonExisting"] >> m;
|
||||
cout << endl << "NonExisting = " << endl << m << endl;
|
||||
//! [nonexist]
|
||||
}
|
||||
|
||||
cout << endl
|
||||
|
75
samples/java/tutorial_code/video/meanshift/CamshiftDemo.java
Normal file
75
samples/java/tutorial_code/video/meanshift/CamshiftDemo.java
Normal file
@ -0,0 +1,75 @@
|
||||
import java.util.Arrays;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.video.Video;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
|
||||
|
||||
class Camshift {
|
||||
public void run(String[] args) {
|
||||
String filename = args[0];
|
||||
VideoCapture capture = new VideoCapture(filename);
|
||||
if (!capture.isOpened()) {
|
||||
System.out.println("Unable to open file!");
|
||||
System.exit(-1);
|
||||
}
|
||||
|
||||
Mat frame = new Mat(), hsv_roi = new Mat(), mask = new Mat(), roi;
|
||||
|
||||
// take the first frame of the video
|
||||
capture.read(frame);
|
||||
|
||||
//setup initial location of window
|
||||
Rect track_window = new Rect(300, 200, 100, 50);
|
||||
|
||||
// set up the ROI for tracking
|
||||
roi = new Mat(frame, track_window);
|
||||
Imgproc.cvtColor(roi, hsv_roi, Imgproc.COLOR_BGR2HSV);
|
||||
Core.inRange(hsv_roi, new Scalar(0, 60, 32), new Scalar(180, 255, 255), mask);
|
||||
|
||||
MatOfFloat range = new MatOfFloat(0, 256);
|
||||
Mat roi_hist = new Mat();
|
||||
MatOfInt histSize = new MatOfInt(180);
|
||||
MatOfInt channels = new MatOfInt(0);
|
||||
Imgproc.calcHist(Arrays.asList(hsv_roi), channels, mask, roi_hist, histSize, range);
|
||||
Core.normalize(roi_hist, roi_hist, 0, 255, Core.NORM_MINMAX);
|
||||
|
||||
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
TermCriteria term_crit = new TermCriteria(TermCriteria.EPS | TermCriteria.COUNT, 10, 1);
|
||||
|
||||
while (true) {
|
||||
Mat hsv = new Mat() , dst = new Mat();
|
||||
capture.read(frame);
|
||||
if (frame.empty()) {
|
||||
break;
|
||||
}
|
||||
Imgproc.cvtColor(frame, hsv, Imgproc.COLOR_BGR2HSV);
|
||||
Imgproc.calcBackProject(Arrays.asList(hsv), channels, roi_hist, dst, range, 1);
|
||||
|
||||
// apply camshift to get the new location
|
||||
RotatedRect rot_rect = Video.CamShift(dst, track_window, term_crit);
|
||||
|
||||
// Draw it on image
|
||||
Point[] points = new Point[4];
|
||||
rot_rect.points(points);
|
||||
for (int i = 0; i < 4 ;i++) {
|
||||
Imgproc.line(frame, points[i], points[(i+1)%4], new Scalar(255, 0, 0),2);
|
||||
}
|
||||
|
||||
HighGui.imshow("img2", frame);
|
||||
int keyboard = HighGui.waitKey(30);
|
||||
if (keyboard == 'q'|| keyboard == 27) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class CamshiftDemo {
|
||||
public static void main(String[] args) {
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new Camshift().run(args);
|
||||
}
|
||||
}
|
@ -0,0 +1,70 @@
|
||||
import java.util.Arrays;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.video.Video;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
|
||||
|
||||
class Meanshift {
|
||||
public void run(String[] args) {
|
||||
String filename = args[0];
|
||||
VideoCapture capture = new VideoCapture(filename);
|
||||
if (!capture.isOpened()) {
|
||||
System.out.println("Unable to open file!");
|
||||
System.exit(-1);
|
||||
}
|
||||
Mat frame = new Mat(), hsv_roi = new Mat(), mask = new Mat(), roi;
|
||||
|
||||
// take the first frame of the video
|
||||
capture.read(frame);
|
||||
|
||||
//setup initial location of window
|
||||
Rect track_window = new Rect(300, 200, 100, 50);
|
||||
|
||||
// setup initial location of window
|
||||
roi = new Mat(frame, track_window);
|
||||
Imgproc.cvtColor(roi, hsv_roi, Imgproc.COLOR_BGR2HSV);
|
||||
Core.inRange(hsv_roi, new Scalar(0, 60, 32), new Scalar(180, 255, 255), mask);
|
||||
|
||||
MatOfFloat range = new MatOfFloat(0, 256);
|
||||
Mat roi_hist = new Mat();
|
||||
MatOfInt histSize = new MatOfInt(180);
|
||||
MatOfInt channels = new MatOfInt(0);
|
||||
Imgproc.calcHist(Arrays.asList(hsv_roi), channels, mask, roi_hist, histSize, range);
|
||||
Core.normalize(roi_hist, roi_hist, 0, 255, Core.NORM_MINMAX);
|
||||
|
||||
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
TermCriteria term_crit = new TermCriteria(TermCriteria.EPS | TermCriteria.COUNT, 10, 1);
|
||||
|
||||
while (true) {
|
||||
Mat hsv = new Mat() , dst = new Mat();
|
||||
capture.read(frame);
|
||||
if (frame.empty()) {
|
||||
break;
|
||||
}
|
||||
Imgproc.cvtColor(frame, hsv, Imgproc.COLOR_BGR2HSV);
|
||||
Imgproc.calcBackProject(Arrays.asList(hsv), channels, roi_hist, dst, range, 1);
|
||||
|
||||
// apply meanshift to get the new location
|
||||
Video.meanShift(dst, track_window, term_crit);
|
||||
|
||||
// Draw it on image
|
||||
Imgproc.rectangle(frame, track_window, new Scalar(255, 0, 0), 2);
|
||||
HighGui.imshow("img2", frame);
|
||||
|
||||
int keyboard = HighGui.waitKey(30);
|
||||
if (keyboard == 'q' || keyboard == 27) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class MeanshiftDemo {
|
||||
public static void main(String[] args) {
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new Meanshift().run(args);
|
||||
}
|
||||
}
|
@ -0,0 +1,96 @@
|
||||
import java.util.ArrayList;
|
||||
import java.util.Random;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.video.Video;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
|
||||
class OptFlow {
|
||||
public void run(String[] args) {
|
||||
String filename = args[0];
|
||||
VideoCapture capture = new VideoCapture(filename);
|
||||
if (!capture.isOpened()) {
|
||||
System.out.println("Unable to open this file");
|
||||
System.exit(-1);
|
||||
}
|
||||
|
||||
|
||||
// Create some random colors
|
||||
Scalar[] colors = new Scalar[100];
|
||||
Random rng = new Random();
|
||||
for (int i = 0 ; i < 100 ; i++) {
|
||||
int r = rng.nextInt(256);
|
||||
int g = rng.nextInt(256);
|
||||
int b = rng.nextInt(256);
|
||||
colors[i] = new Scalar(r, g, b);
|
||||
}
|
||||
|
||||
Mat old_frame = new Mat() , old_gray = new Mat();
|
||||
|
||||
// Since the function Imgproc.goodFeaturesToTrack requires MatofPoint
|
||||
// therefore first p0MatofPoint is passed to the function and then converted to MatOfPoint2f
|
||||
MatOfPoint p0MatofPoint = new MatOfPoint();
|
||||
capture.read(old_frame);
|
||||
Imgproc.cvtColor(old_frame, old_gray, Imgproc.COLOR_BGR2GRAY);
|
||||
Imgproc.goodFeaturesToTrack(old_gray, p0MatofPoint,100,0.3,7, new Mat(),7,false,0.04);
|
||||
|
||||
MatOfPoint2f p0 = new MatOfPoint2f(p0MatofPoint.toArray()) , p1 = new MatOfPoint2f();
|
||||
|
||||
// Create a mask image for drawing purposes
|
||||
Mat mask = Mat.zeros(old_frame.size(), old_frame.type());
|
||||
|
||||
while (true) {
|
||||
Mat frame = new Mat(), frame_gray = new Mat();
|
||||
capture.read(frame);
|
||||
if (frame.empty()) {
|
||||
break;
|
||||
}
|
||||
|
||||
Imgproc.cvtColor(frame, frame_gray, Imgproc.COLOR_BGR2GRAY);
|
||||
|
||||
// calculate optical flow
|
||||
MatOfByte status = new MatOfByte();
|
||||
MatOfFloat err = new MatOfFloat();
|
||||
TermCriteria criteria = new TermCriteria(TermCriteria.COUNT + TermCriteria.EPS,10,0.03);
|
||||
Video.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, p1, status, err, new Size(15,15),2, criteria);
|
||||
|
||||
byte StatusArr[] = status.toArray();
|
||||
Point p0Arr[] = p0.toArray();
|
||||
Point p1Arr[] = p1.toArray();
|
||||
ArrayList<Point> good_new = new ArrayList<>();
|
||||
|
||||
for (int i = 0; i<StatusArr.length ; i++ ) {
|
||||
if (StatusArr[i] == 1) {
|
||||
good_new.add(p1Arr[i]);
|
||||
Imgproc.line(mask, p1Arr[i], p0Arr[i], colors[i],2);
|
||||
Imgproc.circle(frame, p1Arr[i],5, colors[i],-1);
|
||||
}
|
||||
}
|
||||
|
||||
Mat img = new Mat();
|
||||
Core.add(frame, mask, img);
|
||||
|
||||
HighGui.imshow("Frame", img);
|
||||
|
||||
int keyboard = HighGui.waitKey(30);
|
||||
if (keyboard == 'q' || keyboard == 27) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Now update the previous frame and previous points
|
||||
old_gray = frame_gray.clone();
|
||||
Point[] good_new_arr = new Point[good_new.size()];
|
||||
good_new_arr = good_new.toArray(good_new_arr);
|
||||
p0 = new MatOfPoint2f(good_new_arr);
|
||||
}
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class OpticalFlowDemo {
|
||||
public static void main(String[] args) {
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new OptFlow().run(args);
|
||||
}
|
||||
}
|
@ -0,0 +1,72 @@
|
||||
import java.util.ArrayList;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.video.Video;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
|
||||
|
||||
class OptFlowDense {
|
||||
public void run(String[] args) {
|
||||
String filename = args[0];
|
||||
VideoCapture capture = new VideoCapture(filename);
|
||||
if (!capture.isOpened()) {
|
||||
//error in opening the video input
|
||||
System.out.println("Unable to open file!");
|
||||
System.exit(-1);
|
||||
}
|
||||
|
||||
Mat frame1 = new Mat() , prvs = new Mat();
|
||||
capture.read(frame1);
|
||||
Imgproc.cvtColor(frame1, prvs, Imgproc.COLOR_BGR2GRAY);
|
||||
|
||||
while (true) {
|
||||
Mat frame2 = new Mat(), next = new Mat();
|
||||
capture.read(frame2);
|
||||
if (frame2.empty()) {
|
||||
break;
|
||||
}
|
||||
Imgproc.cvtColor(frame2, next, Imgproc.COLOR_BGR2GRAY);
|
||||
|
||||
Mat flow = new Mat(prvs.size(), CvType.CV_32FC2);
|
||||
Video.calcOpticalFlowFarneback(prvs, next, flow,0.5,3,15,3,5,1.2,0);
|
||||
|
||||
// visualization
|
||||
ArrayList<Mat> flow_parts = new ArrayList<>(2);
|
||||
Core.split(flow, flow_parts);
|
||||
Mat magnitude = new Mat(), angle = new Mat(), magn_norm = new Mat();
|
||||
Core.cartToPolar(flow_parts.get(0), flow_parts.get(1), magnitude, angle,true);
|
||||
Core.normalize(magnitude, magn_norm,0.0,1.0, Core.NORM_MINMAX);
|
||||
float factor = (float) ((1.0/360.0)*(180.0/255.0));
|
||||
Mat new_angle = new Mat();
|
||||
Core.multiply(angle, new Scalar(factor), new_angle);
|
||||
|
||||
//build hsv image
|
||||
ArrayList<Mat> _hsv = new ArrayList<>() ;
|
||||
Mat hsv = new Mat(), hsv8 = new Mat(), bgr = new Mat();
|
||||
|
||||
_hsv.add(new_angle);
|
||||
_hsv.add(Mat.ones(angle.size(), CvType.CV_32F));
|
||||
_hsv.add(magn_norm);
|
||||
Core.merge(_hsv, hsv);
|
||||
hsv.convertTo(hsv8, CvType.CV_8U, 255.0);
|
||||
Imgproc.cvtColor(hsv8, bgr, Imgproc.COLOR_HSV2BGR);
|
||||
|
||||
HighGui.imshow("frame2", bgr);
|
||||
|
||||
int keyboard = HighGui.waitKey(30);
|
||||
if (keyboard == 'q' || keyboard == 27) {
|
||||
break;
|
||||
}
|
||||
prvs = next;
|
||||
}
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class OpticalFlowDenseDemo {
|
||||
public static void main(String[] args) {
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new OptFlowDense().run(args);
|
||||
}
|
||||
}
|
@ -0,0 +1,156 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import sys
|
||||
|
||||
def help(filename):
|
||||
print (
|
||||
'''
|
||||
{0} shows the usage of the OpenCV serialization functionality. \n\n
|
||||
usage:\n
|
||||
python3 {0} outputfile.yml.gz\n\n
|
||||
The output file may be either in XML, YAML or JSON. You can even compress it\n
|
||||
by specifying this in its extension like xml.gz yaml.gz etc... With\n
|
||||
FileStorage you can serialize objects in OpenCV.\n\n
|
||||
For example: - create a class and have it serialized\n
|
||||
- use it to read and write matrices.\n
|
||||
'''.format(filename)
|
||||
)
|
||||
|
||||
class MyData:
|
||||
A = 97
|
||||
X = np.pi
|
||||
name = 'mydata1234'
|
||||
|
||||
def __repr__(self):
|
||||
s = '{ name = ' + self.name + ', X = ' + str(self.X)
|
||||
s = s + ', A = ' + str(self.A) + '}'
|
||||
return s
|
||||
|
||||
## [inside]
|
||||
def write(self, fs):
|
||||
fs.write('MyData','{')
|
||||
fs.write('A', self.A)
|
||||
fs.write('X', self.X)
|
||||
fs.write('name', self.name)
|
||||
fs.write('MyData','}')
|
||||
|
||||
def read(self, node):
|
||||
if (not node.empty()):
|
||||
self.A = int(node.getNode('A').real())
|
||||
self.X = node.getNode('X').real()
|
||||
self.name = node.getNode('name').string()
|
||||
else:
|
||||
self.A = self.X = 0
|
||||
self.name = ''
|
||||
## [inside]
|
||||
|
||||
def main(argv):
|
||||
if len(argv) != 2:
|
||||
help(argv[0])
|
||||
exit(1)
|
||||
|
||||
# write
|
||||
## [iomati]
|
||||
R = np.eye(3,3)
|
||||
T = np.zeros((3,1))
|
||||
## [iomati]
|
||||
## [customIOi]
|
||||
m = MyData()
|
||||
## [customIOi]
|
||||
|
||||
filename = argv[1]
|
||||
|
||||
## [open]
|
||||
s = cv.FileStorage(filename, cv.FileStorage_WRITE)
|
||||
# or:
|
||||
# s = cv.FileStorage()
|
||||
# s.open(filename, cv.FileStorage_WRITE)
|
||||
## [open]
|
||||
|
||||
## [writeNum]
|
||||
s.write('iterationNr', 100)
|
||||
## [writeNum]
|
||||
|
||||
## [writeStr]
|
||||
s.write('strings', '[')
|
||||
s.write('image1.jpg','Awesomeness')
|
||||
s.write('../data/baboon.jpg',']')
|
||||
## [writeStr]
|
||||
|
||||
## [writeMap]
|
||||
s.write ('Mapping', '{')
|
||||
s.write ('One', 1)
|
||||
s.write ('Two', 2)
|
||||
s.write ('Mapping', '}')
|
||||
## [writeMap]
|
||||
|
||||
## [iomatw]
|
||||
s.write ('R_MAT', R)
|
||||
s.write ('T_MAT', T)
|
||||
## [iomatw]
|
||||
|
||||
## [customIOw]
|
||||
m.write(s)
|
||||
## [customIOw]
|
||||
## [close]
|
||||
s.release()
|
||||
## [close]
|
||||
print ('Write Done.')
|
||||
|
||||
# read
|
||||
print ('\nReading: ')
|
||||
s = cv.FileStorage()
|
||||
s.open(filename, cv.FileStorage_READ)
|
||||
|
||||
## [readNum]
|
||||
n = s.getNode('iterationNr')
|
||||
itNr = int(n.real())
|
||||
## [readNum]
|
||||
print (itNr)
|
||||
|
||||
if (not s.isOpened()):
|
||||
print ('Failed to open ', filename, file=sys.stderr)
|
||||
help(argv[0])
|
||||
exit(1)
|
||||
|
||||
## [readStr]
|
||||
n = s.getNode('strings')
|
||||
if (not n.isSeq()):
|
||||
print ('strings is not a sequence! FAIL', file=sys.stderr)
|
||||
exit(1)
|
||||
|
||||
for i in range(n.size()):
|
||||
print (n.at(i).string())
|
||||
## [readStr]
|
||||
|
||||
## [readMap]
|
||||
n = s.getNode('Mapping')
|
||||
print ('Two',int(n.getNode('Two').real()),'; ')
|
||||
print ('One',int(n.getNode('One').real()),'\n')
|
||||
## [readMap]
|
||||
|
||||
## [iomat]
|
||||
R = s.getNode('R_MAT').mat()
|
||||
T = s.getNode('T_MAT').mat()
|
||||
## [iomat]
|
||||
## [customIO]
|
||||
m.read(s.getNode('MyData'))
|
||||
## [customIO]
|
||||
|
||||
print ('\nR =',R)
|
||||
print ('T =',T,'\n')
|
||||
print ('MyData =','\n',m,'\n')
|
||||
|
||||
## [nonexist]
|
||||
print ('Attempt to read NonExisting (should initialize the data structure',
|
||||
'with its default).')
|
||||
m.read(s.getNode('NonExisting'))
|
||||
print ('\nNonExisting =','\n',m)
|
||||
## [nonexist]
|
||||
|
||||
print ('\nTip: Open up',filename,'with a text editor to see the serialized data.')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv)
|
Loading…
Reference in New Issue
Block a user