mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
Merge pull request #21407 from sensyn-robotics:feature/weighted_hough
Feature: weighted Hough Transform #21407 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV - [x] The PR is proposed to proper branch - [x] There is reference to original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
2aee94752a
commit
fc994a6ae8
@ -83,7 +83,7 @@ Arranging the terms: \f$r = x \cos \theta + y \sin \theta\f$
|
||||
|
||||
### Standard and Probabilistic Hough Line Transform
|
||||
|
||||
OpenCV implements two kind of Hough Line Transforms:
|
||||
OpenCV implements three kind of Hough Line Transforms:
|
||||
|
||||
a. **The Standard Hough Transform**
|
||||
|
||||
@ -97,6 +97,12 @@ b. **The Probabilistic Hough Line Transform**
|
||||
of the detected lines \f$(x_{0}, y_{0}, x_{1}, y_{1})\f$
|
||||
- In OpenCV it is implemented with the function **HoughLinesP()**
|
||||
|
||||
c. **The Weighted Hough Transform**
|
||||
|
||||
- Uses edge intensity instead binary 0 or 1 values in standard Hough transform.
|
||||
- In OpenCV it is implemented with the function **HoughLines()** with use_edgeval=true.
|
||||
- See the example in samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp.
|
||||
|
||||
### What does this program do?
|
||||
- Loads an image
|
||||
- Applies a *Standard Hough Line Transform* and a *Probabilistic Line Transform*.
|
||||
|
@ -2165,11 +2165,13 @@ Must fall between 0 and max_theta.
|
||||
@param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
|
||||
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
|
||||
less than max_theta, depending on the parameters min_theta and theta.
|
||||
@param use_edgeval True if you want to use weighted Hough transform.
|
||||
*/
|
||||
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn = 0, double stn = 0,
|
||||
double min_theta = 0, double max_theta = CV_PI );
|
||||
double min_theta = 0, double max_theta = CV_PI,
|
||||
bool use_edgeval = false );
|
||||
|
||||
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
|
||||
|
||||
|
@ -120,7 +120,7 @@ static void
|
||||
HoughLinesStandard( InputArray src, OutputArray lines, int type,
|
||||
float rho, float theta,
|
||||
int threshold, int linesMax,
|
||||
double min_theta, double max_theta )
|
||||
double min_theta, double max_theta, bool use_edgeval = false )
|
||||
{
|
||||
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error");
|
||||
|
||||
@ -184,17 +184,31 @@ HoughLinesStandard( InputArray src, OutputArray lines, int type,
|
||||
irho, tabSin, tabCos);
|
||||
|
||||
// stage 1. fill accumulator
|
||||
for( i = 0; i < height; i++ )
|
||||
for( j = 0; j < width; j++ )
|
||||
{
|
||||
if( image[i * step + j] != 0 )
|
||||
for(int n = 0; n < numangle; n++ )
|
||||
{
|
||||
int r = cvRound( j * tabCos[n] + i * tabSin[n] );
|
||||
r += (numrho - 1) / 2;
|
||||
accum[(n+1) * (numrho+2) + r+1]++;
|
||||
}
|
||||
}
|
||||
if (use_edgeval) {
|
||||
for( i = 0; i < height; i++ )
|
||||
for( j = 0; j < width; j++ )
|
||||
{
|
||||
if( image[i * step + j] != 0 )
|
||||
for(int n = 0; n < numangle; n++ )
|
||||
{
|
||||
int r = cvRound( j * tabCos[n] + i * tabSin[n] );
|
||||
r += (numrho - 1) / 2;
|
||||
accum[(n + 1) * (numrho + 2) + r + 1] += image[i * step + j];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for( i = 0; i < height; i++ )
|
||||
for( j = 0; j < width; j++ )
|
||||
{
|
||||
if( image[i * step + j] != 0 )
|
||||
for(int n = 0; n < numangle; n++ )
|
||||
{
|
||||
int r = cvRound( j * tabCos[n] + i * tabSin[n] );
|
||||
r += (numrho - 1) / 2;
|
||||
accum[(n + 1) * (numrho + 2) + r + 1]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// stage 2. find local maximums
|
||||
findLocalMaximums( numrho, numangle, threshold, accum, _sort_buf );
|
||||
@ -907,7 +921,7 @@ static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, dou
|
||||
|
||||
void HoughLines( InputArray _image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn, double stn, double min_theta, double max_theta )
|
||||
double srn, double stn, double min_theta, double max_theta, bool use_edgeval )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
@ -922,7 +936,7 @@ void HoughLines( InputArray _image, OutputArray lines,
|
||||
ocl_HoughLines(_image, lines, rho, theta, threshold, min_theta, max_theta));
|
||||
|
||||
if( srn == 0 && stn == 0 )
|
||||
HoughLinesStandard(_image, lines, type, (float)rho, (float)theta, threshold, INT_MAX, min_theta, max_theta );
|
||||
HoughLinesStandard(_image, lines, type, (float)rho, (float)theta, threshold, INT_MAX, min_theta, max_theta, use_edgeval );
|
||||
else
|
||||
HoughLinesSDiv(_image, lines, type, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), INT_MAX, min_theta, max_theta);
|
||||
}
|
||||
|
@ -340,6 +340,53 @@ TEST(HoughLines, regression_21983)
|
||||
EXPECT_NEAR(lines[0][1], 1.57179642, 1e-4);
|
||||
}
|
||||
|
||||
TEST(WeightedHoughLines, horizontal)
|
||||
{
|
||||
Mat img(25, 25, CV_8UC1, Scalar(0));
|
||||
// draw lines. from top to bottom, stronger to weaker.
|
||||
line(img, Point(0, 6), Point(25, 6), Scalar(240));
|
||||
line(img, Point(0, 12), Point(25, 12), Scalar(255));
|
||||
line(img, Point(0, 18), Point(25, 18), Scalar(220));
|
||||
|
||||
// detect lines
|
||||
std::vector<Vec2f> lines;
|
||||
int threshold{220*25-1};
|
||||
bool use_edgeval{true};
|
||||
HoughLines(img, lines, 1, CV_PI/180, threshold, 0, 0, 0.0, CV_PI, use_edgeval);
|
||||
|
||||
// check results
|
||||
ASSERT_EQ(3U, lines.size());
|
||||
// detected lines is assumed sorted from stronger to weaker.
|
||||
EXPECT_EQ(12, lines[0][0]);
|
||||
EXPECT_EQ(6, lines[1][0]);
|
||||
EXPECT_EQ(18, lines[2][0]);
|
||||
EXPECT_NEAR(CV_PI/2, lines[0][1], CV_PI/180 + 1e-6);
|
||||
EXPECT_NEAR(CV_PI/2, lines[1][1], CV_PI/180 + 1e-6);
|
||||
EXPECT_NEAR(CV_PI/2, lines[2][1], CV_PI/180 + 1e-6);
|
||||
}
|
||||
|
||||
TEST(WeightedHoughLines, diagonal)
|
||||
{
|
||||
Mat img(25, 25, CV_8UC1, Scalar(0));
|
||||
// draw lines.
|
||||
line(img, Point(0, 0), Point(25, 25), Scalar(128));
|
||||
line(img, Point(0, 25), Point(25, 0), Scalar(255));
|
||||
|
||||
// detect lines
|
||||
std::vector<Vec2f> lines;
|
||||
int threshold{128*25-1};
|
||||
bool use_edgeval{true};
|
||||
HoughLines(img, lines, 1, CV_PI/180, threshold, 0, 0, 0.0, CV_PI, use_edgeval);
|
||||
|
||||
// check results
|
||||
ASSERT_EQ(2U, lines.size());
|
||||
// detected lines is assumed sorted from stronger to weaker.
|
||||
EXPECT_EQ(18, lines[0][0]); // 25*sqrt(2)/2 = 17.67 ~ 18
|
||||
EXPECT_EQ(0, lines[1][0]);
|
||||
EXPECT_NEAR(CV_PI/4, lines[0][1], CV_PI/180 + 1e-6);
|
||||
EXPECT_NEAR(CV_PI*3/4, lines[1][1], CV_PI/180 + 1e-6);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P( ImgProc, StandartHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "../stitching/a1.png" ),
|
||||
testing::Values( 1, 10 ),
|
||||
testing::Values( 0.05, 0.1 ),
|
||||
|
@ -15,22 +15,27 @@ using namespace std;
|
||||
/// Global variables
|
||||
|
||||
/** General variables */
|
||||
Mat src, edges;
|
||||
Mat src, canny_edge, sobel_edge;
|
||||
Mat src_gray;
|
||||
Mat standard_hough, probabilistic_hough;
|
||||
Mat standard_hough, probabilistic_hough, weighted_hough;
|
||||
int min_threshold = 50;
|
||||
int max_trackbar = 150;
|
||||
int weightedhough_max_trackbar = 100000;
|
||||
|
||||
const char* standard_name = "Standard Hough Lines Demo";
|
||||
const char* probabilistic_name = "Probabilistic Hough Lines Demo";
|
||||
const char* weighted_name = "Weighted Hough Lines Demo";
|
||||
|
||||
int s_trackbar = max_trackbar;
|
||||
int p_trackbar = max_trackbar;
|
||||
int e_trackbar = 60;
|
||||
int w_trackbar = 60000;
|
||||
|
||||
/// Function Headers
|
||||
void help();
|
||||
void Standard_Hough( int, void* );
|
||||
void Probabilistic_Hough( int, void* );
|
||||
void Weighted_Hough( int, void* );
|
||||
|
||||
/**
|
||||
* @function main
|
||||
@ -53,22 +58,29 @@ int main( int argc, char** argv )
|
||||
/// Pass the image to gray
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
|
||||
/// Apply Canny edge detector
|
||||
Canny( src_gray, edges, 50, 200, 3 );
|
||||
/// Apply Canny/Sobel edge detector
|
||||
Canny( src_gray, canny_edge, 50, 200, 3 );
|
||||
Sobel( src_gray, sobel_edge, CV_16S, 1, 0 ); // dx(order of the derivative x)=1,dy=0
|
||||
|
||||
/// Create Trackbars for Thresholds
|
||||
char thresh_label[50];
|
||||
snprintf( thresh_label, sizeof(thresh_label), "Thres: %d + input", min_threshold );
|
||||
|
||||
namedWindow( standard_name, WINDOW_AUTOSIZE );
|
||||
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough);
|
||||
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough );
|
||||
|
||||
namedWindow( probabilistic_name, WINDOW_AUTOSIZE );
|
||||
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough);
|
||||
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough );
|
||||
|
||||
char edge_thresh_label[50];
|
||||
sprintf( edge_thresh_label, "Edge Thres: input" );
|
||||
namedWindow( weighted_name, WINDOW_AUTOSIZE);
|
||||
createTrackbar( edge_thresh_label, weighted_name, &e_trackbar, max_trackbar, Weighted_Hough);
|
||||
createTrackbar( thresh_label, weighted_name, &w_trackbar, weightedhough_max_trackbar, Weighted_Hough);
|
||||
|
||||
/// Initialize
|
||||
Standard_Hough(0, 0);
|
||||
Probabilistic_Hough(0, 0);
|
||||
Weighted_Hough(0, 0);
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
@ -90,10 +102,10 @@ void help()
|
||||
void Standard_Hough( int, void* )
|
||||
{
|
||||
vector<Vec2f> s_lines;
|
||||
cvtColor( edges, standard_hough, COLOR_GRAY2BGR );
|
||||
cvtColor( canny_edge, standard_hough, COLOR_GRAY2BGR );
|
||||
|
||||
/// 1. Use Standard Hough Transform
|
||||
HoughLines( edges, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
|
||||
HoughLines( canny_edge, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < s_lines.size(); i++ )
|
||||
@ -117,10 +129,10 @@ void Standard_Hough( int, void* )
|
||||
void Probabilistic_Hough( int, void* )
|
||||
{
|
||||
vector<Vec4i> p_lines;
|
||||
cvtColor( edges, probabilistic_hough, COLOR_GRAY2BGR );
|
||||
cvtColor( canny_edge, probabilistic_hough, COLOR_GRAY2BGR );
|
||||
|
||||
/// 2. Use Probabilistic Hough Transform
|
||||
HoughLinesP( edges, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
|
||||
HoughLinesP( canny_edge, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < p_lines.size(); i++ )
|
||||
@ -131,3 +143,38 @@ void Probabilistic_Hough( int, void* )
|
||||
|
||||
imshow( probabilistic_name, probabilistic_hough );
|
||||
}
|
||||
|
||||
/**
|
||||
* @function Weighted_Hough
|
||||
* This can detect lines based on the edge intensities.
|
||||
*/
|
||||
void Weighted_Hough( int, void* )
|
||||
{
|
||||
vector<Vec2f> s_lines;
|
||||
|
||||
/// prepare
|
||||
Mat edge_img;
|
||||
convertScaleAbs(sobel_edge, edge_img );
|
||||
// use same threshold for edge with Hough.
|
||||
threshold( edge_img, edge_img, e_trackbar, 255, cv::THRESH_TOZERO);
|
||||
cvtColor( edge_img, weighted_hough, COLOR_GRAY2BGR );
|
||||
|
||||
/// 3. Use Weighted Hough Transform
|
||||
const bool use_edgeval{true};
|
||||
HoughLines( edge_img, s_lines, 1, CV_PI/180, min_threshold + w_trackbar, 0, 0, 0, CV_PI, use_edgeval);
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < s_lines.size(); i++ )
|
||||
{
|
||||
float r = s_lines[i][0], t = s_lines[i][1];
|
||||
double cos_t = cos(t), sin_t = sin(t);
|
||||
double x0 = r*cos_t, y0 = r*sin_t;
|
||||
double alpha = 1000;
|
||||
|
||||
Point pt1( cvRound(x0 + alpha*(-sin_t)), cvRound(y0 + alpha*cos_t) );
|
||||
Point pt2( cvRound(x0 - alpha*(-sin_t)), cvRound(y0 - alpha*cos_t) );
|
||||
line( weighted_hough, pt1, pt2, Scalar(255,0,0), 3, LINE_AA );
|
||||
}
|
||||
|
||||
imshow( weighted_name, weighted_hough );
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user