fix performance issue of gpu reduction

This commit is contained in:
Vladislav Vinogradov 2013-02-11 16:55:25 +04:00
parent b6e7aeabe0
commit fdb07a0ac1

View File

@ -55,6 +55,128 @@
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace detail
{
__device__ __forceinline__ int cvAtomicAdd(int* address, int val)
{
return ::atomicAdd(address, val);
}
__device__ __forceinline__ unsigned int cvAtomicAdd(unsigned int* address, unsigned int val)
{
return ::atomicAdd(address, val);
}
__device__ __forceinline__ float cvAtomicAdd(float* address, float val)
{
#if __CUDA_ARCH__ >= 200
return ::atomicAdd(address, val);
#else
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(val + __int_as_float(assumed)));
} while (assumed != old);
return __int_as_float(old);
#endif
}
__device__ __forceinline__ double cvAtomicAdd(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
return 0.0;
#endif
}
__device__ __forceinline__ int cvAtomicMin(int* address, int val)
{
return ::atomicMin(address, val);
}
__device__ __forceinline__ float cvAtomicMin(float* address, float val)
{
#if __CUDA_ARCH__ >= 120
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(::fminf(val, __int_as_float(assumed))));
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
return 0.0f;
#endif
}
__device__ __forceinline__ double cvAtomicMin(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(::fmin(val, __longlong_as_double(assumed))));
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
return 0.0;
#endif
}
__device__ __forceinline__ int cvAtomicMax(int* address, int val)
{
return ::atomicMax(address, val);
}
__device__ __forceinline__ float cvAtomicMax(float* address, float val)
{
#if __CUDA_ARCH__ >= 120
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(::fmaxf(val, __int_as_float(assumed))));
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
return 0.0f;
#endif
}
__device__ __forceinline__ double cvAtomicMax(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(::fmax(val, __longlong_as_double(assumed))));
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
return 0.0;
#endif
}
}
namespace detail
{
template <int cn> struct Unroll;
@ -152,7 +274,7 @@ namespace sum
{
static __device__ void run(R* ptr, R val)
{
::atomicAdd(ptr, val);
detail::cvAtomicAdd(ptr, val);
}
};
template <typename R> struct AtomicAdd<R, 2>
@ -161,8 +283,8 @@ namespace sum
static __device__ void run(R* ptr, val_type val)
{
::atomicAdd(ptr, val.x);
::atomicAdd(ptr + 1, val.y);
detail::cvAtomicAdd(ptr, val.x);
detail::cvAtomicAdd(ptr + 1, val.y);
}
};
template <typename R> struct AtomicAdd<R, 3>
@ -171,9 +293,9 @@ namespace sum
static __device__ void run(R* ptr, val_type val)
{
::atomicAdd(ptr, val.x);
::atomicAdd(ptr + 1, val.y);
::atomicAdd(ptr + 2, val.z);
detail::cvAtomicAdd(ptr, val.x);
detail::cvAtomicAdd(ptr + 1, val.y);
detail::cvAtomicAdd(ptr + 2, val.z);
}
};
template <typename R> struct AtomicAdd<R, 4>
@ -182,10 +304,10 @@ namespace sum
static __device__ void run(R* ptr, val_type val)
{
::atomicAdd(ptr, val.x);
::atomicAdd(ptr + 1, val.y);
::atomicAdd(ptr + 2, val.z);
::atomicAdd(ptr + 3, val.w);
detail::cvAtomicAdd(ptr, val.x);
detail::cvAtomicAdd(ptr + 1, val.y);
detail::cvAtomicAdd(ptr + 2, val.z);
detail::cvAtomicAdd(ptr + 3, val.w);
}
};
@ -229,41 +351,6 @@ namespace sum
#endif
}
};
template <int BLOCK_SIZE, int cn>
struct GlobalReduce<BLOCK_SIZE, double, cn>
{
typedef typename TypeVec<double, cn>::vec_type result_type;
static __device__ void run(result_type& sum, result_type* result, int tid, int bid, double* smem)
{
__shared__ bool is_last;
if (tid == 0)
{
result[bid] = sum;
__threadfence();
unsigned int ticket = ::atomicAdd(&blocks_finished, 1);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
{
sum = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<result_type>::all(0);
device::reduce<BLOCK_SIZE>(detail::Unroll<cn>::template smem_tuple<BLOCK_SIZE>(smem), detail::Unroll<cn>::tie(sum), tid, detail::Unroll<cn>::op(plus<double>()));
if (tid == 0)
{
result[0] = sum;
blocks_finished = 0;
}
}
}
};
template <int BLOCK_SIZE, typename src_type, typename result_type, class Op>
__global__ void kernel(const PtrStepSz<src_type> src, result_type* result, const Op op, const int twidth, const int theight)
@ -518,53 +605,12 @@ namespace minMax
struct GlobalReduce
{
static __device__ void run(R& mymin, R& mymax, R* minval, R* maxval, int tid, int bid, R* sminval, R* smaxval)
{
__shared__ bool is_last;
if (tid == 0)
{
minval[bid] = mymin;
maxval[bid] = mymax;
__threadfence();
unsigned int ticket = ::atomicAdd(&blocks_finished, 1);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
{
int idx = ::min(tid, gridDim.x * gridDim.y - 1);
mymin = minval[idx];
mymax = maxval[idx];
const minimum<R> minOp;
const maximum<R> maxOp;
device::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp));
if (tid == 0)
{
minval[0] = mymin;
maxval[0] = mymax;
blocks_finished = 0;
}
}
}
};
template <int BLOCK_SIZE>
struct GlobalReduce<BLOCK_SIZE, int>
{
static __device__ void run(int& mymin, int& mymax, int* minval, int* maxval, int tid, int bid, int* sminval, int* smaxval)
{
#if __CUDA_ARCH__ >= 200
if (tid == 0)
{
::atomicMin(minval, mymin);
::atomicMax(maxval, mymax);
detail::cvAtomicMin(minval, mymin);
detail::cvAtomicMax(maxval, mymax);
}
#else
__shared__ bool is_last;
@ -589,8 +635,8 @@ namespace minMax
mymin = minval[idx];
mymax = maxval[idx];
const minimum<int> minOp;
const maximum<int> maxOp;
const minimum<R> minOp;
const maximum<R> maxOp;
device::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp));
if (tid == 0)
@ -672,12 +718,19 @@ namespace minMax
*minval_buf = numeric_limits<int>::max();
*maxval_buf = numeric_limits<int>::min();
}
__global__ void setDefaultKernel(float* minval_buf, float* maxval_buf)
{
*minval_buf = numeric_limits<float>::max();
*maxval_buf = -numeric_limits<float>::max();
}
__global__ void setDefaultKernel(double* minval_buf, double* maxval_buf)
{
*minval_buf = numeric_limits<double>::max();
*maxval_buf = -numeric_limits<double>::max();
}
template <typename R>
void setDefault(R*, R*)
{
}
void setDefault(int* minval_buf, int* maxval_buf)
void setDefault(R* minval_buf, R* maxval_buf)
{
setDefaultKernel<<<1, 1>>>(minval_buf, maxval_buf);
}
@ -728,21 +781,19 @@ namespace minMax
namespace minMaxLoc
{
__device__ unsigned int blocks_finished = 0;
// To avoid shared bank conflicts we convert each value into value of
// appropriate type (32 bits minimum)
template <typename T> struct MinMaxTypeTraits;
template <> struct MinMaxTypeTraits<uchar> { typedef int best_type; };
template <> struct MinMaxTypeTraits<schar> { typedef int best_type; };
template <> struct MinMaxTypeTraits<ushort> { typedef int best_type; };
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; };
template <> struct MinMaxTypeTraits<signed char> { typedef int best_type; };
template <> struct MinMaxTypeTraits<unsigned short> { typedef int best_type; };
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
template <int BLOCK_SIZE, typename T, class Mask>
__global__ void kernel(const PtrStepSz<T> src, const Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, const int twidth, const int theight)
__global__ void kernel_pass_1(const PtrStepSz<T> src, const Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, const int twidth, const int theight)
{
typedef typename MinMaxTypeTraits<T>::best_type work_type;
@ -750,7 +801,6 @@ namespace minMaxLoc
__shared__ work_type smaxval[BLOCK_SIZE];
__shared__ unsigned int sminloc[BLOCK_SIZE];
__shared__ unsigned int smaxloc[BLOCK_SIZE];
__shared__ bool is_last;
const int x0 = blockIdx.x * blockDim.x * twidth + threadIdx.x;
const int y0 = blockIdx.y * blockDim.y * theight + threadIdx.y;
@ -799,38 +849,36 @@ namespace minMaxLoc
maxval[bid] = (T) mymax;
minloc[bid] = myminloc;
maxloc[bid] = mymaxloc;
__threadfence();
unsigned int ticket = ::atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
}
template <int BLOCK_SIZE, typename T>
__global__ void kernel_pass_2(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int count)
{
unsigned int idx = ::min(tid, gridDim.x * gridDim.y - 1);
typedef typename MinMaxTypeTraits<T>::best_type work_type;
mymin = minval[idx];
mymax = maxval[idx];
myminloc = minloc[idx];
mymaxloc = maxloc[idx];
__shared__ work_type sminval[BLOCK_SIZE];
__shared__ work_type smaxval[BLOCK_SIZE];
__shared__ unsigned int sminloc[BLOCK_SIZE];
__shared__ unsigned int smaxloc[BLOCK_SIZE];
unsigned int idx = ::min(threadIdx.x, count - 1);
work_type mymin = minval[idx];
work_type mymax = maxval[idx];
unsigned int myminloc = minloc[idx];
unsigned int mymaxloc = maxloc[idx];
reduceKeyVal<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax),
smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc),
tid,
threadIdx.x,
thrust::make_tuple(less<work_type>(), greater<work_type>()));
if (tid == 0)
if (threadIdx.x == 0)
{
minval[0] = (T) mymin;
maxval[0] = (T) mymax;
minloc[0] = myminloc;
maxloc[0] = mymaxloc;
blocks_finished = 0;
}
}
}
@ -877,12 +925,15 @@ namespace minMaxLoc
unsigned int* maxloc_buf = locbuf.ptr(1);
if (mask.data)
kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
kernel_pass_1<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
else
kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
kernel_pass_1<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
cudaSafeCall( cudaGetLastError() );
kernel_pass_2<threads_x * threads_y><<<1, threads_x * threads_y>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
T minval_, maxval_;
@ -898,9 +949,9 @@ namespace minMaxLoc
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
}
template void run<uchar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<schar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<ushort>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<unsigned char >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<signed char >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<unsigned short>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<short >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<int >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
template void run<float >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);