Merge remote-tracking branch 'upstream/3.4' into merge-3.4

This commit is contained in:
Alexander Alekhin 2019-02-05 19:03:42 +03:00
commit fcec053d59
13 changed files with 799 additions and 275 deletions

View File

@ -2993,7 +2993,11 @@ int Kernel::set(int i, const KernelArg& arg)
if( !p || !p->handle )
return -1;
if (i < 0)
{
CV_LOG_ERROR(NULL, cv::format("OpenCL: Kernel(%s)::set(arg_index=%d): negative arg_index",
p->name.c_str(), (int)i));
return i;
}
if( i == 0 )
p->cleanupUMats();
cl_int status = 0;
@ -3002,10 +3006,19 @@ int Kernel::set(int i, const KernelArg& arg)
AccessFlag accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : static_cast<AccessFlag>(0)) |
((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : static_cast<AccessFlag>(0));
bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
if (ptronly && arg.m->empty())
{
cl_mem h_null = (cl_mem)NULL;
status = clSetKernelArg(p->handle, (cl_uint)i, sizeof(h_null), &h_null);
CV_OCL_DBG_CHECK_RESULT(status, cv::format("clSetKernelArg('%s', arg_index=%d, cl_mem=NULL)", p->name.c_str(), (int)i).c_str());
return i + 1;
}
cl_mem h = (cl_mem)arg.m->handle(accessFlags);
if (!h)
{
CV_LOG_ERROR(NULL, cv::format("OpenCL: Kernel(%s)::set(arg_index=%d, flags=%d): can't create cl_mem handle for passed UMat buffer (addr=%p)",
p->name.c_str(), (int)i, (int)arg.flags, arg.m));
p->release();
p = 0;
return -1;

View File

@ -138,9 +138,12 @@ public:
UMat& bnorm_weight = umat_scale;
UMat& bnorm_bias = umat_shift;
const unsigned LOCAL_SIZE = 128;
bool use_half = (inputs[0].depth() == CV_16S);
String opts = format(" -DT=%s -DT4=%s -Dconvert_T=%s", use_half ? "half" : "float",
use_half ? "half4" : "float4", use_half ? "convert_half4" : "convert_float4");
String opts = format(" -DT=%s -DT4=%s -Dconvert_T=%s -DLOCAL_SIZE=%u", use_half ? "half" : "float",
use_half ? "half4" : "float4", use_half ? "convert_half4" : "convert_float4",
LOCAL_SIZE
);
int splitDim = (acrossChannels) ? 1 : 2;
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
@ -155,8 +158,8 @@ public:
float alpha = 1.0f / s[1];
String buildopt = "-DNUM=4" + opts;
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
size_t localsize[] = { 128 };
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt + " -DKERNEL_MEAN_FUSE");
size_t localsize[] = { LOCAL_SIZE };
size_t globalsize[] = { (size_t)s[0] / 4 * localsize[0] };
int argId = 0;
@ -165,7 +168,6 @@ public:
k.set(argId++, alpha);
k.set(argId++, ocl::KernelArg::PtrWriteOnly(meanMat));
k.set(argId++, ocl::KernelArg::PtrWriteOnly(tmpMat));
k.set(argId++, NULL, localsize[0] * sizeof(cl_float4));
bool ret = k.run(1, globalsize, localsize, false);
if (!ret)
return false;
@ -173,7 +175,7 @@ public:
buildopt += format(" %s %s", (fuse_batch_norm) ? "-DFUSE_BATCH_NORM" : "",
(fuse_relu) ? "-DFUSE_RELU" : "");
ocl::Kernel k1("mvn_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
ocl::Kernel k1("mvn_fuse4", ocl::dnn::mvn_oclsrc, buildopt + " -DKERNEL_MVN_FUSE");
argId = 0;
k1.set(argId++, ocl::KernelArg::PtrReadOnly(tmpMat));
k1.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
@ -185,7 +187,6 @@ public:
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_weight));
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_bias));
k1.set(argId++, ocl::KernelArg::PtrWriteOnly(outMat));
k1.set(argId++, NULL, localsize[0] * sizeof(cl_float4));
ret = k1.run(1, globalsize, localsize, false);
if (!ret)
return false;
@ -243,7 +244,7 @@ public:
if (normVariance)
{
String kname = format("calc_mean%d", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt + " -DKERNEL_MEAN");
if (kernel.empty())
return false;
@ -263,7 +264,7 @@ public:
}
String kname = format("mvn%d", number);
buildopt += format("%s%s%s", (normVariance) ? " -DNORM_VARIANCE" : "",
buildopt += format("%s%s%s -DKERNEL_MVN", (normVariance) ? " -DNORM_VARIANCE" : "",
(fuse_batch_norm) ? " -DFUSE_BATCH_NORM" : "",
(fuse_relu) ? " -DFUSE_RELU" : "");
ocl::Kernel kernel1(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt);

View File

@ -74,6 +74,8 @@
#define MVN_FUSE mvn_fuse1
#endif
#ifdef KERNEL_MEAN
__kernel void CALC_MEAN(__global const Dtype* src,
const int rows,
const int cols,
@ -94,6 +96,8 @@ __kernel void CALC_MEAN(__global const Dtype* src,
store(dst_vec, dst, index);
}
#elif defined KERNEL_MVN
__kernel void MVN(__global const Dtype* src,
const int rows,
const int cols,
@ -140,12 +144,13 @@ __kernel void MVN(__global const Dtype* src,
store(dst_vec, dst, index);
}
#elif defined KERNEL_MEAN_FUSE
__kernel void MEAN_FUSE(__global const T * A,
unsigned int A_col_size,
float alpha,
__global T4 * mean,
__global Dtype * tmp,
__local Dtype4 * work)
__global Dtype * tmp)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
@ -168,15 +173,16 @@ __kernel void MEAN_FUSE(__global const T * A,
dot2 += convert_float4(a2);
dot3 += convert_float4(a3);
i += get_local_size(0);
i += LOCAL_SIZE;
}
__local Dtype4 work[LOCAL_SIZE];
work[lid].s0 = dot(dot0, b0);
work[lid].s1 = dot(dot1, b0);
work[lid].s2 = dot(dot2, b0);
work[lid].s3 = dot(dot3, b0);
for(unsigned int stride=get_local_size(0)/2 ; stride>0 ; stride>>=1)
for(unsigned int stride=LOCAL_SIZE/2 ; stride>0 ; stride>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < stride)
@ -212,10 +218,12 @@ __kernel void MEAN_FUSE(__global const T * A,
vstore4(dot2, i, dst0_read + 2 * A_col_size);
vstore4(dot3, i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
i += LOCAL_SIZE;
}
}
#elif defined KERNEL_MVN_FUSE
__kernel void MVN_FUSE(__global const Dtype * tmp,
__global const T * A,
__global const T4 * mean,
@ -225,8 +233,7 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
const float relu_slope,
__global const Dtype4 * bnorm_weight,
__global const Dtype4 * bnorm_bias,
__global T * B,
__local Dtype4 * work)
__global T * B)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
@ -250,15 +257,16 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
dot2 += a2;
dot3 += a3;
i += get_local_size(0);
i += LOCAL_SIZE;
}
__local Dtype4 work[LOCAL_SIZE];
work[lid].s0 = dot(dot0, b0);
work[lid].s1 = dot(dot1, b0);
work[lid].s2 = dot(dot2, b0);
work[lid].s3 = dot(dot3, b0);
for(unsigned int stride=get_local_size(0)/2 ; stride>0 ; stride>>=1)
for(unsigned int stride=LOCAL_SIZE/2 ; stride>0 ; stride>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < stride)
@ -314,6 +322,10 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
vstore4(convert_T(dot2), i, dst0_read + 2 * A_col_size);
vstore4(convert_T(dot3), i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
i += LOCAL_SIZE;
}
}
#else
#error "Configuration error!"
#endif

View File

@ -963,22 +963,22 @@ struct YCrCb2RGB_i<ushort>
///////////////////////////////////// YUV420 -> RGB /////////////////////////////////////
const int ITUR_BT_601_CY = 1220542;
const int ITUR_BT_601_CUB = 2116026;
const int ITUR_BT_601_CUG = -409993;
const int ITUR_BT_601_CVG = -852492;
const int ITUR_BT_601_CVR = 1673527;
const int ITUR_BT_601_SHIFT = 20;
static const int ITUR_BT_601_CY = 1220542;
static const int ITUR_BT_601_CUB = 2116026;
static const int ITUR_BT_601_CUG = -409993;
static const int ITUR_BT_601_CVG = -852492;
static const int ITUR_BT_601_CVR = 1673527;
static const int ITUR_BT_601_SHIFT = 20;
// Coefficients for RGB to YUV420p conversion
const int ITUR_BT_601_CRY = 269484;
const int ITUR_BT_601_CGY = 528482;
const int ITUR_BT_601_CBY = 102760;
const int ITUR_BT_601_CRU = -155188;
const int ITUR_BT_601_CGU = -305135;
const int ITUR_BT_601_CBU = 460324;
const int ITUR_BT_601_CGV = -385875;
const int ITUR_BT_601_CBV = -74448;
static const int ITUR_BT_601_CRY = 269484;
static const int ITUR_BT_601_CGY = 528482;
static const int ITUR_BT_601_CBY = 102760;
static const int ITUR_BT_601_CRU = -155188;
static const int ITUR_BT_601_CGU = -305135;
static const int ITUR_BT_601_CBU = 460324;
static const int ITUR_BT_601_CGV = -385875;
static const int ITUR_BT_601_CBV = -74448;
//R = 1.164(Y - 16) + 1.596(V - 128)
//G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
@ -988,49 +988,146 @@ const int ITUR_BT_601_CBV = -74448;
//G = (1220542(Y - 16) - 852492(V - 128) - 409993(U - 128) + (1 << 19)) >> 20
//B = (1220542(Y - 16) + 2116026(U - 128) + (1 << 19)) >> 20
template<int bIdx, int dcn, bool is420>
static inline void cvtYuv42xxp2RGB8(int u, int v, int vy01, int vy11, int vy02, int vy12,
uchar* row1, uchar* row2)
static inline void uvToRGBuv(const uchar u, const uchar v, int& ruv, int& guv, int& buv)
{
u = u - 128;
v = v - 128;
int uu, vv;
uu = int(u) - 128;
vv = int(v) - 128;
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * v;
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * v + ITUR_BT_601_CUG * u;
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * u;
ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * vv;
guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * vv + ITUR_BT_601_CUG * uu;
buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * uu;
}
int y00 = std::max(0, vy01 - 16) * ITUR_BT_601_CY;
row1[2-bIdx] = saturate_cast<uchar>((y00 + ruv) >> ITUR_BT_601_SHIFT);
row1[1] = saturate_cast<uchar>((y00 + guv) >> ITUR_BT_601_SHIFT);
row1[bIdx] = saturate_cast<uchar>((y00 + buv) >> ITUR_BT_601_SHIFT);
if(dcn == 4)
row1[3] = uchar(0xff);
static inline void uvToRGBuv(const v_uint8& u, const v_uint8& v,
v_int32 (&ruv)[4],
v_int32 (&guv)[4],
v_int32 (&buv)[4])
{
v_uint8 v128 = vx_setall_u8(128);
v_int8 su = v_reinterpret_as_s8(v_sub_wrap(u, v128));
v_int8 sv = v_reinterpret_as_s8(v_sub_wrap(v, v128));
int y01 = std::max(0, vy11 - 16) * ITUR_BT_601_CY;
row1[dcn+2-bIdx] = saturate_cast<uchar>((y01 + ruv) >> ITUR_BT_601_SHIFT);
row1[dcn+1] = saturate_cast<uchar>((y01 + guv) >> ITUR_BT_601_SHIFT);
row1[dcn+0+bIdx] = saturate_cast<uchar>((y01 + buv) >> ITUR_BT_601_SHIFT);
if(dcn == 4)
row1[7] = uchar(0xff);
v_int16 uu0, uu1, vv0, vv1;
v_expand(su, uu0, uu1);
v_expand(sv, vv0, vv1);
v_int32 uu[4], vv[4];
v_expand(uu0, uu[0], uu[1]); v_expand(uu1, uu[2], uu[3]);
v_expand(vv0, vv[0], vv[1]); v_expand(vv1, vv[2], vv[3]);
if(is420)
v_int32 vshift = vx_setall_s32(1 << (ITUR_BT_601_SHIFT - 1));
v_int32 vr = vx_setall_s32(ITUR_BT_601_CVR);
v_int32 vg = vx_setall_s32(ITUR_BT_601_CVG);
v_int32 ug = vx_setall_s32(ITUR_BT_601_CUG);
v_int32 ub = vx_setall_s32(ITUR_BT_601_CUB);
for (int k = 0; k < 4; k++)
{
int y10 = std::max(0, vy02 - 16) * ITUR_BT_601_CY;
row2[2-bIdx] = saturate_cast<uchar>((y10 + ruv) >> ITUR_BT_601_SHIFT);
row2[1] = saturate_cast<uchar>((y10 + guv) >> ITUR_BT_601_SHIFT);
row2[bIdx] = saturate_cast<uchar>((y10 + buv) >> ITUR_BT_601_SHIFT);
if(dcn == 4)
row2[3] = uchar(0xff);
int y11 = std::max(0, vy12 - 16) * ITUR_BT_601_CY;
row2[dcn+2-bIdx] = saturate_cast<uchar>((y11 + ruv) >> ITUR_BT_601_SHIFT);
row2[dcn+1] = saturate_cast<uchar>((y11 + guv) >> ITUR_BT_601_SHIFT);
row2[dcn+0+bIdx] = saturate_cast<uchar>((y11 + buv) >> ITUR_BT_601_SHIFT);
if(dcn == 4)
row2[7] = uchar(0xff);
ruv[k] = vshift + vr * vv[k];
guv[k] = vshift + vg * vv[k] + ug * uu[k];
buv[k] = vshift + ub * uu[k];
}
}
static inline void yRGBuvToRGBA(const uchar vy, const int ruv, const int guv, const int buv,
uchar& r, uchar& g, uchar& b, uchar& a)
{
int yy = int(vy);
int y = std::max(0, yy - 16) * ITUR_BT_601_CY;
r = saturate_cast<uchar>((y + ruv) >> ITUR_BT_601_SHIFT);
g = saturate_cast<uchar>((y + guv) >> ITUR_BT_601_SHIFT);
b = saturate_cast<uchar>((y + buv) >> ITUR_BT_601_SHIFT);
a = uchar(0xff);
}
static inline void yRGBuvToRGBA(const v_uint8& vy,
const v_int32 (&ruv)[4],
const v_int32 (&guv)[4],
const v_int32 (&buv)[4],
v_uint8& rr, v_uint8& gg, v_uint8& bb)
{
v_uint8 v16 = vx_setall_u8(16);
v_uint8 posY = vy - v16;
v_uint16 yy0, yy1;
v_expand(posY, yy0, yy1);
v_int32 yy[4];
v_int32 yy00, yy01, yy10, yy11;
v_expand(v_reinterpret_as_s16(yy0), yy[0], yy[1]);
v_expand(v_reinterpret_as_s16(yy1), yy[2], yy[3]);
v_int32 vcy = vx_setall_s32(ITUR_BT_601_CY);
v_int32 y[4], r[4], g[4], b[4];
for(int k = 0; k < 4; k++)
{
y[k] = yy[k]*vcy;
r[k] = (y[k] + ruv[k]) >> ITUR_BT_601_SHIFT;
g[k] = (y[k] + guv[k]) >> ITUR_BT_601_SHIFT;
b[k] = (y[k] + buv[k]) >> ITUR_BT_601_SHIFT;
}
v_int16 r0, r1, g0, g1, b0, b1;
r0 = v_pack(r[0], r[1]);
r1 = v_pack(r[2], r[3]);
g0 = v_pack(g[0], g[1]);
g1 = v_pack(g[2], g[3]);
b0 = v_pack(b[0], b[1]);
b1 = v_pack(b[2], b[3]);
rr = v_pack_u(r0, r1);
gg = v_pack_u(g0, g1);
bb = v_pack_u(b0, b1);
}
template<int bIdx, int dcn, bool is420>
static inline void cvtYuv42xxp2RGB8(const uchar u, const uchar v,
const uchar vy01, const uchar vy11, const uchar vy02, const uchar vy12,
uchar* row1, uchar* row2)
{
int ruv, guv, buv;
uvToRGBuv(u, v, ruv, guv, buv);
uchar r00, g00, b00, a00;
uchar r01, g01, b01, a01;
yRGBuvToRGBA(vy01, ruv, guv, buv, r00, g00, b00, a00);
yRGBuvToRGBA(vy11, ruv, guv, buv, r01, g01, b01, a01);
row1[2-bIdx] = r00;
row1[1] = g00;
row1[bIdx] = b00;
if(dcn == 4)
row1[3] = a00;
row1[dcn+2-bIdx] = r01;
row1[dcn+1] = g01;
row1[dcn+0+bIdx] = b01;
if(dcn == 4)
row1[7] = a01;
if(is420)
{
uchar r10, g10, b10, a10;
uchar r11, g11, b11, a11;
yRGBuvToRGBA(vy02, ruv, guv, buv, r10, g10, b10, a10);
yRGBuvToRGBA(vy12, ruv, guv, buv, r11, g11, b11, a11);
row2[2-bIdx] = r10;
row2[1] = g10;
row2[bIdx] = b10;
if(dcn == 4)
row2[3] = a10;
row2[dcn+2-bIdx] = r11;
row2[dcn+1] = g11;
row2[dcn+0+bIdx] = b11;
if(dcn == 4)
row2[7] = a11;
}
}
// bIdx is 0 or 2, uIdx is 0 or 1, dcn is 3 or 4
template<int bIdx, int uIdx, int dcn>
struct YUV420sp2RGB8Invoker : ParallelLoopBody
{
@ -1056,15 +1153,80 @@ struct YUV420sp2RGB8Invoker : ParallelLoopBody
uchar* row2 = dst_data + dst_step * (j + 1);
const uchar* y2 = y1 + stride;
for (int i = 0; i < width; i += 2, row1 += dcn*2, row2 += dcn*2)
int i = 0;
#if CV_SIMD
const int vsize = v_uint8::nlanes;
v_uint8 a = vx_setall_u8(uchar(0xff));
for( ; i <= width - 2*vsize;
i += 2*vsize, row1 += vsize*dcn*2, row2 += vsize*dcn*2)
{
int u = int(uv[i + 0 + uIdx]);
int v = int(uv[i + 1 - uIdx]);
v_uint8 u, v;
v_load_deinterleave(uv + i, u, v);
int vy01 = int(y1[i]);
int vy11 = int(y1[i + 1]);
int vy02 = int(y2[i]);
int vy12 = int(y2[i + 1]);
if(uIdx)
{
swap(u, v);
}
v_uint8 vy[4];
v_load_deinterleave(y1 + i, vy[0], vy[1]);
v_load_deinterleave(y2 + i, vy[2], vy[3]);
v_int32 ruv[4], guv[4], buv[4];
uvToRGBuv(u, v, ruv, guv, buv);
v_uint8 r[4], g[4], b[4];
for(int k = 0; k < 4; k++)
{
yRGBuvToRGBA(vy[k], ruv, guv, buv, r[k], g[k], b[k]);
}
if(bIdx)
{
for(int k = 0; k < 4; k++)
swap(r[k], b[k]);
}
// [r0...], [r1...] => [r0, r1, r0, r1...], [r0, r1, r0, r1...]
v_uint8 r0_0, r0_1, r1_0, r1_1;
v_zip(r[0], r[1], r0_0, r0_1);
v_zip(r[2], r[3], r1_0, r1_1);
v_uint8 g0_0, g0_1, g1_0, g1_1;
v_zip(g[0], g[1], g0_0, g0_1);
v_zip(g[2], g[3], g1_0, g1_1);
v_uint8 b0_0, b0_1, b1_0, b1_1;
v_zip(b[0], b[1], b0_0, b0_1);
v_zip(b[2], b[3], b1_0, b1_1);
if(dcn == 4)
{
v_store_interleave(row1 + 0*vsize, b0_0, g0_0, r0_0, a);
v_store_interleave(row1 + 4*vsize, b0_1, g0_1, r0_1, a);
v_store_interleave(row2 + 0*vsize, b1_0, g1_0, r1_0, a);
v_store_interleave(row2 + 4*vsize, b1_1, g1_1, r1_1, a);
}
else //dcn == 3
{
v_store_interleave(row1 + 0*vsize, b0_0, g0_0, r0_0);
v_store_interleave(row1 + 3*vsize, b0_1, g0_1, r0_1);
v_store_interleave(row2 + 0*vsize, b1_0, g1_0, r1_0);
v_store_interleave(row2 + 3*vsize, b1_1, g1_1, r1_1);
}
}
vx_cleanup();
#endif
for ( ; i < width; i += 2, row1 += dcn*2, row2 += dcn*2)
{
uchar u = uv[i + 0 + uIdx];
uchar v = uv[i + 1 - uIdx];
uchar vy01 = y1[i];
uchar vy11 = y1[i + 1];
uchar vy02 = y2[i];
uchar vy12 = y2[i + 1];
cvtYuv42xxp2RGB8<bIdx, dcn, true>(u, v, vy01, vy11, vy02, vy12, row1, row2);
}
@ -1108,16 +1270,77 @@ struct YUV420p2RGB8Invoker : ParallelLoopBody
uchar* row1 = dst_data + dst_step * j;
uchar* row2 = dst_data + dst_step * (j + 1);
const uchar* y2 = y1 + stride;
int i = 0;
for (int i = 0; i < width / 2; i += 1, row1 += dcn*2, row2 += dcn*2)
#if CV_SIMD
const int vsize = v_uint8::nlanes;
v_uint8 a = vx_setall_u8(uchar(0xff));
for( ; i <= width/2 - vsize;
i += vsize, row1 += vsize*dcn*2, row2 += vsize*dcn*2)
{
int u = int(u1[i]);
int v = int(v1[i]);
v_uint8 u, v;
u = vx_load(u1 + i);
v = vx_load(v1 + i);
int vy01 = int(y1[2 * i]);
int vy11 = int(y1[2 * i + 1]);
int vy02 = int(y2[2 * i]);
int vy12 = int(y2[2 * i + 1]);
v_uint8 vy[4];
v_load_deinterleave(y1 + 2*i, vy[0], vy[1]);
v_load_deinterleave(y2 + 2*i, vy[2], vy[3]);
v_int32 ruv[4], guv[4], buv[4];
uvToRGBuv(u, v, ruv, guv, buv);
v_uint8 r[4], g[4], b[4];
for(int k = 0; k < 4; k++)
{
yRGBuvToRGBA(vy[k], ruv, guv, buv, r[k], g[k], b[k]);
}
if(bIdx)
{
for(int k = 0; k < 4; k++)
swap(r[k], b[k]);
}
// [r0...], [r1...] => [r0, r1, r0, r1...], [r0, r1, r0, r1...]
v_uint8 r0_0, r0_1, r1_0, r1_1;
v_zip(r[0], r[1], r0_0, r0_1);
v_zip(r[2], r[3], r1_0, r1_1);
v_uint8 g0_0, g0_1, g1_0, g1_1;
v_zip(g[0], g[1], g0_0, g0_1);
v_zip(g[2], g[3], g1_0, g1_1);
v_uint8 b0_0, b0_1, b1_0, b1_1;
v_zip(b[0], b[1], b0_0, b0_1);
v_zip(b[2], b[3], b1_0, b1_1);
if(dcn == 4)
{
v_store_interleave(row1 + 0*vsize, b0_0, g0_0, r0_0, a);
v_store_interleave(row1 + 4*vsize, b0_1, g0_1, r0_1, a);
v_store_interleave(row2 + 0*vsize, b1_0, g1_0, r1_0, a);
v_store_interleave(row2 + 4*vsize, b1_1, g1_1, r1_1, a);
}
else //dcn == 3
{
v_store_interleave(row1 + 0*vsize, b0_0, g0_0, r0_0);
v_store_interleave(row1 + 3*vsize, b0_1, g0_1, r0_1);
v_store_interleave(row2 + 0*vsize, b1_0, g1_0, r1_0);
v_store_interleave(row2 + 3*vsize, b1_1, g1_1, r1_1);
}
}
vx_cleanup();
#endif
for (; i < width / 2; i += 1, row1 += dcn*2, row2 += dcn*2)
{
uchar u = u1[i];
uchar v = v1[i];
uchar vy01 = y1[2 * i];
uchar vy11 = y1[2 * i + 1];
uchar vy02 = y2[2 * i];
uchar vy12 = y2[2 * i + 1];
cvtYuv42xxp2RGB8<bIdx, dcn, true>(u, v, vy01, vy11, vy02, vy12, row1, row2);
}
@ -1150,106 +1373,258 @@ inline void cvtYUV420p2RGB(uchar * dst_data, size_t dst_step, int dst_width, int
///////////////////////////////////// RGB -> YUV420p /////////////////////////////////////
static inline uchar rgbToY42x(uchar r, uchar g, uchar b)
{
const int shifted16 = (16 << ITUR_BT_601_SHIFT);
const int halfShift = (1 << (ITUR_BT_601_SHIFT - 1));
int yy = ITUR_BT_601_CRY * r + ITUR_BT_601_CGY * g + ITUR_BT_601_CBY * b + halfShift + shifted16;
return saturate_cast<uchar>(yy >> ITUR_BT_601_SHIFT);
}
static inline v_uint8 rgbToY42x(const v_uint8& r, const v_uint8& g, const v_uint8& b)
{
const int shifted16 = (16 << ITUR_BT_601_SHIFT);
const int halfShift = (1 << (ITUR_BT_601_SHIFT - 1));
v_uint16 r0, r1, g0, g1, b0, b1;
v_expand(r, r0, r1);
v_expand(g, g0, g1);
v_expand(b, b0, b1);
v_uint32 rq[4], gq[4], bq[4];
v_expand(r0, rq[0], rq[1]); v_expand(r1, rq[2], rq[3]);
v_expand(g0, gq[0], gq[1]); v_expand(g1, gq[2], gq[3]);
v_expand(b0, bq[0], bq[1]); v_expand(b1, bq[2], bq[3]);
v_uint32 ry = vx_setall_u32(ITUR_BT_601_CRY), gy = vx_setall_u32(ITUR_BT_601_CGY);
v_uint32 by = vx_setall_u32(ITUR_BT_601_CBY), shift = vx_setall_u32(halfShift + shifted16);
v_uint32 y[4];
for(int k = 0; k < 4; k++)
{
y[k] = (rq[k]*ry + gq[k]*gy + bq[k]*by + shift) >> ITUR_BT_601_SHIFT;
}
v_uint16 y0, y1;
y0 = v_pack(y[0], y[1]);
y1 = v_pack(y[2], y[3]);
return v_pack(y0, y1);
}
static inline void rgbToUV42x(uchar r, uchar g, uchar b, uchar& u, uchar& v)
{
const int halfShift = (1 << (ITUR_BT_601_SHIFT - 1));
const int shifted128 = (128 << ITUR_BT_601_SHIFT);
int uu = ITUR_BT_601_CRU * r + ITUR_BT_601_CGU * g + ITUR_BT_601_CBU * b + halfShift + shifted128;
int vv = ITUR_BT_601_CBU * r + ITUR_BT_601_CGV * g + ITUR_BT_601_CBV * b + halfShift + shifted128;
u = saturate_cast<uchar>(uu >> ITUR_BT_601_SHIFT);
v = saturate_cast<uchar>(vv >> ITUR_BT_601_SHIFT);
}
static inline void rgbToUV42x(const v_uint8& r0, const v_uint8& r1, const v_uint8& g0, const v_uint8& g1,
const v_uint8& b0, const v_uint8& b1, v_uint8& u, v_uint8& v)
{
// [r0, r1, r2, r3,..] => [r0, 0, r2, 0,..]
v_int16 vlowByte = vx_setall_s16(0x00ff);
v_int16 rd0, rd1, gd0, gd1, bd0, bd1;
rd0 = v_reinterpret_as_s16(r0) & vlowByte;
rd1 = v_reinterpret_as_s16(r1) & vlowByte;
gd0 = v_reinterpret_as_s16(g0) & vlowByte;
gd1 = v_reinterpret_as_s16(g1) & vlowByte;
bd0 = v_reinterpret_as_s16(b0) & vlowByte;
bd1 = v_reinterpret_as_s16(b1) & vlowByte;
v_int32 rq[4], gq[4], bq[4];
v_expand(rd0, rq[0], rq[1]);
v_expand(rd1, rq[2], rq[3]);
v_expand(gd0, gq[0], gq[1]);
v_expand(gd1, gq[2], gq[3]);
v_expand(bd0, bq[0], bq[1]);
v_expand(bd1, bq[2], bq[3]);
const int halfShift = (1 << (ITUR_BT_601_SHIFT - 1));
const int shifted128 = (128 << ITUR_BT_601_SHIFT);
v_int32 shift = vx_setall_s32(halfShift + shifted128);
v_int32 ru, gu, bu, gv, bv;
ru = vx_setall_s32(ITUR_BT_601_CRU);
gu = vx_setall_s32(ITUR_BT_601_CGU);
gv = vx_setall_s32(ITUR_BT_601_CGV);
bu = vx_setall_s32(ITUR_BT_601_CBU);
bv = vx_setall_s32(ITUR_BT_601_CBV);
v_int32 uq[4], vq[4];
for(int k = 0; k < 4; k++)
{
uq[k] = (ru*rq[k] + gu*gq[k] + bu*bq[k] + shift) >> ITUR_BT_601_SHIFT;
vq[k] = (bu*rq[k] + gv*gq[k] + bv*bq[k] + shift) >> ITUR_BT_601_SHIFT;
}
v_int16 u0, u1, v0, v1;
u0 = v_pack(uq[0], uq[1]);
u1 = v_pack(uq[2], uq[3]);
v0 = v_pack(vq[0], vq[1]);
v1 = v_pack(vq[2], vq[3]);
u = v_pack_u(u0, u1);
v = v_pack_u(v0, v1);
}
struct RGB8toYUV420pInvoker: public ParallelLoopBody
{
RGB8toYUV420pInvoker(const uchar * _src_data, size_t _src_step,
uchar * _y_data, uchar * _uv_data, size_t _dst_step,
int _src_width, int _src_height, int _scn, bool swapBlue_, bool swapUV_, bool interleaved_)
: src_data(_src_data), src_step(_src_step),
y_data(_y_data), uv_data(_uv_data), dst_step(_dst_step),
src_width(_src_width), src_height(_src_height),
scn(_scn), swapBlue(swapBlue_), swapUV(swapUV_), interleaved(interleaved_) { }
RGB8toYUV420pInvoker(const uchar * _srcData, size_t _srcStep,
uchar * _yData, uchar * _uvData, size_t _dstStep,
int _srcWidth, int _srcHeight, int _scn, bool _swapBlue, bool _swapUV, bool _interleave)
: srcData(_srcData), srcStep(_srcStep),
yData(_yData), uvData(_uvData), dstStep(_dstStep),
srcWidth(_srcWidth), srcHeight(_srcHeight),
srcCn(_scn), swapBlue(_swapBlue), swapUV(_swapUV), interleave(_interleave) { }
void operator()(const Range& rowRange) const CV_OVERRIDE
{
const int w = src_width;
const int h = src_height;
const int cn = scn;
for( int i = rowRange.start; i < rowRange.end; i++ )
const int w = srcWidth;
const int h = srcHeight;
const int scn = srcCn;
const uchar* srcRow = (uchar*)0;
uchar* yRow = (uchar*)0, *uRow = (uchar*)0, *vRow = (uchar*)0, *uvRow = (uchar*)0;
for( int sRow = rowRange.start*2; sRow < rowRange.end*2; sRow++)
{
const uchar* brow0 = src_data + src_step * (2 * i);
const uchar* grow0 = brow0 + 1;
const uchar* rrow0 = brow0 + 2;
const uchar* brow1 = src_data + src_step * (2 * i + 1);
const uchar* grow1 = brow1 + 1;
const uchar* rrow1 = brow1 + 2;
if (swapBlue)
srcRow = srcData + srcStep*sRow;
yRow = yData + dstStep * sRow;
bool evenRow = (sRow % 2) == 0;
if(evenRow)
{
std::swap(brow0, rrow0);
std::swap(brow1, rrow1);
}
uchar* y = y_data + dst_step * (2*i);
uchar* u;
uchar* v;
if (interleaved)
{
u = uv_data + dst_step * i;
v = uv_data + dst_step * i + 1;
}
else
{
u = uv_data + dst_step * (i/2) + (i % 2) * (w/2);
v = uv_data + dst_step * ((i + h/2)/2) + ((i + h/2) % 2) * (w/2);
}
if (swapUV)
{
std::swap(u, v);
}
for( int j = 0, k = 0; j < w * cn; j += 2 * cn, k++ )
{
int r00 = rrow0[j]; int g00 = grow0[j]; int b00 = brow0[j];
int r01 = rrow0[cn + j]; int g01 = grow0[cn + j]; int b01 = brow0[cn + j];
int r10 = rrow1[j]; int g10 = grow1[j]; int b10 = brow1[j];
int r11 = rrow1[cn + j]; int g11 = grow1[cn + j]; int b11 = brow1[cn + j];
const int shifted16 = (16 << ITUR_BT_601_SHIFT);
const int halfShift = (1 << (ITUR_BT_601_SHIFT - 1));
int y00 = ITUR_BT_601_CRY * r00 + ITUR_BT_601_CGY * g00 + ITUR_BT_601_CBY * b00 + halfShift + shifted16;
int y01 = ITUR_BT_601_CRY * r01 + ITUR_BT_601_CGY * g01 + ITUR_BT_601_CBY * b01 + halfShift + shifted16;
int y10 = ITUR_BT_601_CRY * r10 + ITUR_BT_601_CGY * g10 + ITUR_BT_601_CBY * b10 + halfShift + shifted16;
int y11 = ITUR_BT_601_CRY * r11 + ITUR_BT_601_CGY * g11 + ITUR_BT_601_CBY * b11 + halfShift + shifted16;
y[2*k + 0] = saturate_cast<uchar>(y00 >> ITUR_BT_601_SHIFT);
y[2*k + 1] = saturate_cast<uchar>(y01 >> ITUR_BT_601_SHIFT);
y[2*k + dst_step + 0] = saturate_cast<uchar>(y10 >> ITUR_BT_601_SHIFT);
y[2*k + dst_step + 1] = saturate_cast<uchar>(y11 >> ITUR_BT_601_SHIFT);
const int shifted128 = (128 << ITUR_BT_601_SHIFT);
int u00 = ITUR_BT_601_CRU * r00 + ITUR_BT_601_CGU * g00 + ITUR_BT_601_CBU * b00 + halfShift + shifted128;
int v00 = ITUR_BT_601_CBU * r00 + ITUR_BT_601_CGV * g00 + ITUR_BT_601_CBV * b00 + halfShift + shifted128;
if (interleaved)
if (interleave)
{
u[k*2] = saturate_cast<uchar>(u00 >> ITUR_BT_601_SHIFT);
v[k*2] = saturate_cast<uchar>(v00 >> ITUR_BT_601_SHIFT);
uvRow = uvData + dstStep*(sRow/2);
}
else
{
u[k] = saturate_cast<uchar>(u00 >> ITUR_BT_601_SHIFT);
v[k] = saturate_cast<uchar>(v00 >> ITUR_BT_601_SHIFT);
uRow = uvData + dstStep * (sRow/4) + ((sRow/2) % 2) * (w/2);
vRow = uvData + dstStep * ((sRow + h)/4) + (((sRow + h)/2) % 2) * (w/2);
}
}
int i = 0;
#if CV_SIMD
const int vsize = v_uint8::nlanes;
for( ; i <= w/2 - vsize;
i += vsize)
{
// processing (2*vsize) pixels at once
v_uint8 b0, b1, g0, g1, r0, r1, a0, a1;
if(scn == 4)
{
v_load_deinterleave(srcRow + 2*4*i + 0*vsize, b0, g0, r0, a0);
v_load_deinterleave(srcRow + 2*4*i + 4*vsize, b1, g1, r1, a1);
}
else // scn == 3
{
v_load_deinterleave(srcRow + 2*3*i + 0*vsize, b0, g0, r0);
v_load_deinterleave(srcRow + 2*3*i + 3*vsize, b1, g1, r1);
}
if(swapBlue)
{
swap(b0, r0); swap(b1, r1);
}
v_uint8 y0, y1;
y0 = rgbToY42x(r0, g0, b0);
y1 = rgbToY42x(r1, g1, b1);
v_store(yRow + 2*i + 0*vsize, y0);
v_store(yRow + 2*i + 1*vsize, y1);
if(evenRow)
{
v_uint8 u, v;
rgbToUV42x(r0, r1, g0, g1, b0, b1, u, v);
if(swapUV)
{
swap(u, v);
}
if(interleave)
{
v_store_interleave(uvRow + 2*i, u, v);
}
else
{
v_store(uRow + i, u);
v_store(vRow + i, v);
}
}
}
vx_cleanup();
#endif
// processing two pixels at once
for( ; i < w/2; i++)
{
uchar b0, g0, r0;
uchar b1, g1, r1;
b0 = srcRow[(2*i+0)*scn + 0];
g0 = srcRow[(2*i+0)*scn + 1];
r0 = srcRow[(2*i+0)*scn + 2];
b1 = srcRow[(2*i+1)*scn + 0];
g1 = srcRow[(2*i+1)*scn + 1];
r1 = srcRow[(2*i+1)*scn + 2];
if(swapBlue)
{
swap(b0, r0); swap(b1, r1);
}
uchar y0 = rgbToY42x(r0, g0, b0);
uchar y1 = rgbToY42x(r1, g1, b1);
yRow[2*i+0] = y0;
yRow[2*i+1] = y1;
if(evenRow)
{
uchar uu, vv;
rgbToUV42x(r0, g0, b0, uu, vv);
if(swapUV)
{
swap(uu, vv);
}
if(interleave)
{
uvRow[2*i+0] = uu;
uvRow[2*i+1] = vv;
}
else
{
uRow[i] = uu;
vRow[i] = vv;
}
}
}
}
}
const uchar * src_data;
size_t src_step;
uchar *y_data, *uv_data;
size_t dst_step;
int src_width;
int src_height;
const int scn;
const uchar * srcData;
size_t srcStep;
uchar *yData, *uvData;
size_t dstStep;
int srcWidth;
int srcHeight;
const int srcCn;
bool swapBlue;
bool swapUV;
bool interleaved;
bool interleave;
};
///////////////////////////////////// YUV422 -> RGB /////////////////////////////////////
// bIdx is 0 or 2; [uIdx, yIdx] is [0, 0], [0, 1], [1, 0]; dcn is 3 or 4
template<int bIdx, int uIdx, int yIdx, int dcn>
struct YUV422toRGB8Invoker : ParallelLoopBody
{
@ -1269,6 +1644,10 @@ struct YUV422toRGB8Invoker : ParallelLoopBody
int rangeBegin = range.start;
int rangeEnd = range.end;
// [yIdx, uIdx] | [uidx, vidx]:
// 0, 0 | 1, 3
// 0, 1 | 3, 1
// 1, 0 | 0, 2
const int uidx = 1 - yIdx + uIdx * 2;
const int vidx = (2 + uidx) % 4;
const uchar* yuv_src = src_data + rangeBegin * src_step;
@ -1276,14 +1655,69 @@ struct YUV422toRGB8Invoker : ParallelLoopBody
for (int j = rangeBegin; j < rangeEnd; j++, yuv_src += src_step)
{
uchar* row = dst_data + dst_step * j;
for (int i = 0; i < 2 * width; i += 4, row += dcn*2)
int i = 0;
#if CV_SIMD
const int vsize = v_uint8::nlanes;
v_uint8 a = vx_setall_u8(uchar(0xff));
for(; i <= 2*width - 4*vsize;
i += 4*vsize, row += vsize*dcn*2)
{
int u = int(yuv_src[i + uidx]);
int v = int(yuv_src[i + vidx]);
v_uint8 u, v, vy[2];
if(yIdx == 1) // UYVY
{
v_load_deinterleave(yuv_src + i, u, vy[0], v, vy[1]);
}
else // YUYV or YVYU
{
v_load_deinterleave(yuv_src + i, vy[0], u, vy[1], v);
if(uIdx == 1) // YVYU
{
swap(u, v);
}
}
int vy0 = int(yuv_src[i + yIdx]);
int vy1 = int(yuv_src[i + yIdx + 2]);
v_int32 ruv[4], guv[4], buv[4];
uvToRGBuv(u, v, ruv, guv, buv);
v_uint8 r[2], g[2], b[2];
yRGBuvToRGBA(vy[0], ruv, guv, buv, r[0], g[0], b[0]);
yRGBuvToRGBA(vy[1], ruv, guv, buv, r[1], g[1], b[1]);
if(bIdx)
{
swap(r[0], b[0]);
swap(r[1], b[1]);
}
// [r0...], [r1...] => [r0, r1, r0, r1...], [r0, r1, r0, r1...]
v_uint8 r0_0, r0_1;
v_zip(r[0], r[1], r0_0, r0_1);
v_uint8 g0_0, g0_1;
v_zip(g[0], g[1], g0_0, g0_1);
v_uint8 b0_0, b0_1;
v_zip(b[0], b[1], b0_0, b0_1);
if(dcn == 4)
{
v_store_interleave(row + 0*vsize, b0_0, g0_0, r0_0, a);
v_store_interleave(row + 4*vsize, b0_1, g0_1, r0_1, a);
}
else //dcn == 3
{
v_store_interleave(row + 0*vsize, b0_0, g0_0, r0_0);
v_store_interleave(row + 3*vsize, b0_1, g0_1, r0_1);
}
}
vx_cleanup();
#endif
for (; i < 2 * width; i += 4, row += dcn*2)
{
uchar u = yuv_src[i + uidx];
uchar v = yuv_src[i + vidx];
uchar vy0 = yuv_src[i + yIdx];
uchar vy1 = yuv_src[i + yIdx + 2];
cvtYuv42xxp2RGB8<bIdx, dcn, false>(u, v, vy0, vy1, 0, 0, row, (uchar*)(0));
}

View File

@ -289,13 +289,16 @@ namespace binding_utils
float radius;
};
#ifdef HAVE_OPENCV_IMGPROC
Circle minEnclosingCircle(const cv::Mat& points)
{
Circle circle;
cv::minEnclosingCircle(points, circle.center, circle.radius);
return circle;
}
#endif
#ifdef HAVE_OPENCV_VIDEO
emscripten::val CamShiftWrapper(const cv::Mat& arg1, Rect& arg2, TermCriteria arg3)
{
RotatedRect rotatedRect = cv::CamShift(arg1, arg2, arg3);
@ -313,6 +316,7 @@ namespace binding_utils
result.call<void>("push", arg2);
return result;
}
#endif // HAVE_OPENCV_VIDEO
std::string getExceptionMsg(const cv::Exception& e) {
return e.msg;
@ -551,19 +555,25 @@ EMSCRIPTEN_BINDINGS(binding_utils)
function("exceptionFromPtr", &binding_utils::exceptionFromPtr, allow_raw_pointers());
#ifdef HAVE_OPENCV_IMGPROC
function("minEnclosingCircle", select_overload<binding_utils::Circle(const cv::Mat&)>(&binding_utils::minEnclosingCircle));
#endif
function("minMaxLoc", select_overload<binding_utils::MinMaxLoc(const cv::Mat&, const cv::Mat&)>(&binding_utils::minMaxLoc));
function("minMaxLoc", select_overload<binding_utils::MinMaxLoc(const cv::Mat&)>(&binding_utils::minMaxLoc_1));
#ifdef HAVE_OPENCV_IMGPROC
function("morphologyDefaultBorderValue", &cv::morphologyDefaultBorderValue);
#endif
function("CV_MAT_DEPTH", &binding_utils::cvMatDepth);
#ifdef HAVE_OPENCV_VIDEO
function("CamShift", select_overload<emscripten::val(const cv::Mat&, Rect&, TermCriteria)>(&binding_utils::CamShiftWrapper));
function("meanShift", select_overload<emscripten::val(const cv::Mat&, Rect&, TermCriteria)>(&binding_utils::meanShiftWrapper));
#endif
function("getBuildInformation", &binding_utils::getBuildInformation);

View File

@ -140,7 +140,7 @@ features2d = {'Feature2D': ['detect', 'compute', 'detectAndCompute', 'descriptor
'AKAZE': ['create', 'setDescriptorType', 'getDescriptorType', 'setDescriptorSize', 'getDescriptorSize', 'setDescriptorChannels', 'getDescriptorChannels', 'setThreshold', 'getThreshold', 'setNOctaves', 'getNOctaves', 'setNOctaveLayers', 'getNOctaveLayers', 'setDiffusivity', 'getDiffusivity', 'getDefaultName'],
'DescriptorMatcher': ['add', 'clear', 'empty', 'isMaskSupported', 'train', 'match', 'knnMatch', 'radiusMatch', 'clone', 'create'],
'BFMatcher': ['isMaskSupported', 'create'],
'': ['FAST', 'AGAST', 'drawKeypoints', 'drawMatches']}
'': ['drawKeypoints', 'drawMatches']}
photo = {'': ['createAlignMTB', 'createCalibrateDebevec', 'createCalibrateRobertson', \
'createMergeDebevec', 'createMergeMertens', 'createMergeRobertson', \

View File

@ -0,0 +1,82 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
if (typeof module !== 'undefined' && module.exports) {
// The envrionment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
function generateTestFrame(width, height) {
let w = width || 200;
let h = height || 200;
let img = new cv.Mat(h, w, cv.CV_8UC1, new cv.Scalar(0, 0, 0, 0));
let s = new cv.Scalar(255, 255, 255, 255);
let s128 = new cv.Scalar(128, 128, 128, 128);
let rect = new cv.Rect(w / 4, h / 4, w / 2, h / 2);
img.roi(rect).setTo(s);
img.roi(new cv.Rect(w / 2 - w / 8, h / 2 - h / 8, w / 4, h / 4)).setTo(s128);
cv.rectangle(img, new cv.Point(w / 8, h / 8), new cv.Point(w - w / 8, h - h / 8), s, 5);
cv.rectangle(img, new cv.Point(w / 5, h / 5), new cv.Point(w - w / 5, h - h / 5), s128, 3);
cv.line(img, new cv.Point(-w, 0), new cv.Point(w / 2, h / 2), s128, 5);
cv.line(img, new cv.Point(2*w, 0), new cv.Point(w / 2, h / 2), s, 5);
return img;
}
QUnit.module('Features2D', {});
QUnit.test('Detectors', function(assert) {
let image = generateTestFrame();
let kp = new cv.KeyPointVector();
let orb = new cv.ORB();
orb.detect(image, kp);
assert.equal(kp.size(), 67, 'ORB');
let mser = new cv.MSER();
mser.detect(image, kp);
assert.equal(kp.size(), 7, 'MSER');
let brisk = new cv.BRISK();
brisk.detect(image, kp);
assert.equal(kp.size(), 191, 'BRISK');
let ffd = new cv.FastFeatureDetector();
ffd.detect(image, kp);
assert.equal(kp.size(), 12, 'FastFeatureDetector');
let afd = new cv.AgastFeatureDetector();
afd.detect(image, kp);
assert.equal(kp.size(), 67, 'AgastFeatureDetector');
let gftt = new cv.GFTTDetector();
gftt.detect(image, kp);
assert.equal(kp.size(), 168, 'GFTTDetector');
let kaze = new cv.KAZE();
kaze.detect(image, kp);
assert.equal(kp.size(), 159, 'KAZE');
let akaze = new cv.AKAZE();
akaze.detect(image, kp);
assert.equal(kp.size(), 52, 'AKAZE');
});
QUnit.test('BFMatcher', function(assert) {
// Generate key points.
let image = generateTestFrame();
let kp = new cv.KeyPointVector();
let descriptors = new cv.Mat();
let orb = new cv.ORB();
orb.detectAndCompute(image, new cv.Mat(), kp, descriptors);
assert.equal(kp.size(), 67);
// Run a matcher.
let dm = new cv.DMatchVector();
let matcher = new cv.BFMatcher();
matcher.match(descriptors, descriptors, dm);
assert.equal(dm.size(), 67);
});

View File

@ -29,6 +29,7 @@
<script type="application/javascript" src="test_objdetect.js"></script>
<script type="application/javascript" src="test_video.js"></script>
<script type="application/javascript" src="test_photo.js"></script>
<script type="application/javascript" src="test_features2d.js"></script>
<script type='text/javascript'>
QUnit.config.autostart = false;
@ -69,11 +70,5 @@
};
};
</script>
<!--
TODO
<script type="application/javascript" src="test_features2d.js"></script>
-->
</body>
</html>

View File

@ -45,7 +45,8 @@ testrunner.run(
{
code: 'opencv.js',
tests: ['test_mat.js', 'test_utils.js', 'test_imgproc.js',
'test_objdetect.js', 'test_video.js', 'test_photo.js'],
'test_objdetect.js', 'test_video.js', 'test_features2d.js',
'test_photo.js'],
},
function(err, report) {
console.log(report.failed + ' failed, ' + report.passed + ' passed');

View File

@ -42,6 +42,7 @@
#include "precomp.hpp"
#include "opencl_kernels_video.hpp"
#include "opencv2/core/hal/intrin.hpp"
#if defined __APPLE__ || defined __ANDROID__
#define SMALL_LOCALSIZE
@ -433,13 +434,11 @@ FarnebackUpdateFlow_GaussianBlur( const Mat& _R0, const Mat& _R1,
for( i = 0; i <= m; i++ )
kernel[i] = (float)(kernel[i]*s);
#if CV_SSE2
#if CV_SIMD128
float* simd_kernel = alignPtr(kernel + m+1, 16);
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE);
if( useSIMD )
{
for( i = 0; i <= m; i++ )
_mm_store_ps(simd_kernel + i*4, _mm_set1_ps(kernel[i]));
v_store(simd_kernel + i*4, v_setall_f32(kernel[i]));
}
#endif
@ -457,54 +456,53 @@ FarnebackUpdateFlow_GaussianBlur( const Mat& _R0, const Mat& _R1,
}
x = 0;
#if CV_SSE2
if( useSIMD )
#if CV_SIMD128
{
for( ; x <= width*5 - 16; x += 16 )
{
const float *sptr0 = srow[m], *sptr1;
__m128 g4 = _mm_load_ps(simd_kernel);
__m128 s0, s1, s2, s3;
s0 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x), g4);
s1 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 4), g4);
s2 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 8), g4);
s3 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 12), g4);
v_float32x4 g4 = v_load(simd_kernel);
v_float32x4 s0, s1, s2, s3;
s0 = v_load(sptr0 + x) * g4;
s1 = v_load(sptr0 + x + 4) * g4;
s2 = v_load(sptr0 + x + 8) * g4;
s3 = v_load(sptr0 + x + 12) * g4;
for( i = 1; i <= m; i++ )
{
__m128 x0, x1;
v_float32x4 x0, x1;
sptr0 = srow[m+i], sptr1 = srow[m-i];
g4 = _mm_load_ps(simd_kernel + i*4);
x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x), _mm_loadu_ps(sptr1 + x));
x1 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 4), _mm_loadu_ps(sptr1 + x + 4));
s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4));
s1 = _mm_add_ps(s1, _mm_mul_ps(x1, g4));
x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 8), _mm_loadu_ps(sptr1 + x + 8));
x1 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 12), _mm_loadu_ps(sptr1 + x + 12));
s2 = _mm_add_ps(s2, _mm_mul_ps(x0, g4));
s3 = _mm_add_ps(s3, _mm_mul_ps(x1, g4));
g4 = v_load(simd_kernel + i*4);
x0 = v_load(sptr0 + x) + v_load(sptr1 + x);
x1 = v_load(sptr0 + x + 4) + v_load(sptr1 + x + 4);
s0 = v_muladd(x0, g4, s0);
s1 = v_muladd(x1, g4, s1);
x0 = v_load(sptr0 + x + 8) + v_load(sptr1 + x + 8);
x1 = v_load(sptr0 + x + 12) + v_load(sptr1 + x + 12);
s2 = v_muladd(x0, g4, s2);
s3 = v_muladd(x1, g4, s3);
}
_mm_store_ps(vsum + x, s0);
_mm_store_ps(vsum + x + 4, s1);
_mm_store_ps(vsum + x + 8, s2);
_mm_store_ps(vsum + x + 12, s3);
v_store(vsum + x, s0);
v_store(vsum + x + 4, s1);
v_store(vsum + x + 8, s2);
v_store(vsum + x + 12, s3);
}
for( ; x <= width*5 - 4; x += 4 )
{
const float *sptr0 = srow[m], *sptr1;
__m128 g4 = _mm_load_ps(simd_kernel);
__m128 s0 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x), g4);
v_float32x4 g4 = v_load(simd_kernel);
v_float32x4 s0 = v_load(sptr0 + x) * g4;
for( i = 1; i <= m; i++ )
{
sptr0 = srow[m+i], sptr1 = srow[m-i];
g4 = _mm_load_ps(simd_kernel + i*4);
__m128 x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x), _mm_loadu_ps(sptr1 + x));
s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4));
g4 = v_load(simd_kernel + i*4);
v_float32x4 x0 = v_load(sptr0 + x) + v_load(sptr1 + x);
s0 = v_muladd(x0, g4, s0);
}
_mm_store_ps(vsum + x, s0);
v_store(vsum + x, s0);
}
}
#endif
@ -525,28 +523,25 @@ FarnebackUpdateFlow_GaussianBlur( const Mat& _R0, const Mat& _R1,
// horizontal blur
x = 0;
#if CV_SSE2
if( useSIMD )
#if CV_SIMD128
{
for( ; x <= width*5 - 8; x += 8 )
{
__m128 g4 = _mm_load_ps(simd_kernel);
__m128 s0 = _mm_mul_ps(_mm_loadu_ps(vsum + x), g4);
__m128 s1 = _mm_mul_ps(_mm_loadu_ps(vsum + x + 4), g4);
v_float32x4 g4 = v_load(simd_kernel);
v_float32x4 s0 = v_load(vsum + x) * g4;
v_float32x4 s1 = v_load(vsum + x + 4) * g4;
for( i = 1; i <= m; i++ )
{
g4 = _mm_load_ps(simd_kernel + i*4);
__m128 x0 = _mm_add_ps(_mm_loadu_ps(vsum + x - i*5),
_mm_loadu_ps(vsum + x + i*5));
__m128 x1 = _mm_add_ps(_mm_loadu_ps(vsum + x - i*5 + 4),
_mm_loadu_ps(vsum + x + i*5 + 4));
s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4));
s1 = _mm_add_ps(s1, _mm_mul_ps(x1, g4));
g4 = v_load(simd_kernel + i*4);
v_float32x4 x0 = v_load(vsum + x - i*5) + v_load(vsum + x+ i*5);
v_float32x4 x1 = v_load(vsum + x - i*5 + 4) + v_load(vsum + x+ i*5 + 4);
s0 = v_muladd(x0, g4, s0);
s1 = v_muladd(x1, g4, s1);
}
_mm_store_ps(hsum + x, s0);
_mm_store_ps(hsum + x + 4, s1);
v_store(hsum + x, s0);
v_store(hsum + x + 4, s1);
}
}
#endif

View File

@ -113,6 +113,7 @@ class Builder:
"-DWITH_GPHOTO2=OFF",
"-DWITH_LAPACK=OFF",
"-DWITH_ITT=OFF",
"-DWITH_QUIRC=OFF",
"-DBUILD_ZLIB=ON",
"-DBUILD_opencv_apps=OFF",
"-DBUILD_opencv_calib3d=ON", # No bindings provided. This module is used as a dependency for other modules.
@ -130,9 +131,11 @@ class Builder:
"-DBUILD_opencv_superres=OFF",
"-DBUILD_opencv_stitching=OFF",
"-DBUILD_opencv_java=OFF",
"-DBUILD_opencv_java_bindings_generator=OFF",
"-DBUILD_opencv_js=ON",
"-DBUILD_opencv_python2=OFF",
"-DBUILD_opencv_python3=OFF",
"-DBUILD_opencv_python_bindings_generator=OFF",
"-DBUILD_EXAMPLES=OFF",
"-DBUILD_PACKAGE=OFF",
"-DBUILD_TESTS=OFF",

View File

@ -153,51 +153,39 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<Rect> boxes;
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
if (outLayerType == "DetectionOutput")
{
// Network produces output blob with a shape 1x1xNx7 where N is a number of
// detections and an every detection is a vector of values
// [batchId, classId, confidence, left, top, right, bottom]
CV_Assert(outs.size() == 1);
float* data = (float*)outs[0].data;
for (size_t i = 0; i < outs[0].total(); i += 7)
CV_Assert(outs.size() > 0);
for (size_t k = 0; k < outs.size(); k++)
{
float confidence = data[i + 2];
if (confidence > confThreshold)
float* data = (float*)outs[k].data;
for (size_t i = 0; i < outs[k].total(); i += 7)
{
int left = (int)data[i + 3];
int top = (int)data[i + 4];
int right = (int)data[i + 5];
int bottom = (int)data[i + 6];
int width = right - left + 1;
int height = bottom - top + 1;
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
boxes.push_back(Rect(left, top, width, height));
confidences.push_back(confidence);
}
}
}
else if (outLayerType == "DetectionOutput")
{
// Network produces output blob with a shape 1x1xNx7 where N is a number of
// detections and an every detection is a vector of values
// [batchId, classId, confidence, left, top, right, bottom]
CV_Assert(outs.size() == 1);
float* data = (float*)outs[0].data;
for (size_t i = 0; i < outs[0].total(); i += 7)
{
float confidence = data[i + 2];
if (confidence > confThreshold)
{
int left = (int)(data[i + 3] * frame.cols);
int top = (int)(data[i + 4] * frame.rows);
int right = (int)(data[i + 5] * frame.cols);
int bottom = (int)(data[i + 6] * frame.rows);
int width = right - left + 1;
int height = bottom - top + 1;
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
boxes.push_back(Rect(left, top, width, height));
confidences.push_back(confidence);
float confidence = data[i + 2];
if (confidence > confThreshold)
{
int left = (int)data[i + 3];
int top = (int)data[i + 4];
int right = (int)data[i + 5];
int bottom = (int)data[i + 6];
int width = right - left + 1;
int height = bottom - top + 1;
if (width * height <= 1)
{
left = (int)(data[i + 3] * frame.cols);
top = (int)(data[i + 4] * frame.rows);
right = (int)(data[i + 5] * frame.cols);
bottom = (int)(data[i + 6] * frame.rows);
width = right - left + 1;
height = bottom - top + 1;
}
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
boxes.push_back(Rect(left, top, width, height));
confidences.push_back(confidence);
}
}
}
}

View File

@ -102,7 +102,7 @@ def postprocess(frame, outs):
classIds = []
confidences = []
boxes = []
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
if lastLayer.type == 'DetectionOutput':
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# detections and an every detection is a vector of values
# [batchId, classId, confidence, left, top, right, bottom]
@ -116,23 +116,13 @@ def postprocess(frame, outs):
bottom = int(detection[6])
width = right - left + 1
height = bottom - top + 1
classIds.append(int(detection[1]) - 1) # Skip background label
confidences.append(float(confidence))
boxes.append([left, top, width, height])
elif lastLayer.type == 'DetectionOutput':
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# detections and an every detection is a vector of values
# [batchId, classId, confidence, left, top, right, bottom]
for out in outs:
for detection in out[0, 0]:
confidence = detection[2]
if confidence > confThreshold:
left = int(detection[3] * frameWidth)
top = int(detection[4] * frameHeight)
right = int(detection[5] * frameWidth)
bottom = int(detection[6] * frameHeight)
width = right - left + 1
height = bottom - top + 1
if width * height <= 1:
left = int(detection[3] * frameWidth)
top = int(detection[4] * frameHeight)
right = int(detection[5] * frameWidth)
bottom = int(detection[6] * frameHeight)
width = right - left + 1
height = bottom - top + 1
classIds.append(int(detection[1]) - 1) # Skip background label
confidences.append(float(confidence))
boxes.append([left, top, width, height])