mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597 # Changes overview ## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python * Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings * Found some questionable parts in the existing API which I'd like to review/discuss (see comments) UPD: 1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value. 2. Questionable parts were removed and tests still pass. ### Details (taken from @TolyaTalamanov's comment): `squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is: 1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step: ``` # DON'T DO IT: # mean_vec = np.array([0.485, 0.456, 0.406]) # stddev_vec = np.array([0.229, 0.224, 0.225]) # norm_img_data = np.zeros(img_data.shape).astype('float32') # for i in range(img_data.shape[0]): # norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] # # add batch channel # norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') # return norm_img_data # INSTEAD return img_data.reshape(1, 3, 224, 224) ``` 2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters: ``` net = cv.gapi.onnx.params('squeezenet', model_filename) net.cfgNormalize('data_0', False) ``` **Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution. --- `squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct. 1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters: ``` net = cv.gapi.onnx.params('squeezenet', model_filename) net.cfgNormalize('data_0', True) // default net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ``` **Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution. ## 2. Expose Fluid & kernel package-related functionality in Python * `cv::gapi::combine()` * `cv::GKernelPackage::size()` (mainly for testing purposes) * `cv::gapi::imgproc::fluid::kernels()` Added a test for the above. ## 3. Fixed issues with Python stateful kernel handling Fixed error message when `outMeta()` of custom python operation fails. ## 4. Fixed various issues in Python tests 1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues 2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one). ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
93d490213f
commit
fc5d412ba7
@ -13,7 +13,7 @@
|
|||||||
|
|
||||||
namespace cv { namespace gapi { namespace imgproc { namespace fluid {
|
namespace cv { namespace gapi { namespace imgproc { namespace fluid {
|
||||||
|
|
||||||
GAPI_EXPORTS GKernelPackage kernels();
|
GAPI_EXPORTS_W GKernelPackage kernels();
|
||||||
|
|
||||||
}}}}
|
}}}}
|
||||||
|
|
||||||
|
@ -414,8 +414,8 @@ namespace cv {
|
|||||||
class GAPI_EXPORTS_W_SIMPLE GKernelPackage;
|
class GAPI_EXPORTS_W_SIMPLE GKernelPackage;
|
||||||
|
|
||||||
namespace gapi {
|
namespace gapi {
|
||||||
GAPI_EXPORTS cv::GKernelPackage combine(const cv::GKernelPackage &lhs,
|
GAPI_EXPORTS_W cv::GKernelPackage combine(const cv::GKernelPackage &lhs,
|
||||||
const cv::GKernelPackage &rhs);
|
const cv::GKernelPackage &rhs);
|
||||||
|
|
||||||
/// @private
|
/// @private
|
||||||
class GFunctor
|
class GFunctor
|
||||||
@ -513,7 +513,7 @@ namespace gapi {
|
|||||||
*
|
*
|
||||||
* @return a number of kernels in the package
|
* @return a number of kernels in the package
|
||||||
*/
|
*/
|
||||||
std::size_t size() const;
|
GAPI_WRAP std::size_t size() const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Returns vector of transformations included in the package
|
* @brief Returns vector of transformations included in the package
|
||||||
@ -717,6 +717,8 @@ namespace gapi {
|
|||||||
{
|
{
|
||||||
return combine(a, combine(b, rest...));
|
return combine(a, combine(b, rest...));
|
||||||
}
|
}
|
||||||
|
// NB(DM): Variadic-arg version in Python may require the same
|
||||||
|
// approach as used in GComputation::compile/apply.
|
||||||
|
|
||||||
/** \addtogroup gapi_compile_args
|
/** \addtogroup gapi_compile_args
|
||||||
* @{
|
* @{
|
||||||
|
@ -26,6 +26,13 @@ public:
|
|||||||
GAPI_WRAP
|
GAPI_WRAP
|
||||||
PyParams(const std::string& tag, const std::string& model_path);
|
PyParams(const std::string& tag, const std::string& model_path);
|
||||||
|
|
||||||
|
GAPI_WRAP
|
||||||
|
PyParams& cfgMeanStd(const std::string &layer_name,
|
||||||
|
const cv::Scalar &m,
|
||||||
|
const cv::Scalar &s);
|
||||||
|
GAPI_WRAP
|
||||||
|
PyParams& cfgNormalize(const std::string &layer_name, bool flag);
|
||||||
|
|
||||||
GBackend backend() const;
|
GBackend backend() const;
|
||||||
std::string tag() const;
|
std::string tag() const;
|
||||||
cv::util::any params() const;
|
cv::util::any params() const;
|
||||||
|
@ -242,7 +242,7 @@ public:
|
|||||||
@param cfg Map of pairs: (config parameter name, config parameter value).
|
@param cfg Map of pairs: (config parameter name, config parameter value).
|
||||||
@return reference to this parameter structure.
|
@return reference to this parameter structure.
|
||||||
*/
|
*/
|
||||||
Params& pluginConfig(const IEConfig& cfg) {
|
Params& pluginConfig(const IEConfig& cfg) {
|
||||||
desc.config = cfg;
|
desc.config = cfg;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
@ -70,6 +70,14 @@ struct ParamDesc {
|
|||||||
std::vector<std::string> names_to_remap; //!< Names of output layers that will be processed in PostProc function.
|
std::vector<std::string> names_to_remap; //!< Names of output layers that will be processed in PostProc function.
|
||||||
|
|
||||||
bool is_generic;
|
bool is_generic;
|
||||||
|
|
||||||
|
// TODO: Needs to modify the rest of ParamDesc accordingly to support
|
||||||
|
// both generic and non-generic options without duplication
|
||||||
|
// (as it was done for the OV IE backend)
|
||||||
|
// These values are pushed into the respective vector<> fields above
|
||||||
|
// when the generic infer parameters are unpacked (see GONNXBackendImpl::unpackKernel)
|
||||||
|
std::unordered_map<std::string, std::pair<cv::Scalar, cv::Scalar> > generic_mstd;
|
||||||
|
std::unordered_map<std::string, bool> generic_norm;
|
||||||
};
|
};
|
||||||
} // namespace detail
|
} // namespace detail
|
||||||
|
|
||||||
@ -298,7 +306,17 @@ public:
|
|||||||
@param model_path path to model file (.onnx file).
|
@param model_path path to model file (.onnx file).
|
||||||
*/
|
*/
|
||||||
Params(const std::string& tag, const std::string& model_path)
|
Params(const std::string& tag, const std::string& model_path)
|
||||||
: desc{model_path, 0u, 0u, {}, {}, {}, {}, {}, {}, {}, {}, {}, true}, m_tag(tag) {}
|
: desc{model_path, 0u, 0u, {}, {}, {}, {}, {}, {}, {}, {}, {}, true, {}, {} }, m_tag(tag) {}
|
||||||
|
|
||||||
|
void cfgMeanStdDev(const std::string &layer,
|
||||||
|
const cv::Scalar &m,
|
||||||
|
const cv::Scalar &s) {
|
||||||
|
desc.generic_mstd[layer] = std::make_pair(m, s);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cfgNormalize(const std::string &layer, bool flag) {
|
||||||
|
desc.generic_norm[layer] = flag;
|
||||||
|
}
|
||||||
|
|
||||||
// BEGIN(G-API's network parametrization API)
|
// BEGIN(G-API's network parametrization API)
|
||||||
GBackend backend() const { return cv::gapi::onnx::backend(); }
|
GBackend backend() const { return cv::gapi::onnx::backend(); }
|
||||||
|
@ -785,15 +785,14 @@ static void unpackMetasToTuple(const cv::GMetaArgs& meta,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static cv::GArg setup_py(cv::detail::PyObjectHolder setup,
|
static cv::GArg run_py_setup(cv::detail::PyObjectHolder setup,
|
||||||
const cv::GMetaArgs& meta,
|
const cv::GMetaArgs &meta,
|
||||||
const cv::GArgs& gargs)
|
const cv::GArgs &gargs)
|
||||||
{
|
{
|
||||||
PyGILState_STATE gstate;
|
PyGILState_STATE gstate;
|
||||||
gstate = PyGILState_Ensure();
|
gstate = PyGILState_Ensure();
|
||||||
|
|
||||||
cv::GArg out;
|
cv::GArg state;
|
||||||
|
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
// NB: Doesn't increase reference counter (false),
|
// NB: Doesn't increase reference counter (false),
|
||||||
@ -801,23 +800,20 @@ static cv::GArg setup_py(cv::detail::PyObjectHolder setup,
|
|||||||
// In case exception decrement reference counter.
|
// In case exception decrement reference counter.
|
||||||
cv::detail::PyObjectHolder args(PyTuple_New(meta.size()), false);
|
cv::detail::PyObjectHolder args(PyTuple_New(meta.size()), false);
|
||||||
unpackMetasToTuple(meta, gargs, args);
|
unpackMetasToTuple(meta, gargs, args);
|
||||||
// NB: Take an onwership because this state is "Python" type so it will be wrapped as-is
|
|
||||||
// into cv::GArg and stored in GPythonBackend. Object without ownership can't
|
|
||||||
// be dealocated outside this function.
|
|
||||||
cv::detail::PyObjectHolder result(PyObject_CallObject(setup.get(), args.get()), true);
|
|
||||||
|
|
||||||
|
PyObject *py_kernel_state = PyObject_CallObject(setup.get(), args.get());
|
||||||
if (PyErr_Occurred())
|
if (PyErr_Occurred())
|
||||||
{
|
{
|
||||||
PyErr_PrintEx(0);
|
PyErr_PrintEx(0);
|
||||||
PyErr_Clear();
|
PyErr_Clear();
|
||||||
throw std::logic_error("Python kernel failed with error!");
|
throw std::logic_error("Python kernel setup failed with error!");
|
||||||
}
|
}
|
||||||
// NB: In fact it's impossible situation, because errors were handled above.
|
// NB: In fact it's impossible situation, because errors were handled above.
|
||||||
GAPI_Assert(result.get() && "Python kernel returned NULL!");
|
GAPI_Assert(py_kernel_state && "Python kernel setup returned NULL!");
|
||||||
|
|
||||||
if (!pyopencv_to(result.get(), out, ArgInfo("arg", false)))
|
if (!pyopencv_to(py_kernel_state, state, ArgInfo("arg", false)))
|
||||||
{
|
{
|
||||||
util::throw_error(std::logic_error("Unsupported output meta type"));
|
util::throw_error(std::logic_error("Failed to convert python state"));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
catch (...)
|
catch (...)
|
||||||
@ -826,7 +822,7 @@ static cv::GArg setup_py(cv::detail::PyObjectHolder setup,
|
|||||||
throw;
|
throw;
|
||||||
}
|
}
|
||||||
PyGILState_Release(gstate);
|
PyGILState_Release(gstate);
|
||||||
return out;
|
return state;
|
||||||
}
|
}
|
||||||
|
|
||||||
static GMetaArg get_meta_arg(PyObject* obj)
|
static GMetaArg get_meta_arg(PyObject* obj)
|
||||||
@ -947,7 +943,7 @@ static PyObject* pyopencv_cv_gapi_kernels(PyObject* , PyObject* py_args, PyObjec
|
|||||||
gapi::python::GPythonFunctor f(
|
gapi::python::GPythonFunctor f(
|
||||||
id.c_str(), std::bind(run_py_meta, cv::detail::PyObjectHolder{out_meta}, _1, _2),
|
id.c_str(), std::bind(run_py_meta, cv::detail::PyObjectHolder{out_meta}, _1, _2),
|
||||||
std::bind(run_py_kernel, cv::detail::PyObjectHolder{run}, _1),
|
std::bind(run_py_kernel, cv::detail::PyObjectHolder{run}, _1),
|
||||||
std::bind(setup_py, cv::detail::PyObjectHolder{setup}, _1, _2));
|
std::bind(run_py_setup, cv::detail::PyObjectHolder{setup}, _1, _2));
|
||||||
pkg.include(f);
|
pkg.include(f);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
|
@ -14,21 +14,14 @@ try:
|
|||||||
if sys.version_info[:2] < (3, 0):
|
if sys.version_info[:2] < (3, 0):
|
||||||
raise unittest.SkipTest('Python 2.x is not supported')
|
raise unittest.SkipTest('Python 2.x is not supported')
|
||||||
|
|
||||||
CLASSIFICATION_MODEL_PATH = "onnx_models/vision/classification/squeezenet/model/squeezenet1.0-9.onnx"
|
CLASSIFICATION_MODEL_PATH = "vision/classification/squeezenet/model/squeezenet1.0-9.onnx"
|
||||||
|
|
||||||
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
|
|
||||||
|
|
||||||
class test_gapi_infer(NewOpenCVTests):
|
class test_gapi_infer(NewOpenCVTests):
|
||||||
def find_dnn_file(self, filename, required=None):
|
def find_dnn_file(self, filename):
|
||||||
if not required:
|
return self.find_file(filename, [os.environ.get('OPENCV_GAPI_ONNX_MODEL_PATH')], False)
|
||||||
required = testdata_required
|
|
||||||
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()),
|
|
||||||
os.environ['OPENCV_TEST_DATA_PATH']],
|
|
||||||
required=required)
|
|
||||||
|
|
||||||
def test_onnx_classification(self):
|
def test_onnx_classification(self):
|
||||||
model_path = self.find_dnn_file(CLASSIFICATION_MODEL_PATH)
|
model_path = self.find_dnn_file(CLASSIFICATION_MODEL_PATH)
|
||||||
|
|
||||||
if model_path is None:
|
if model_path is None:
|
||||||
raise unittest.SkipTest("Missing DNN test file")
|
raise unittest.SkipTest("Missing DNN test file")
|
||||||
|
|
||||||
@ -45,6 +38,7 @@ try:
|
|||||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||||
|
|
||||||
net = cv.gapi.onnx.params("squeeze-net", model_path)
|
net = cv.gapi.onnx.params("squeeze-net", model_path)
|
||||||
|
net.cfgNormalize("data_0", False)
|
||||||
try:
|
try:
|
||||||
out_gapi = comp.apply(cv.gin(in_mat), cv.gapi.compile_args(cv.gapi.networks(net)))
|
out_gapi = comp.apply(cv.gin(in_mat), cv.gapi.compile_args(cv.gapi.networks(net)))
|
||||||
except cv.error as err:
|
except cv.error as err:
|
||||||
|
48
modules/gapi/misc/python/test/test_gapi_kernels.py
Normal file
48
modules/gapi/misc/python/test/test_gapi_kernels.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2 as cv
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
from tests_common import NewOpenCVTests
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
|
||||||
|
if sys.version_info[:2] < (3, 0):
|
||||||
|
raise unittest.SkipTest('Python 2.x is not supported')
|
||||||
|
|
||||||
|
class gapi_kernels_test(NewOpenCVTests):
|
||||||
|
|
||||||
|
def test_fluid_core_package(self):
|
||||||
|
fluid_core = cv.gapi.core.fluid.kernels()
|
||||||
|
self.assertLess(0, fluid_core.size())
|
||||||
|
|
||||||
|
def test_fluid_imgproc_package(self):
|
||||||
|
fluid_imgproc = cv.gapi.imgproc.fluid.kernels()
|
||||||
|
self.assertLess(0, fluid_imgproc.size())
|
||||||
|
|
||||||
|
def test_combine(self):
|
||||||
|
fluid_core = cv.gapi.core.fluid.kernels()
|
||||||
|
fluid_imgproc = cv.gapi.imgproc.fluid.kernels()
|
||||||
|
fluid = cv.gapi.combine(fluid_core, fluid_imgproc)
|
||||||
|
self.assertEqual(fluid_core.size() + fluid_imgproc.size(), fluid.size())
|
||||||
|
|
||||||
|
except unittest.SkipTest as e:
|
||||||
|
|
||||||
|
message = str(e)
|
||||||
|
|
||||||
|
class TestSkip(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.skipTest('Skip tests: ' + message)
|
||||||
|
|
||||||
|
def test_skip():
|
||||||
|
pass
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
NewOpenCVTests.bootstrap()
|
@ -24,7 +24,7 @@ try:
|
|||||||
in_types=[cv.GOpaque.Int],
|
in_types=[cv.GOpaque.Int],
|
||||||
out_types=[cv.GOpaque.Int])
|
out_types=[cv.GOpaque.Int])
|
||||||
class GStatefulCounter:
|
class GStatefulCounter:
|
||||||
"""Accumulate state counter on every call"""
|
"""Accumulates state counter on every call"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def outMeta(desc):
|
def outMeta(desc):
|
||||||
@ -45,6 +45,22 @@ try:
|
|||||||
return state.counter
|
return state.counter
|
||||||
|
|
||||||
|
|
||||||
|
class SumState:
|
||||||
|
def __init__(self):
|
||||||
|
self.sum = 0
|
||||||
|
|
||||||
|
|
||||||
|
@cv.gapi.op('stateful_sum',
|
||||||
|
in_types=[cv.GOpaque.Int, cv.GOpaque.Int],
|
||||||
|
out_types=[cv.GOpaque.Int])
|
||||||
|
class GStatefulSum:
|
||||||
|
"""Accumulates sum on every call"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def outMeta(lhs_desc, rhs_desc):
|
||||||
|
return cv.empty_gopaque_desc()
|
||||||
|
|
||||||
|
|
||||||
class gapi_sample_pipelines(NewOpenCVTests):
|
class gapi_sample_pipelines(NewOpenCVTests):
|
||||||
def test_stateful_kernel_single_instance(self):
|
def test_stateful_kernel_single_instance(self):
|
||||||
g_in = cv.GOpaque.Int()
|
g_in = cv.GOpaque.Int()
|
||||||
@ -124,6 +140,64 @@ try:
|
|||||||
cc.stop()
|
cc.stop()
|
||||||
|
|
||||||
|
|
||||||
|
def test_stateful_multiple_inputs(self):
|
||||||
|
@cv.gapi.kernel(GStatefulSum)
|
||||||
|
class GStatefulSumImpl:
|
||||||
|
"""Implementation for GStatefulCounter operation."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def setup(lhs_desc, rhs_desc):
|
||||||
|
return SumState()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def run(lhs, rhs, state):
|
||||||
|
state.sum+= lhs + rhs
|
||||||
|
return state.sum
|
||||||
|
|
||||||
|
|
||||||
|
g_in1 = cv.GOpaque.Int()
|
||||||
|
g_in2 = cv.GOpaque.Int()
|
||||||
|
g_out = GStatefulSum.on(g_in1, g_in2)
|
||||||
|
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
|
||||||
|
pkg = cv.gapi.kernels(GStatefulSumImpl)
|
||||||
|
|
||||||
|
lhs_list = [1, 10, 15]
|
||||||
|
rhs_list = [2, 14, 32]
|
||||||
|
|
||||||
|
ref_out = 0
|
||||||
|
for lhs, rhs in zip(lhs_list, rhs_list):
|
||||||
|
ref_out += lhs + rhs
|
||||||
|
gapi_out = comp.apply(cv.gin(lhs, rhs), cv.gapi.compile_args(pkg))
|
||||||
|
self.assertEqual(ref_out, gapi_out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_stateful_multiple_inputs_throw(self):
|
||||||
|
@cv.gapi.kernel(GStatefulSum)
|
||||||
|
class GStatefulSumImplIncorrect:
|
||||||
|
"""Incorrect implementation for GStatefulCounter operation."""
|
||||||
|
|
||||||
|
# NB: setup methods is intentionally
|
||||||
|
# incorrect - accepts one meta arg instead of two
|
||||||
|
@staticmethod
|
||||||
|
def setup(desc):
|
||||||
|
return SumState()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def run(lhs, rhs, state):
|
||||||
|
state.sum+= lhs + rhs
|
||||||
|
return state.sum
|
||||||
|
|
||||||
|
|
||||||
|
g_in1 = cv.GOpaque.Int()
|
||||||
|
g_in2 = cv.GOpaque.Int()
|
||||||
|
g_out = GStatefulSum.on(g_in1, g_in2)
|
||||||
|
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
|
||||||
|
pkg = cv.gapi.kernels(GStatefulSumImplIncorrect)
|
||||||
|
|
||||||
|
with self.assertRaises(Exception): comp.apply(cv.gin(42, 42),
|
||||||
|
args=cv.gapi.compile_args(pkg))
|
||||||
|
|
||||||
|
|
||||||
except unittest.SkipTest as e:
|
except unittest.SkipTest as e:
|
||||||
|
|
||||||
message = str(e)
|
message = str(e)
|
||||||
|
@ -17,7 +17,7 @@ try:
|
|||||||
|
|
||||||
@cv.gapi.op('custom.delay', in_types=[cv.GMat], out_types=[cv.GMat])
|
@cv.gapi.op('custom.delay', in_types=[cv.GMat], out_types=[cv.GMat])
|
||||||
class GDelay:
|
class GDelay:
|
||||||
"""Delay for 10 ms."""
|
"""Delay for 50 ms."""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def outMeta(desc):
|
def outMeta(desc):
|
||||||
@ -30,7 +30,7 @@ try:
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def run(img):
|
def run(img):
|
||||||
time.sleep(0.01)
|
time.sleep(0.05)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
|
|
||||||
@ -289,8 +289,7 @@ try:
|
|||||||
ccomp.start()
|
ccomp.start()
|
||||||
|
|
||||||
# Assert
|
# Assert
|
||||||
max_num_frames = 10
|
max_num_frames = 50
|
||||||
proc_num_frames = 0
|
|
||||||
|
|
||||||
out_counter = 0
|
out_counter = 0
|
||||||
desync_out_counter = 0
|
desync_out_counter = 0
|
||||||
@ -307,12 +306,11 @@ try:
|
|||||||
else:
|
else:
|
||||||
none_counter += 1
|
none_counter += 1
|
||||||
|
|
||||||
proc_num_frames += 1
|
if out_counter == max_num_frames:
|
||||||
if proc_num_frames == max_num_frames:
|
|
||||||
ccomp.stop()
|
ccomp.stop()
|
||||||
break
|
break
|
||||||
|
|
||||||
self.assertLess(0, proc_num_frames)
|
self.assertLess(0, out_counter)
|
||||||
self.assertLess(desync_out_counter, out_counter)
|
self.assertLess(desync_out_counter, out_counter)
|
||||||
self.assertLess(0, none_counter)
|
self.assertLess(0, none_counter)
|
||||||
|
|
||||||
|
@ -8,6 +8,19 @@ cv::gapi::onnx::PyParams::PyParams(const std::string& tag,
|
|||||||
const std::string& model_path)
|
const std::string& model_path)
|
||||||
: m_priv(std::make_shared<Params<cv::gapi::Generic>>(tag, model_path)) {}
|
: m_priv(std::make_shared<Params<cv::gapi::Generic>>(tag, model_path)) {}
|
||||||
|
|
||||||
|
cv::gapi::onnx::PyParams& cv::gapi::onnx::PyParams::cfgMeanStd(const std::string &layer_name,
|
||||||
|
const cv::Scalar &m,
|
||||||
|
const cv::Scalar &s) {
|
||||||
|
m_priv->cfgMeanStdDev(layer_name, m, s);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::gapi::onnx::PyParams& cv::gapi::onnx::PyParams::cfgNormalize(const std::string &layer_name,
|
||||||
|
bool flag) {
|
||||||
|
m_priv->cfgNormalize(layer_name, flag);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
cv::gapi::GBackend cv::gapi::onnx::PyParams::backend() const {
|
cv::gapi::GBackend cv::gapi::onnx::PyParams::backend() const {
|
||||||
return m_priv->backend();
|
return m_priv->backend();
|
||||||
}
|
}
|
||||||
|
@ -284,6 +284,7 @@ inline void preprocess(const cv::Mat& src,
|
|||||||
cv::resize(csc, rsz, cv::Size(new_w, new_h));
|
cv::resize(csc, rsz, cv::Size(new_w, new_h));
|
||||||
if (src.depth() == CV_8U && type == CV_32F) {
|
if (src.depth() == CV_8U && type == CV_32F) {
|
||||||
rsz.convertTo(pp, type, ti.normalize ? 1.f / 255 : 1.f);
|
rsz.convertTo(pp, type, ti.normalize ? 1.f / 255 : 1.f);
|
||||||
|
|
||||||
if (ti.mstd.has_value()) {
|
if (ti.mstd.has_value()) {
|
||||||
pp -= ti.mstd->mean;
|
pp -= ti.mstd->mean;
|
||||||
pp /= ti.mstd->stdev;
|
pp /= ti.mstd->stdev;
|
||||||
@ -1143,24 +1144,31 @@ namespace {
|
|||||||
if (pp.is_generic) {
|
if (pp.is_generic) {
|
||||||
auto& info = cv::util::any_cast<cv::detail::InOutInfo>(op.params);
|
auto& info = cv::util::any_cast<cv::detail::InOutInfo>(op.params);
|
||||||
|
|
||||||
for (const auto& a : info.in_names)
|
for (const auto& layer_name : info.in_names)
|
||||||
{
|
{
|
||||||
pp.input_names.push_back(a);
|
pp.input_names.push_back(layer_name);
|
||||||
}
|
if (!pp.generic_mstd.empty()) {
|
||||||
// Adding const input is necessary because the definition of input_names
|
const auto &ms = pp.generic_mstd.at(layer_name);
|
||||||
// includes const input.
|
pp.mean.push_back(ms.first);
|
||||||
for (const auto& a : pp.const_inputs)
|
pp.stdev.push_back(ms.second);
|
||||||
{
|
}
|
||||||
pp.input_names.push_back(a.first);
|
if (!pp.generic_norm.empty()) {
|
||||||
|
pp.normalize.push_back(pp.generic_norm.at(layer_name));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
pp.num_in = info.in_names.size();
|
pp.num_in = info.in_names.size();
|
||||||
|
|
||||||
|
// Incorporate extra parameters associated with input layer names
|
||||||
|
// FIXME(DM): The current form assumes ALL input layers require
|
||||||
|
// this information, this is obviously not correct
|
||||||
|
|
||||||
for (const auto& a : info.out_names)
|
for (const auto& a : info.out_names)
|
||||||
{
|
{
|
||||||
pp.output_names.push_back(a);
|
pp.output_names.push_back(a);
|
||||||
}
|
}
|
||||||
pp.num_out = info.out_names.size();
|
pp.num_out = info.out_names.size();
|
||||||
}
|
} // if(is_generic) -- note, the structure is already filled at the user
|
||||||
|
// end when a non-generic Params are used
|
||||||
|
|
||||||
gm.metadata(nh).set(ONNXUnit{pp});
|
gm.metadata(nh).set(ONNXUnit{pp});
|
||||||
gm.metadata(nh).set(ONNXCallable{ki.run});
|
gm.metadata(nh).set(ONNXCallable{ki.run});
|
||||||
|
@ -423,13 +423,17 @@ public:
|
|||||||
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
|
||||||
};
|
};
|
||||||
|
|
||||||
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
// FIXME(dm): There's too much "preprocess" routines in this file
|
||||||
|
// Only one must stay but better design it wisely (and later)
|
||||||
|
void preprocess(const cv::Mat& src, cv::Mat& dst, bool norm = true) {
|
||||||
const int new_h = 224;
|
const int new_h = 224;
|
||||||
const int new_w = 224;
|
const int new_w = 224;
|
||||||
cv::Mat tmp, cvt, rsz;
|
cv::Mat tmp, cvt, rsz;
|
||||||
cv::resize(src, rsz, cv::Size(new_w, new_h));
|
cv::resize(src, rsz, cv::Size(new_w, new_h));
|
||||||
rsz.convertTo(cvt, CV_32F, 1.f / 255);
|
rsz.convertTo(cvt, CV_32F, norm ? 1.f / 255 : 1.f);
|
||||||
tmp = (cvt - mean) / std;
|
tmp = norm
|
||||||
|
? (cvt - mean) / std
|
||||||
|
: cvt;
|
||||||
toCHW(tmp, dst);
|
toCHW(tmp, dst);
|
||||||
dst = dst.reshape(1, {1, 3, new_h, new_w});
|
dst = dst.reshape(1, {1, 3, new_h, new_w});
|
||||||
}
|
}
|
||||||
@ -550,16 +554,16 @@ TEST_F(ONNXClassification, Infer)
|
|||||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
cv::Mat processed_mat;
|
cv::Mat processed_mat;
|
||||||
preprocess(in_mat, processed_mat);
|
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(processed_mat, out_onnx);
|
infer<float>(processed_mat, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||||
cv::GMat in;
|
cv::GMat in;
|
||||||
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
||||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
// so cfgMeanStd() is here
|
model_path
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(in_mat),
|
comp.apply(cv::gin(in_mat),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -573,7 +577,7 @@ TEST_F(ONNXClassification, InferTensor)
|
|||||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||||
// Create tensor
|
// Create tensor
|
||||||
cv::Mat tensor;
|
cv::Mat tensor;
|
||||||
preprocess(in_mat, tensor);
|
preprocess(in_mat, tensor, false); // NO normalization for 1.0-9, see #23597
|
||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
infer<float>(tensor, out_onnx);
|
infer<float>(tensor, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
@ -581,7 +585,9 @@ TEST_F(ONNXClassification, InferTensor)
|
|||||||
cv::GMat in;
|
cv::GMat in;
|
||||||
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
||||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path };
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(tensor),
|
comp.apply(cv::gin(tensor),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -596,7 +602,7 @@ TEST_F(ONNXClassification, InferROI)
|
|||||||
const auto ROI = rois.at(0);
|
const auto ROI = rois.at(0);
|
||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(in_mat(ROI), roi_mat);
|
preprocess(in_mat(ROI), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||||
@ -604,9 +610,9 @@ TEST_F(ONNXClassification, InferROI)
|
|||||||
cv::GOpaque<cv::Rect> rect;
|
cv::GOpaque<cv::Rect> rect;
|
||||||
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
||||||
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
// so cfgMeanStd() is here
|
model_path
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(in_mat, ROI),
|
comp.apply(cv::gin(in_mat, ROI),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -621,7 +627,7 @@ TEST_F(ONNXClassification, InferROIList)
|
|||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
for (size_t i = 0; i < rois.size(); ++i) {
|
for (size_t i = 0; i < rois.size(); ++i) {
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(in_mat(rois[i]), roi_mat);
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
}
|
}
|
||||||
// G_API code
|
// G_API code
|
||||||
@ -632,7 +638,9 @@ TEST_F(ONNXClassification, InferROIList)
|
|||||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(in_mat, rois),
|
comp.apply(cv::gin(in_mat, rois),
|
||||||
cv::gout(out_gapi),
|
cv::gout(out_gapi),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -647,7 +655,7 @@ TEST_F(ONNXClassification, Infer2ROIList)
|
|||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
for (size_t i = 0; i < rois.size(); ++i) {
|
for (size_t i = 0; i < rois.size(); ++i) {
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(in_mat(rois[i]), roi_mat);
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
}
|
}
|
||||||
// G_API code
|
// G_API code
|
||||||
@ -658,7 +666,9 @@ TEST_F(ONNXClassification, Infer2ROIList)
|
|||||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(in_mat, rois),
|
comp.apply(cv::gin(in_mat, rois),
|
||||||
cv::gout(out_gapi),
|
cv::gout(out_gapi),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -747,7 +757,7 @@ TEST_F(ONNXMediaFrame, InferBGR)
|
|||||||
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
cv::Mat processed_mat;
|
cv::Mat processed_mat;
|
||||||
preprocess(in_mat, processed_mat);
|
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(processed_mat, out_onnx);
|
infer<float>(processed_mat, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
||||||
@ -757,7 +767,9 @@ TEST_F(ONNXMediaFrame, InferBGR)
|
|||||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame),
|
comp.apply(cv::gin(frame),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -774,7 +786,7 @@ TEST_F(ONNXMediaFrame, InferYUV)
|
|||||||
cv::Mat pp;
|
cv::Mat pp;
|
||||||
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
||||||
cv::Mat processed_mat;
|
cv::Mat processed_mat;
|
||||||
preprocess(pp, processed_mat);
|
preprocess(pp, processed_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(processed_mat, out_onnx);
|
infer<float>(processed_mat, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||||
@ -783,7 +795,9 @@ TEST_F(ONNXMediaFrame, InferYUV)
|
|||||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame),
|
comp.apply(cv::gin(frame),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -798,7 +812,7 @@ TEST_F(ONNXMediaFrame, InferROIBGR)
|
|||||||
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(in_mat(rois.front()), roi_mat);
|
preprocess(in_mat(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||||
@ -808,7 +822,9 @@ TEST_F(ONNXMediaFrame, InferROIBGR)
|
|||||||
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame, rois.front()),
|
comp.apply(cv::gin(frame, rois.front()),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -825,7 +841,7 @@ TEST_F(ONNXMediaFrame, InferROIYUV)
|
|||||||
cv::Mat pp;
|
cv::Mat pp;
|
||||||
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(pp(rois.front()), roi_mat);
|
preprocess(pp(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
// G_API code
|
// G_API code
|
||||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||||
@ -835,7 +851,9 @@ TEST_F(ONNXMediaFrame, InferROIYUV)
|
|||||||
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame, rois.front()),
|
comp.apply(cv::gin(frame, rois.front()),
|
||||||
cv::gout(out_gapi.front()),
|
cv::gout(out_gapi.front()),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -851,7 +869,7 @@ TEST_F(ONNXMediaFrame, InferListBGR)
|
|||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
for (size_t i = 0; i < rois.size(); ++i) {
|
for (size_t i = 0; i < rois.size(); ++i) {
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(in_mat(rois[i]), roi_mat);
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
}
|
}
|
||||||
// G_API code
|
// G_API code
|
||||||
@ -862,7 +880,9 @@ TEST_F(ONNXMediaFrame, InferListBGR)
|
|||||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame, rois),
|
comp.apply(cv::gin(frame, rois),
|
||||||
cv::gout(out_gapi),
|
cv::gout(out_gapi),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -880,7 +900,7 @@ TEST_F(ONNXMediaFrame, InferListYUV)
|
|||||||
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
||||||
for (size_t i = 0; i < rois.size(); ++i) {
|
for (size_t i = 0; i < rois.size(); ++i) {
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(pp(rois[i]), roi_mat);
|
preprocess(pp(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
}
|
}
|
||||||
// G_API code
|
// G_API code
|
||||||
@ -891,7 +911,9 @@ TEST_F(ONNXMediaFrame, InferListYUV)
|
|||||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame, rois),
|
comp.apply(cv::gin(frame, rois),
|
||||||
cv::gout(out_gapi),
|
cv::gout(out_gapi),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
@ -933,7 +955,7 @@ TEST_F(ONNXMediaFrame, InferList2BGR)
|
|||||||
// ONNX_API code
|
// ONNX_API code
|
||||||
for (size_t i = 0; i < rois.size(); ++i) {
|
for (size_t i = 0; i < rois.size(); ++i) {
|
||||||
cv::Mat roi_mat;
|
cv::Mat roi_mat;
|
||||||
preprocess(in_mat(rois[i]), roi_mat);
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
||||||
infer<float>(roi_mat, out_onnx);
|
infer<float>(roi_mat, out_onnx);
|
||||||
}
|
}
|
||||||
// G_API code
|
// G_API code
|
||||||
@ -944,7 +966,9 @@ TEST_F(ONNXMediaFrame, InferList2BGR)
|
|||||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||||
// NOTE: We have to normalize U8 tensor
|
// NOTE: We have to normalize U8 tensor
|
||||||
// so cfgMeanStd() is here
|
// so cfgMeanStd() is here
|
||||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
||||||
|
model_path
|
||||||
|
}.cfgNormalize({false});
|
||||||
comp.apply(cv::gin(frame, rois),
|
comp.apply(cv::gin(frame, rois),
|
||||||
cv::gout(out_gapi),
|
cv::gout(out_gapi),
|
||||||
cv::compile_args(cv::gapi::networks(net)));
|
cv::compile_args(cv::gapi::networks(net)));
|
||||||
|
Loading…
Reference in New Issue
Block a user