mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
cmake: fix build of dnn tests with shared common code
- don't share .cpp files (PCH support is broken)
This commit is contained in:
parent
6316b3ed91
commit
fcb07c64f3
@ -94,14 +94,10 @@ set(perf_path "${CMAKE_CURRENT_LIST_DIR}/perf")
|
||||
file(GLOB_RECURSE perf_srcs "${perf_path}/*.cpp")
|
||||
file(GLOB_RECURSE perf_hdrs "${perf_path}/*.hpp" "${perf_path}/*.h")
|
||||
ocv_add_perf_tests(${INF_ENGINE_TARGET}
|
||||
FILES test_common "${CMAKE_CURRENT_LIST_DIR}/test/test_common.cpp"
|
||||
FILES test_common "${CMAKE_CURRENT_LIST_DIR}/test/test_common.hpp" "${CMAKE_CURRENT_LIST_DIR}/test/test_common.impl.hpp"
|
||||
FILES Src ${perf_srcs}
|
||||
FILES Include ${perf_hdrs}
|
||||
)
|
||||
set_property(
|
||||
SOURCE "${CMAKE_CURRENT_LIST_DIR}/test/test_common.cpp"
|
||||
PROPERTY COMPILE_DEFINITIONS "__OPENCV_TESTS=1"
|
||||
)
|
||||
|
||||
ocv_option(${the_module}_PERF_CAFFE "Add performance tests of Caffe framework" OFF)
|
||||
ocv_option(${the_module}_PERF_CLCAFFE "Add performance tests of clCaffe framework" OFF)
|
||||
|
6
modules/dnn/perf/perf_common.cpp
Normal file
6
modules/dnn/perf/perf_common.cpp
Normal file
@ -0,0 +1,6 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "../test/test_common.impl.hpp" // shared with accuracy tests
|
@ -2,283 +2,5 @@
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Used in perf tests too, disabled: #include "test_precomp.hpp"
|
||||
#include "opencv2/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
|
||||
#include "opencv2/dnn.hpp"
|
||||
#include "test_common.hpp"
|
||||
|
||||
#include <opencv2/core/utils/configuration.private.hpp>
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
|
||||
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
|
||||
{
|
||||
switch (v) {
|
||||
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
|
||||
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
|
||||
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return;
|
||||
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
|
||||
} // don't use "default:" to emit compiler warnings
|
||||
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
|
||||
}
|
||||
|
||||
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
|
||||
{
|
||||
switch (v) {
|
||||
case DNN_TARGET_CPU: *os << "CPU"; return;
|
||||
case DNN_TARGET_OPENCL: *os << "OCL"; return;
|
||||
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
|
||||
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
|
||||
case DNN_TARGET_FPGA: *os << "FPGA"; return;
|
||||
} // don't use "default:" to emit compiler warnings
|
||||
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
|
||||
}
|
||||
|
||||
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
|
||||
{
|
||||
PrintTo(get<0>(v), os);
|
||||
*os << "/";
|
||||
PrintTo(get<1>(v), os);
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace
|
||||
|
||||
|
||||
|
||||
namespace opencv_test {
|
||||
|
||||
void normAssert(
|
||||
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
|
||||
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
|
||||
{
|
||||
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
||||
EXPECT_LE(normL1, l1) << comment;
|
||||
|
||||
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
||||
EXPECT_LE(normInf, lInf) << comment;
|
||||
}
|
||||
|
||||
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
|
||||
{
|
||||
EXPECT_EQ(m.type(), CV_32FC1);
|
||||
EXPECT_EQ(m.dims, 2);
|
||||
EXPECT_EQ(m.cols, 4);
|
||||
|
||||
std::vector<cv::Rect2d> boxes(m.rows);
|
||||
for (int i = 0; i < m.rows; ++i)
|
||||
{
|
||||
CV_Assert(m.row(i).isContinuous());
|
||||
const float* data = m.ptr<float>(i);
|
||||
double l = data[0], t = data[1], r = data[2], b = data[3];
|
||||
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
|
||||
}
|
||||
return boxes;
|
||||
}
|
||||
|
||||
void normAssertDetections(
|
||||
const std::vector<int>& refClassIds,
|
||||
const std::vector<float>& refScores,
|
||||
const std::vector<cv::Rect2d>& refBoxes,
|
||||
const std::vector<int>& testClassIds,
|
||||
const std::vector<float>& testScores,
|
||||
const std::vector<cv::Rect2d>& testBoxes,
|
||||
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
|
||||
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
|
||||
{
|
||||
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
|
||||
for (int i = 0; i < testBoxes.size(); ++i)
|
||||
{
|
||||
double testScore = testScores[i];
|
||||
if (testScore < confThreshold)
|
||||
continue;
|
||||
|
||||
int testClassId = testClassIds[i];
|
||||
const cv::Rect2d& testBox = testBoxes[i];
|
||||
bool matched = false;
|
||||
for (int j = 0; j < refBoxes.size() && !matched; ++j)
|
||||
{
|
||||
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
|
||||
std::abs(testScore - refScores[j]) < scores_diff)
|
||||
{
|
||||
double interArea = (testBox & refBoxes[j]).area();
|
||||
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
|
||||
if (std::abs(iou - 1.0) < boxes_iou_diff)
|
||||
{
|
||||
matched = true;
|
||||
matchedRefBoxes[j] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!matched)
|
||||
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
|
||||
testClassId, testScore) << testBox << std::endl;
|
||||
EXPECT_TRUE(matched) << comment;
|
||||
}
|
||||
|
||||
// Check unmatched reference detections.
|
||||
for (int i = 0; i < refBoxes.size(); ++i)
|
||||
{
|
||||
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
|
||||
{
|
||||
std::cout << cv::format("Unmatched reference: class %d score %f box ",
|
||||
refClassIds[i], refScores[i]) << refBoxes[i] << std::endl;
|
||||
EXPECT_LE(refScores[i], confThreshold) << comment;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
||||
// where N is a number of detections and an every detection is represented by
|
||||
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
||||
void normAssertDetections(
|
||||
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
|
||||
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
|
||||
double boxes_iou_diff /*= 1e-4*/)
|
||||
{
|
||||
CV_Assert(ref.total() % 7 == 0);
|
||||
CV_Assert(out.total() % 7 == 0);
|
||||
ref = ref.reshape(1, ref.total() / 7);
|
||||
out = out.reshape(1, out.total() / 7);
|
||||
|
||||
cv::Mat refClassIds, testClassIds;
|
||||
ref.col(1).convertTo(refClassIds, CV_32SC1);
|
||||
out.col(1).convertTo(testClassIds, CV_32SC1);
|
||||
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
|
||||
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
|
||||
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
|
||||
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
|
||||
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
|
||||
}
|
||||
|
||||
bool readFileInMemory(const std::string& filename, std::string& content)
|
||||
{
|
||||
std::ios::openmode mode = std::ios::in | std::ios::binary;
|
||||
std::ifstream ifs(filename.c_str(), mode);
|
||||
if (!ifs.is_open())
|
||||
return false;
|
||||
|
||||
content.clear();
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
content.reserve(ifs.tellg());
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
|
||||
content.assign((std::istreambuf_iterator<char>(ifs)),
|
||||
std::istreambuf_iterator<char>());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
||||
bool withInferenceEngine /*= true*/,
|
||||
bool withHalide /*= false*/,
|
||||
bool withCpuOCV /*= true*/
|
||||
)
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
bool withVPU = validateVPUType();
|
||||
#endif
|
||||
|
||||
std::vector< tuple<Backend, Target> > targets;
|
||||
std::vector< Target > available;
|
||||
if (withHalide)
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_HALIDE);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
|
||||
}
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (withInferenceEngine)
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
{
|
||||
if (*i == DNN_TARGET_MYRIAD && !withVPU)
|
||||
continue;
|
||||
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i));
|
||||
}
|
||||
}
|
||||
#else
|
||||
CV_UNUSED(withInferenceEngine);
|
||||
#endif
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_OPENCV);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
{
|
||||
if (!withCpuOCV && *i == DNN_TARGET_CPU)
|
||||
continue;
|
||||
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
|
||||
}
|
||||
}
|
||||
if (targets.empty()) // validate at least CPU mode
|
||||
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
|
||||
return testing::ValuesIn(targets);
|
||||
}
|
||||
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
static std::string getTestInferenceEngineVPUType()
|
||||
{
|
||||
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
|
||||
return param_vpu_type;
|
||||
}
|
||||
|
||||
static bool validateVPUType_()
|
||||
{
|
||||
std::string test_vpu_type = getTestInferenceEngineVPUType();
|
||||
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
||||
bool have_vpu_target = false;
|
||||
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
{
|
||||
if (*i == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
have_vpu_target = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (test_vpu_type.empty())
|
||||
{
|
||||
if (have_vpu_target)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!have_vpu_target)
|
||||
{
|
||||
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
|
||||
exit(1);
|
||||
}
|
||||
std::string dnn_vpu_type = getInferenceEngineVPUType();
|
||||
if (dnn_vpu_type != test_vpu_type)
|
||||
{
|
||||
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool validateVPUType()
|
||||
{
|
||||
static bool result = validateVPUType_();
|
||||
return result;
|
||||
}
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
||||
} // namespace
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_common.impl.hpp" // shared with perf tests
|
||||
|
285
modules/dnn/test/test_common.impl.hpp
Normal file
285
modules/dnn/test/test_common.impl.hpp
Normal file
@ -0,0 +1,285 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Used in accuracy and perf tests as a content of .cpp file
|
||||
// Note: don't use "precomp.hpp" here
|
||||
#include "opencv2/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
|
||||
#include "opencv2/dnn.hpp"
|
||||
#include "test_common.hpp"
|
||||
|
||||
#include <opencv2/core/utils/configuration.private.hpp>
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
|
||||
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
|
||||
{
|
||||
switch (v) {
|
||||
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
|
||||
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
|
||||
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return;
|
||||
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
|
||||
} // don't use "default:" to emit compiler warnings
|
||||
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
|
||||
}
|
||||
|
||||
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
|
||||
{
|
||||
switch (v) {
|
||||
case DNN_TARGET_CPU: *os << "CPU"; return;
|
||||
case DNN_TARGET_OPENCL: *os << "OCL"; return;
|
||||
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
|
||||
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
|
||||
case DNN_TARGET_FPGA: *os << "FPGA"; return;
|
||||
} // don't use "default:" to emit compiler warnings
|
||||
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
|
||||
}
|
||||
|
||||
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
|
||||
{
|
||||
PrintTo(get<0>(v), os);
|
||||
*os << "/";
|
||||
PrintTo(get<1>(v), os);
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace
|
||||
|
||||
|
||||
|
||||
namespace opencv_test {
|
||||
|
||||
void normAssert(
|
||||
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
|
||||
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
|
||||
{
|
||||
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
||||
EXPECT_LE(normL1, l1) << comment;
|
||||
|
||||
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
||||
EXPECT_LE(normInf, lInf) << comment;
|
||||
}
|
||||
|
||||
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
|
||||
{
|
||||
EXPECT_EQ(m.type(), CV_32FC1);
|
||||
EXPECT_EQ(m.dims, 2);
|
||||
EXPECT_EQ(m.cols, 4);
|
||||
|
||||
std::vector<cv::Rect2d> boxes(m.rows);
|
||||
for (int i = 0; i < m.rows; ++i)
|
||||
{
|
||||
CV_Assert(m.row(i).isContinuous());
|
||||
const float* data = m.ptr<float>(i);
|
||||
double l = data[0], t = data[1], r = data[2], b = data[3];
|
||||
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
|
||||
}
|
||||
return boxes;
|
||||
}
|
||||
|
||||
void normAssertDetections(
|
||||
const std::vector<int>& refClassIds,
|
||||
const std::vector<float>& refScores,
|
||||
const std::vector<cv::Rect2d>& refBoxes,
|
||||
const std::vector<int>& testClassIds,
|
||||
const std::vector<float>& testScores,
|
||||
const std::vector<cv::Rect2d>& testBoxes,
|
||||
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
|
||||
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
|
||||
{
|
||||
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
|
||||
for (int i = 0; i < testBoxes.size(); ++i)
|
||||
{
|
||||
double testScore = testScores[i];
|
||||
if (testScore < confThreshold)
|
||||
continue;
|
||||
|
||||
int testClassId = testClassIds[i];
|
||||
const cv::Rect2d& testBox = testBoxes[i];
|
||||
bool matched = false;
|
||||
for (int j = 0; j < refBoxes.size() && !matched; ++j)
|
||||
{
|
||||
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
|
||||
std::abs(testScore - refScores[j]) < scores_diff)
|
||||
{
|
||||
double interArea = (testBox & refBoxes[j]).area();
|
||||
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
|
||||
if (std::abs(iou - 1.0) < boxes_iou_diff)
|
||||
{
|
||||
matched = true;
|
||||
matchedRefBoxes[j] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!matched)
|
||||
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
|
||||
testClassId, testScore) << testBox << std::endl;
|
||||
EXPECT_TRUE(matched) << comment;
|
||||
}
|
||||
|
||||
// Check unmatched reference detections.
|
||||
for (int i = 0; i < refBoxes.size(); ++i)
|
||||
{
|
||||
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
|
||||
{
|
||||
std::cout << cv::format("Unmatched reference: class %d score %f box ",
|
||||
refClassIds[i], refScores[i]) << refBoxes[i] << std::endl;
|
||||
EXPECT_LE(refScores[i], confThreshold) << comment;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
||||
// where N is a number of detections and an every detection is represented by
|
||||
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
||||
void normAssertDetections(
|
||||
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
|
||||
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
|
||||
double boxes_iou_diff /*= 1e-4*/)
|
||||
{
|
||||
CV_Assert(ref.total() % 7 == 0);
|
||||
CV_Assert(out.total() % 7 == 0);
|
||||
ref = ref.reshape(1, ref.total() / 7);
|
||||
out = out.reshape(1, out.total() / 7);
|
||||
|
||||
cv::Mat refClassIds, testClassIds;
|
||||
ref.col(1).convertTo(refClassIds, CV_32SC1);
|
||||
out.col(1).convertTo(testClassIds, CV_32SC1);
|
||||
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
|
||||
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
|
||||
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
|
||||
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
|
||||
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
|
||||
}
|
||||
|
||||
bool readFileInMemory(const std::string& filename, std::string& content)
|
||||
{
|
||||
std::ios::openmode mode = std::ios::in | std::ios::binary;
|
||||
std::ifstream ifs(filename.c_str(), mode);
|
||||
if (!ifs.is_open())
|
||||
return false;
|
||||
|
||||
content.clear();
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
content.reserve(ifs.tellg());
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
|
||||
content.assign((std::istreambuf_iterator<char>(ifs)),
|
||||
std::istreambuf_iterator<char>());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
||||
bool withInferenceEngine /*= true*/,
|
||||
bool withHalide /*= false*/,
|
||||
bool withCpuOCV /*= true*/
|
||||
)
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
bool withVPU = validateVPUType();
|
||||
#endif
|
||||
|
||||
std::vector< tuple<Backend, Target> > targets;
|
||||
std::vector< Target > available;
|
||||
if (withHalide)
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_HALIDE);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
|
||||
}
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (withInferenceEngine)
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
{
|
||||
if (*i == DNN_TARGET_MYRIAD && !withVPU)
|
||||
continue;
|
||||
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i));
|
||||
}
|
||||
}
|
||||
#else
|
||||
CV_UNUSED(withInferenceEngine);
|
||||
#endif
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_OPENCV);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
{
|
||||
if (!withCpuOCV && *i == DNN_TARGET_CPU)
|
||||
continue;
|
||||
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
|
||||
}
|
||||
}
|
||||
if (targets.empty()) // validate at least CPU mode
|
||||
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
|
||||
return testing::ValuesIn(targets);
|
||||
}
|
||||
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
static std::string getTestInferenceEngineVPUType()
|
||||
{
|
||||
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
|
||||
return param_vpu_type;
|
||||
}
|
||||
|
||||
static bool validateVPUType_()
|
||||
{
|
||||
std::string test_vpu_type = getTestInferenceEngineVPUType();
|
||||
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
||||
bool have_vpu_target = false;
|
||||
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
{
|
||||
if (*i == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
have_vpu_target = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (test_vpu_type.empty())
|
||||
{
|
||||
if (have_vpu_target)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!have_vpu_target)
|
||||
{
|
||||
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
|
||||
exit(1);
|
||||
}
|
||||
std::string dnn_vpu_type = getInferenceEngineVPUType();
|
||||
if (dnn_vpu_type != test_vpu_type)
|
||||
{
|
||||
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool validateVPUType()
|
||||
{
|
||||
static bool result = validateVPUType_();
|
||||
return result;
|
||||
}
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
||||
} // namespace
|
Loading…
Reference in New Issue
Block a user