mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Update documentation
This commit is contained in:
parent
a1143c4ea0
commit
fe2a259eb1
@ -8,19 +8,19 @@
|
||||
| | |
|
||||
| -: | :- |
|
||||
| Original Author | Chengrui Wang, Yuantao Feng |
|
||||
| Compatibility | OpenCV >= 4.5.1 |
|
||||
| Compatibility | OpenCV >= 4.5.4 |
|
||||
|
||||
## Introduction
|
||||
|
||||
In this section, we introduce the DNN-based module for face detection and face recognition. Models can be obtained in [Models](#Models). The usage of `FaceDetectorYN` and `FaceRecognizerSF` are presented in [Usage](#Usage).
|
||||
In this section, we introduce cv::FaceDetectorYN class for face detection and cv::FaceRecognizerSF class for face recognition.
|
||||
|
||||
## Models
|
||||
|
||||
There are two models (ONNX format) pre-trained and required for this module:
|
||||
- [Face Detection](https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx):
|
||||
- Size: 337KB
|
||||
- [Face Detection](https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet):
|
||||
- Size: 338KB
|
||||
- Results on WIDER Face Val set: 0.830(easy), 0.824(medium), 0.708(hard)
|
||||
- [Face Recognition](https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view?usp=sharing)
|
||||
- [Face Recognition](https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface)
|
||||
- Size: 36.9MB
|
||||
- Results:
|
||||
|
||||
@ -32,9 +32,7 @@ There are two models (ONNX format) pre-trained and required for this module:
|
||||
| AgeDB-30 | 94.90% | 1.202 | 0.277 |
|
||||
| CFP-FP | 94.80% | 1.253 | 0.212 |
|
||||
|
||||
## Usage
|
||||
|
||||
### DNNFaceDetector
|
||||
## Code
|
||||
|
||||
@add_toggle_cpp
|
||||
- **Downloadable code**: Click
|
||||
|
@ -49,8 +49,8 @@
|
||||
/**
|
||||
@defgroup objdetect Object Detection
|
||||
|
||||
Haar Feature-based Cascade Classifier for Object Detection
|
||||
----------------------------------------------------------
|
||||
@{
|
||||
@defgroup objdetect_cascade_classifier Cascade Classifier for Object Detection
|
||||
|
||||
The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
|
||||
improved by Rainer Lienhart @cite Lienhart02 .
|
||||
@ -90,8 +90,7 @@ middle) and the sum of the image pixels under the black stripe multiplied by 3 i
|
||||
compensate for the differences in the size of areas. The sums of pixel values over a rectangular
|
||||
regions are calculated rapidly using integral images (see below and the integral description).
|
||||
|
||||
To see the object detector at work, have a look at the facedetect demo:
|
||||
<https://github.com/opencv/opencv/tree/4.x/samples/cpp/dbt_face_detection.cpp>
|
||||
Check @ref tutorial_cascade_classifier "the corresponding tutorial" for more details.
|
||||
|
||||
The following reference is for the detection part only. There is a separate application called
|
||||
opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
|
||||
@ -99,10 +98,13 @@ opencv_traincascade that can train a cascade of boosted classifiers from a set o
|
||||
@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
|
||||
addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
|
||||
using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
|
||||
<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
|
||||
<https://github.com/SvHey/thesis/blob/master/Literature/ObjectDetection/violaJones_CVPR2001.pdf>
|
||||
|
||||
@{
|
||||
@defgroup objdetect_c C API
|
||||
@defgroup objdetect_hog HOG (Histogram of Oriented Gradients) descriptor and object detector
|
||||
@defgroup objdetect_qrcode QRCode detection and encoding
|
||||
@defgroup objdetect_dnn_face DNN-based face detection and recognition
|
||||
Check @ref tutorial_dnn_face "the corresponding tutorial" for more details.
|
||||
@defgroup objdetect_common Common functions and classes
|
||||
@}
|
||||
*/
|
||||
|
||||
@ -111,13 +113,15 @@ typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup objdetect
|
||||
//! @addtogroup objdetect_common
|
||||
//! @{
|
||||
|
||||
///////////////////////////// Object Detection ////////////////////////////
|
||||
|
||||
//! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
|
||||
//! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
|
||||
/** @brief This class is used for grouping object candidates detected by Cascade Classifier, HOG etc.
|
||||
|
||||
instance of the class is to be passed to cv::partition
|
||||
*/
|
||||
class CV_EXPORTS SimilarRects
|
||||
{
|
||||
public:
|
||||
@ -162,6 +166,10 @@ CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>&
|
||||
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
|
||||
std::vector<double>& foundScales,
|
||||
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
|
||||
//! @}
|
||||
|
||||
//! @addtogroup objdetect_cascade_classifier
|
||||
//! @{
|
||||
|
||||
template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; };
|
||||
|
||||
@ -243,7 +251,7 @@ public:
|
||||
CV_WRAP bool load( const String& filename );
|
||||
/** @brief Reads a classifier from a FileStorage node.
|
||||
|
||||
@note The file may contain a new cascade classifier (trained traincascade application) only.
|
||||
@note The file may contain a new cascade classifier (trained by the traincascade application) only.
|
||||
*/
|
||||
CV_WRAP bool read( const FileNode& node );
|
||||
|
||||
@ -260,12 +268,6 @@ public:
|
||||
cvHaarDetectObjects. It is not used for a new cascade.
|
||||
@param minSize Minimum possible object size. Objects smaller than that are ignored.
|
||||
@param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
|
||||
|
||||
The function is parallelized with the TBB library.
|
||||
|
||||
@note
|
||||
- (Python) A face detection example using cascade classifiers can be found at
|
||||
opencv_source_code/samples/python/facedetect.py
|
||||
*/
|
||||
CV_WRAP void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
@ -338,7 +340,10 @@ public:
|
||||
};
|
||||
|
||||
CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
|
||||
//! @}
|
||||
|
||||
//! @addtogroup objdetect_hog
|
||||
//! @{
|
||||
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||||
|
||||
//! struct for detection region of interest (ROI)
|
||||
@ -666,6 +671,10 @@ public:
|
||||
*/
|
||||
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
|
||||
};
|
||||
//! @}
|
||||
|
||||
//! @addtogroup objdetect_qrcode
|
||||
//! @{
|
||||
|
||||
class CV_EXPORTS_W QRCodeEncoder {
|
||||
protected:
|
||||
@ -827,7 +836,7 @@ protected:
|
||||
Ptr<Impl> p;
|
||||
};
|
||||
|
||||
//! @} objdetect
|
||||
//! @}
|
||||
}
|
||||
|
||||
#include "opencv2/objdetect/detection_based_tracker.hpp"
|
||||
|
@ -51,7 +51,7 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup objdetect
|
||||
//! @addtogroup objdetect_cascade_classifier
|
||||
//! @{
|
||||
|
||||
class CV_EXPORTS DetectionBasedTracker
|
||||
@ -215,7 +215,7 @@ class CV_EXPORTS DetectionBasedTracker
|
||||
void detectInRegion(const cv::Mat& img, const cv::Rect& r, std::vector<cv::Rect>& detectedObjectsInRegions);
|
||||
};
|
||||
|
||||
//! @} objdetect
|
||||
//! @}
|
||||
|
||||
} //end of cv namespace
|
||||
|
||||
|
@ -7,13 +7,15 @@
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
|
||||
/** @defgroup dnn_face DNN-based face detection and recognition
|
||||
*/
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/** @brief DNN-based face detector, model download link: https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.
|
||||
//! @addtogroup objdetect_dnn_face
|
||||
//! @{
|
||||
|
||||
/** @brief DNN-based face detector
|
||||
|
||||
model download link: https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet
|
||||
*/
|
||||
class CV_EXPORTS_W FaceDetectorYN
|
||||
{
|
||||
@ -80,7 +82,9 @@ public:
|
||||
int target_id = 0);
|
||||
};
|
||||
|
||||
/** @brief DNN-based face recognizer, model download link: https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view.
|
||||
/** @brief DNN-based face recognizer
|
||||
|
||||
model download link: https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface
|
||||
*/
|
||||
class CV_EXPORTS_W FaceRecognizerSF
|
||||
{
|
||||
@ -105,11 +109,11 @@ public:
|
||||
CV_WRAP virtual void feature(InputArray aligned_img, OutputArray face_feature) = 0;
|
||||
|
||||
/** @brief Calculating the distance between two face features
|
||||
* @param _face_feature1 the first input feature
|
||||
* @param _face_feature2 the second input feature of the same size and the same type as _face_feature1
|
||||
* @param face_feature1 the first input feature
|
||||
* @param face_feature2 the second input feature of the same size and the same type as face_feature1
|
||||
* @param dis_type defining the similarity with optional values "FR_OSINE" or "FR_NORM_L2"
|
||||
*/
|
||||
CV_WRAP virtual double match(InputArray _face_feature1, InputArray _face_feature2, int dis_type = FaceRecognizerSF::FR_COSINE) const = 0;
|
||||
CV_WRAP virtual double match(InputArray face_feature1, InputArray face_feature2, int dis_type = FaceRecognizerSF::FR_COSINE) const = 0;
|
||||
|
||||
/** @brief Creates an instance of this class with given parameters
|
||||
* @param model the path of the onnx model used for face recognition
|
||||
@ -120,6 +124,7 @@ public:
|
||||
CV_WRAP static Ptr<FaceRecognizerSF> create(const String& model, const String& config, int backend_id = 0, int target_id = 0);
|
||||
};
|
||||
|
||||
//! @}
|
||||
} // namespace cv
|
||||
|
||||
#endif
|
||||
|
@ -44,8 +44,8 @@ int main(int argc, char** argv)
|
||||
"{image2 i2 | | Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm}"
|
||||
"{video v | 0 | Path to the input video}"
|
||||
"{scale sc | 1.0 | Scale factor used to resize input video frames}"
|
||||
"{fd_model fd | yunet.onnx | Path to the model. Download yunet.onnx in https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx }"
|
||||
"{fr_model fr | face_recognizer_fast.onnx | Path to the face recognition model. Download the model at https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view}"
|
||||
"{fd_model fd | face_detection_yunet_2021dec.onnx| Path to the model. Download yunet.onnx in https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet}"
|
||||
"{fr_model fr | face_recognition_sface_2021dec.onnx | Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface}"
|
||||
"{score_threshold | 0.9 | Filter out faces of score < score_threshold}"
|
||||
"{nms_threshold | 0.3 | Suppress bounding boxes of iou >= nms_threshold}"
|
||||
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
|
||||
@ -65,6 +65,7 @@ int main(int argc, char** argv)
|
||||
int topK = parser.get<int>("top_k");
|
||||
|
||||
bool save = parser.get<bool>("save");
|
||||
float scale = parser.get<float>("scale");
|
||||
|
||||
double cosine_similar_thresh = 0.363;
|
||||
double l2norm_similar_thresh = 1.128;
|
||||
@ -87,6 +88,9 @@ int main(int argc, char** argv)
|
||||
return 2;
|
||||
}
|
||||
|
||||
int imageWidth = int(image1.cols * scale);
|
||||
int imageHeight = int(image1.rows * scale);
|
||||
resize(image1, image1, Size(imageWidth, imageHeight));
|
||||
tm.start();
|
||||
|
||||
//! [inference]
|
||||
@ -199,7 +203,6 @@ int main(int argc, char** argv)
|
||||
else
|
||||
{
|
||||
int frameWidth, frameHeight;
|
||||
float scale = parser.get<float>("scale");
|
||||
VideoCapture capture;
|
||||
std::string video = parser.get<string>("video");
|
||||
if (video.size() == 1 && isdigit(video[0]))
|
||||
|
@ -16,8 +16,8 @@ parser.add_argument('--image1', '-i1', type=str, help='Path to the input image1.
|
||||
parser.add_argument('--image2', '-i2', type=str, help='Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm.')
|
||||
parser.add_argument('--video', '-v', type=str, help='Path to the input video.')
|
||||
parser.add_argument('--scale', '-sc', type=float, default=1.0, help='Scale factor used to resize input video frames.')
|
||||
parser.add_argument('--face_detection_model', '-fd', type=str, default='yunet.onnx', help='Path to the face detection model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.')
|
||||
parser.add_argument('--face_recognition_model', '-fr', type=str, default='face_recognizer_fast.onnx', help='Path to the face recognition model. Download the model at https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view.')
|
||||
parser.add_argument('--face_detection_model', '-fd', type=str, default='face_detection_yunet_2021dec.onnx', help='Path to the face detection model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet')
|
||||
parser.add_argument('--face_recognition_model', '-fr', type=str, default='face_recognition_sface_2021dec.onnx', help='Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface')
|
||||
parser.add_argument('--score_threshold', type=float, default=0.9, help='Filtering out faces of score < score_threshold.')
|
||||
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
|
||||
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
|
||||
@ -56,11 +56,15 @@ if __name__ == '__main__':
|
||||
# If input is an image
|
||||
if args.image1 is not None:
|
||||
img1 = cv.imread(cv.samples.findFile(args.image1))
|
||||
img1Width = int(img1.shape[1]*args.scale)
|
||||
img1Height = int(img1.shape[0]*args.scale)
|
||||
|
||||
img1 = cv.resize(img1, (img1Width, img1Height))
|
||||
tm.start()
|
||||
|
||||
## [inference]
|
||||
# Set input size before inference
|
||||
detector.setInputSize((img1.shape[1], img1.shape[0]))
|
||||
detector.setInputSize((img1Width, img1Height))
|
||||
|
||||
faces1 = detector.detect(img1)
|
||||
## [inference]
|
||||
|
Loading…
Reference in New Issue
Block a user